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ABSTRACT 

Some fish species show parental death shortly after their first spawning. The well-known 

exanrples are ayu (Plecoglossus altivelis) which dies in only one year. Although the 

mechanisms for such a short life span are still unclear, there have been proposed some 

hypotheses. Since it is shown clearly that ayu produced ROS higher than other species, it is 

supposed that high ROS production strongly related in aging advances, resulting in 

shortened life span. Homeostasis disturbances by maturation, debility for exhausting 

energy of spawning and decreasing of feeding activities during spawning and after 

spawning are also considered to be factors which ayu dies in only one year. Along these 

hypotheses, this study dealed with carp as a model fish with long life span and ayu as a 

model fish with short life span and was performed for disclosing whether 1) influence of 

the oxidative stress on biomembrane, 2) apoptosis related factors, 3) caloric restriction, 

and/or 4) feeding activity would be relevance to short life span or not. Clarification of fish 

life span determination factors will also contribute to the stable fish eulture techniques 

including 'programmed' fish culture on the basis of mechanism elucidations. 

This thesis is composed of five chapters. Chapter I deals with introduction and general 

diseussion. It was given for gaining insight into aging and senescence studies. The free 

radical theory of aging, telomere theory of aging, progranuned cell death, p53 tumor 

suppressor protein induced apoptosis and caloric restriction were reviewed 

comprehensively. Regulatory peptides and control of food intake were also described. 

In Chapter II, it was investigated the influence of partial oxidative stress on penueability 

and fluidity of nucleated fish red blood cells for simulating nucleated somatic cells. 

Peroxide value indicating lipid hydroperoxide level in nucleated red blood cells of 

common carp (Cyprinus carpio) increased with increasing body size. It was detected that 

oxidation of nucleated red blood cells led to the degraded PUFA compositions and 

accelerated the permeability of calcein and ATP in the nucleated red blood cells restrictedly 

oxidized with AAPH treatment. Using fluorescence probes, PC3P, it was found that 

oxidative stress reduced the membrane fluidity of nucleated red blood cells. It was also 

observed that AAPH had no significant influence on the osmotic fragility and 

electrophoretic profiles of red blood cell proteins. These results suggest that partial 

oxidative-stress, even if failure to fragment the membrane, may affect membrane 

permeability of fish nucleated red blood cells for an important energy molecule, ATP. 

It is well known that ayu (Plecoglossus altivelis) die after spawning and the life span is 

only one year. One possible cause is that enhanced oxidative stress might induce DNA 

damage and subsequent DNA repair systems as phosphorylated p53 in ayu, Ieading to 

apoptosis and relating to their short life span. Telomeres, the non-coding sequences at the 

ends of chromosomes, shortening of telomeres can induce cell cycle arrest and apoptosis. 



Chapter 111 was, then, addressed to the p53 and its phosphorylation in ayu brain, the 

oxidative DNA damage by measuring the levels of 8-0HdG and the induction of apoptosis 

by measuring the levels of caspase-9/6, -3 with aging in brain and liver. It was also 

investigated that age related changes in telomere length in the ayu. The findings indicate 

that oxidative stress activated caspase-9/6, -3 in brain and liver, and activated p53 through 

the phosphorylation of p53 and p53 with aging in ayu brain. There was no significant 

change in telomere length through life span. It was suggested that the age-related of 

apoptosis might be involved in increasing of DNA damage and mutations in brain and liver, 

and could partially explain the short life span of ayu. 

The effeets of caloric restriction on post-spawning death of ayu were investigated in 

Chapter IV. Caloric restriction is the only established intervention that extends life span in 

mamlnals, insects and nematodes. One of the hypotheses suggested that most of the effects 

of CR on aging may be due to reduced oxidative stress at the cellular level. It was known 

that ayu produced ROS higher than other fish and that the ~1ife span of ayu is only one year. 

It was attempted to quantify age-associated changes of the degree of attenuation on 

oxidative damage and honuonal homeostasis in CR. The oxidative DNA damage by 

measuring the levels of 8-0HdG and the induction of apoptosis by measuring the levels of 

caspase-9/6, -3 with aging in brain and liver were surveyed. Changes in maj or sexual 

honuones were also investigated. Caspase activities in brain and liver were reduced by CR, 

although CR was no influence to DNA damage level. Plasma testosterone levels of CR ayu 

were significantly higher and progesterone and 1 7 ~-estradiol levels were lower than the 

control ayu. However, Iife span of ayu was not prolonged by CR. These results suggest that 

there would be factors detenuining life span of ayu other than CR and apoptosis. 

Chapter V deals with roles of leptin in post-spawning death of ayu. It is well known that 

ayu dye after spawning and the life span is only one year. The deterntinants for such a short 

life span are probably involved in spawDing and some accompanied changes in hormonal 

homeostases. It is one of the accompanied changes that feeding activity of ayu decreases 

during spawning and after spawning. Then, it was investigated the relationships among 

leptin and ghrelin, they are regulators for food intake, and other maj or honnones, 1 7 

P-estradiol and prolactin. Leptin levels were significantly higher during spawning, 

associated with decrease in appetite. Leptin levels were also synchronized with levels of 1 7 

~-estradiol and prolactin. Ghrelin levels were no significant difference. Therefore, one 

possible explanation for decrease in appetite during ayu spawning is that the alteration of 

1 7 ~-estradiol homeostasis induced the secretion of leptin. The inability to reduce the 

leptin level into the basal after spawning would be in part responsible for a short life span 

of ayu. 

In conclusion, it was revealed that the mechanisms governing life span of ayu were 

through at least two pathways. One is apoptosis induced by oxidative stress with aging, 
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This pathway is probably, however, an alleyway, since CR could afford to down-regulate 

apoptosis pathway but did not extend the life span of ayu. Another is decreasing appetite 

during and after spawning induced by leptin in ayu. Reproduction induced physiological 

anorexia: it is begirming to death. 
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　　　　　　　　　　　　CHAPTER　I

INTRODUCTIONAND　GENERALBACKGROUNDS
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It is mentioned that the control system for maintaining the constancy ofthe homeostases 

of animals is always working. Although it is becoming clear that these are controlled by the 

network of immunity systems, nervous systems and intemal secretion systems, the 

regulation mechanisms in fish is hardly clear, and becomes one of the big research 

sub j ects. 

Now, the view of individual aging of animals has cornmon theory of "programmed" 

aging. A progranuned theory connects shortening of the telomere by reduction of 

telomerase activity to a cell life. The telomerase activities of cells of fish are, however, 

very high, and it is hard to explain in a programmed theory for fish aging. 

The life span of fish is mainly prescribed by the grade of aging and debility like other 

animals. This research is focused to the destruction of homeostasis with fish aging and 

aimed at dynamic understandings of interactions among oxidative stress, feeding action, 

aging, etc. The following sections will deal with comprehensive backgrounds associated 

with those factors and brief sununaries of this thesis. 
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Section 1 

General Background 
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The study of aging, by nature multidisciplinary~ has been characterized by a dizzying 

variety of theories, a huge phenomenological literature, and the absence of firmly 

established primary causes. The diverse life histories of animal species, which manifest 

aging in very different ways, have been an obstacle to testing unified theories. For 

experimental gerontology to provide more than a catalog of age-related changes, it has 

been necessary for biologists to define the alterations that are comrnon to most old cells, 

tissues, and animals, simultaneously respecting that there is not a single phenomenon of 

aging or a single cause. Many theories have been proposed to explain the basis of aging. 

They have been classified into organ theories (immune or neuroendocrine), physiological 

theories (free radical, dross-1inking and waste-product accumulation) and genome-based 

theories (somatic mutation, error theory and program theory) of aging. 

1. THE FREE RADICAL THEORY OF AGING 

1.1 Origins of the Free Radical Theory 

In 1956, Denham Harman suggested that free radicals produced during aerobic 

respiration cause cumulative oxidative damage, resulting in aging and death. He noted 

parallels between the effects of aging and of ionizing radiation in both of them causing 

mutagenesis, cancer, and gross cellular damage (Haunan, 1 956). At that time, the presence 

of hydroxyl radical (･OH) in living matter had been just identified (Commoner et al., 1954). 

Harman ( 1 956), therefore, hypothesized that endogenous oxygen radical generation would 

occur in vivo, as a by-produet of enzymatic redox chemistry. He ventured that the enzymes 

involved would be those involved in the direct utilization of molecular oxygen, and that 

particularly those would contain iron. Finally, he hypothesized that traces of iron and other 

metals would catalyze oxidative reactions in vivo and that peroxidative chain reactions 

would make progress, analogous to the principles of in vitro polymer chemistry. A11 of 

these predictions hav~e been conflrmed during the past 40 years. 

The theory gained credibility through the identification in 1 969 of the enzyme 

superoxide disrnutase (SOD) (McCord and Fridovich, 1969), which provided the first 

compelling evidence of in vivo generation of superoxide auion (02~'), and from the 

subsequent elueidation of elaborate antioxidant defenses (Yu, 1994). The use of SOD as a 

tool to locate subcellular sites of 02~' generation led to a realization that buttressed up the 

free radical theory, namely, that mitochondria are a principal source of endogeneous ROS 

(Chance et al., 1979). Gerontologists had long observed that species with higher metabolie 

rates have shorter maximum life span potential; they age faster. The accumulation of 

cardiac lipofuscin in the monkey related with its cumulative 02 consumption at a sexual 
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maturation stage (Nakano et al., 1989). The realization that energy consunrption by 

mitochondria may result in 02~' production linked the free radical theory with the rate of 

living theory irrevocably : a faster rate of respiration, associated with a greater generation 

of oxygen radicals, hastens aging. 

1.2. Oxidants and evolutionary theories of aging 

The intracellular generation of oxidants capable of limiting life span may appear 

paradoxical. It seems reasonable to expect that natural selection might have devised 

aerobic cells that do not leak toxic by-products. Evolutionary biologists have contributed to 

the free radical theory by suggesting why physiologically hannful generation of oxygen 

radicals occurs. They have argued that natural selection favors genes that act to preserve 

nongenu cells, a principle called antagonistic pleiotropy (Kirkwood, 1977, 1992; 

Kirkwood and Rose, 1991; Williams and Nesse, 1991). The concept of antagonistic 

pleiotropy stresses that reproductive success is principally a fiJnction of external factors. 

With the exception of modern-day humans, individuals do not usually die of old age, but 

are eaten, parasitized, or out-competed by others. Kirkwood and Cremer ( 1 982) 

contributed a physiological perspective, expressed as the 'disposable soma theory' which 

states that although it is theoretically possible to invest sufficiently in somatic maintenance 

and repair to fend off harmful age changes, natural selection may favour a balanee that 

falls short of immortality and results in senescence. The limiting resources would take 

many forms and include energy and nutrition, DNA repair and replacement of･ defective 

proteins, and response to cellular stress. The positive correlation between resistance to 

physiological stressors and life span in a range of marumalian species is consistent with the 

disposable soma theory (Kapahi et al., 1999). The theory was proposed to account for 

somatic aging, but it can also apply to germ cells. Indeed, similar age changes and 

protective mechanisms might be expected in both germ and somatic cells, even if the 

expression varies among specific cell types. In terms of natural selection, the tremendous 

cost of death before reproductive age, the constantly compounding probability of death 

from external threats, and the cost of failing to reproduce all ensure that selective pressure 

is strongest at young ages. Any novel mutations that decrease oxidative damage frrst have 

to satisfy the criteria of youthful reproduction. In short, the selective pressure to compete 

effectively at an early age may guarantee a certain degree of 02 toxicity and work against 

the conservation ofthe soma in the long run. 
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1.3. Oxidants and the somatic mutation theory of aging 

The somatic mutation theory holds that the accumulation of DNA mutations is 

responsible for degenerative senescence (Bohr and Anson, 1995; Evans et al., 1995; 

Miquel, 1992; Morley, 1995; Vijg and Gossen, 1993). In the case of cancer, which results 

from both point mutations in oncogenes and the loss of tumor suppressor gene function 

(often by deletion), the role of mutations are unquestionable (Ames et al., 1995). It remains 

to be seen whether or not the argument is valid for nonproliferative senescence. For 

instance, whereas significant age-related increases in somatic mutations in a reporter 

transgene (lacZ) have been measured in a mitotie tissue of transgenic mice, no increase 

was detected in the largely postmitotic brain of the same animals (Dolle et al., 1997), 

suggesting that neurodegeneration, at least, is unlikely to be the result of accumulated 

somatie mutations in nuclear DNA. Moreover, the accllmulation of mutations in the liver 

tissues was not dramatic, suggesting that mutagenesis may be of little functional 

consequence to mitotic tissue as well (Warner and Johnson, 1 997). A compelling argument 

for the somatic mutation theory of aging was provided years ago through the discovery that 

DNA repair ability correlates with species-specific life span (Hart and Setlow, 1974) and 

has been recently reconfiuned by Cortopassi and Wang (1996). However, they have also 

noted that DNA repair, which is necessary for the prevention of tumorigenesis, is necessary 

but not sufficient for longevity. Ultimately, arguments about the physiological significance 

of somatic mutations hinge on how disruptive a given mutational burden is to a cell or 

animal; this is currently an unanswerable question. 

In any case, it has been demonstrated in numerous studies with prokaryotes, yeast, and 

manunalian cells that oxidants are mutagens, against which cells protect their genetic 

material (Feig et al, 1 994; Grollman and Moriya, 1 993). Although it is not yet elear what 

function of mutations can be attributed to oxidative damage, the identification and 

characterization of defense genes against oxidative mutagenesis (Beckman and Ames, 

1 997) and the development of in vivo mutagenesis assays (Martus et al., 1995) have finally 

opened up avenues for definitive experiments. 

1.4. Oxidants and mitochondrial theories of aging 

The mitochondrion has also long attracted attention as one of the cell's weak links, an 

organelle whose dysfunction has profound negative pleiotropic effects (Luft, 1994). 

Mitochondria supply ATP and also sequester potentially toxic Ca2+, yet because of their 

generation of 02~' and H202, they are on the front lines of respiratory oxidative stress. The 

idea that the mitochondrion is therefore uniquely vulnerable was embraced early on by 

proponents of the free radical theory (Hannan, 1972). In the early 1980s, it was proposed 
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that oxidative damage to mitochondrial DNA (mtDNA) inpostmitotic cells would lead to 

mutations and blocks of replication, and consequently to mitochondrial dysfunction and 

physiological decline (Fleming et al., 1982; Miquel et al., 1980). This mtDNA mutation 

hypothesis of aging, which incorporates free radicals, somatic mutations, and the central 

role of mitochondria in homeostasis, is presently under intense scrutiny (Arnheim and 

Cortopassi, 1992; Bandy and Davison, 1 990; Bittles, 1992; Cortopassi and Liu, 1995; 

Hagen et al., 1997; Muller, 1992; Nangley et al., 1992; Ozawa, 1995; Richter, 1992, 1995; 

Richter et al., 1988; Schapira and Cooper, 1992; Shigenaga et al., 1994; Wallace et al., 

1995; Wei, 1992). 

2. TELOMERE THEORY OF AGING 

Mammalian cells have evolved complex mechanisms for regulating cellular life span. 

Normal cells demonstrate a strictly limited growih potential and senescence after a defined 

nunrber of cell divisions. Cellular senescence is one of the bases of organismal aging. In 

contrast, tumor cells often exhibit an apparently unlimited proliferation potential and are 

called "immortalized". Some investigators have proposed that the progressive shortening 

of the tips of the enkaryotic chromosomes, the telomeres, are important component of 

senescence and is involved in control of the cell cycle. The enzyme telomerase adds 

TTAGGG repeated onto marumalian telomeres, which prevent their shortening. 

Telomerase is ordinarily inactive in most somatic cells but can be detected in tumor cells. 

The activation of telomerase in malignant cancers seems to be an important step in 

tumorigenesis, whereby the cell gains the ability of indefinite proliferation to become 

immortal. As detailed information accumulates about how telomeres dynamics are 

involved in the regulation of cell cycle events, one can expeet new opportunities for 

application to gerontology. 

2.1. Telomere and telomerase 

The extreme ends of enkaryotic chromosomes- the telomeres- are special structures that 

provide protection from enzymatic end-degradation and maintain chromosome stability 

(Dahse et al., 1997). Chromosomes with truncated telomere tips fuse with other 

chromosome ends or become lost during cell division. Telomeres also play a role in 

organization of the cellular nucleus by serving as attachment points to the nuclear matrix 

(de Lange, 1992). Apart from providing stabilization and protection to the chromosomes, 

telomeres carry out another important function in replicating cells: Their structure allows 

the end of linear DNA to be replicate completely. 
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Telomeres are composed of a DNA component and multiple protein components 

(Graeber, 1 996). The telomeric DNA consists of noncoding tandemly repeated sequences, 

with the exact repeat sequence varying from one species to the other. In humans and other 

vertebrates, the repeat unit is the hexanucleotide TTAGGG (5 ' ->3' direction). Although 

telomeres are generally considered to be localized structures at the ends of chromosomes, 

such sequences are also being identified at internal positions in chromosomes (Katinka and 

Bourgain, 1 992). The length oftelomeres also varies among different species. Human have 

telomeres 8-14 kilobasepairs (kbp) Iong, whereas the mean telomeric repeat lengths in 

some ciliates are as little as 36 bp, and those in mice may be as much as 1 50 kbp (Rao, 

1 996). In human chromosomes, telomeres are adj oined centromerically by a subtelomeric 

region consisting of degenerated telomeric DNA sequences and unique repeats (Brown et 

al., 1990) 

A11 chromosomes lose a small amount of telomeric DNA during each cell division, a 

natural eonsequence of the nature of the cellular DNA replication machinery. DNA 

polymerases replicate only in a 5 ' ->3' direction by extending exist polynucleotide chains. 

The mechanism of DNA replication differs for the leading and the lagging DNA strands, 

The leading strand is replicated continually. To replicate the lagging strand, DNA 

polymerization starts from several RNA primers, which are elongated to create DNA 

fragments, termed Okazaki fragments. These RNA primers are finally degraded and 

replaced by DNA sequences. Removal of the terminal RNA primer on the lagging strand 

leaves a gap that ordinary is filled in by extension of the next Okazaki fragment. Because 

there is no template for the last Okazaki fragment beyond the 5 ' end of the chromosome, 

one strand cannot be synthesized to its very end. This reduction of chromosomal DNA at 

the 3 ' ends during multiple cell cycles. 

The loss of genomic sequences at each replication cycle can be compensated by addition 

of terminal sequences through various mechanisms: e.g., in yeast by recombination events 

(Lundblad and Blackburn, 1993) or Drosophila by transposition (Biessmann and Mason, 

1 992). Moreover, organisms possess the ability to transfer species-specific tenninal 

sequences onto DNA: Shampay et al. ( 1 984) demonstrated that telomeric DNA from 

Tetrahymena introduced into yeast became elongated with yeast telomeric sequences. The 

crucial experiments came from Greider and Blackburn (1985, 1987), who detected in 

Tetrahymena extracts an activity that added telomeric repeats to single-stranded telomeric 

DNA oligonucleotide primers; they also' found that this process is inactivated by treating 

the extract with a RNA-degrading eazyme. Therefore, this RNA-dependent activity, named 

terminal transferase or telomerase, was found to be a ribonucleoprotein complex that 

utilizes sequences of its own RNA component as a template for the de novo synthesis of 

telomeric DNA sequences. Both RNA and several protein components of telomerase are 

needed for enzymatic activity (Collins, 1996; Feng et al., 1995; Kirn et al., 1994; Singer 
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and Gottschling, 1994). 

Although the bulk of telomeric DNA is double stranded, the extreme terminus is a 

single-stranded G-rich 3 ' overhang that serves as a template for elongation and forms a 

telomeric 'T-100p'. This loop is stabilized by certain telomere-binding proteins, notably 

TRF I and TRF2 (Zakian, 1 996). The functions of telomeres appear to include protection of 

chromosomes from illegitimate fusion, the localization of chromosomes in the nucleus and 

the selective silencing of proximal subtelomeric genes (Greider, 1 994). The telomeric 

repeat sequences are added on by the enzyme telomerase (Greider and Blackburn, 1985; 

Yu et al., 1990), which present compensates for the loss of DNA from the end of 

chromosomes due to ineomplete replication. 

In human, telomeres are up to 20 kb in length (Brown, 1989). In contrast, rodent 

telomeres have been reported to be heterogeneous in length (Zijlmans et al., 1997). Mus 

musculus has been reported to have telomeres up to 1 50 kb in size (Prowse and Greider, 

1 995). Mus spretus, however, has telomeres with similar length to humans (up to 3 O kb in 

size) (Zijlmans et al., 1997), whereas rat telomere length ranges from 20 to 100 kb 

(Golubovskaya et al., 1999; Jennings et al., 1999). 

In humans, both in vivo and in vitro, telomere shortening appears to be a maj or 

component of cell senescence and aging (Campisi et al., 1996; Harley, 1997). Telomeres 

have been reported to shorten during post-natal development and aging in liver (Aikata et 

al., 2000; Takubo and Kaminishi, 2001), kidney (Melk et al., 2000) and lymphocyies 

(Benetos et al., 2001). However, this is less apparent in mice because of the very long 

telomeres (30-150 kb). Telomere shortening has been extensively studied in mice, 

especially in telomerase-deficient knockout mice (Artandi and DePinho, 2000; Blasco et 

al., 1 999; Herrera et al., 1 999). Moreover, it was reported that relationships between kidney 

telomere shortening and longevity in the rat (Jeunings et al., 1 999). 

2.2. Telomere theory of aging in mammals 

In 1 998, after endless efforts to get to the bottom of an intriguing mechanism of original 

aging, it became elear at least in the rough. Bodnar et al. (1998) has given a brilliant 

evidence for the hypothesis. According to the hypothesis, telomere shortening in every 

subsequent cell division is responsible for the limited cell proliferation in culture (the so 

called 'Hayflick's limit' found 40 years ago by Hayflick and Moorhead, 1 961). It was quite 

natural to attribute organismal aging to th_e same cause. The most complicated problems of 

cellular and organismal aging have got the following explanation. Shorter telomeres, found 

in cells of patients with inherited premature aging, progerias (A11SOpp et al., 1 992) were 

consistent with the sharply restricted Hayflick's limit in these cells ~nd provided a distinct 

evidence for an existing correlation between agings of an organism with that of its cells, 
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Discovery of telomerase activity in malignant tumor cells explained the mechanism of 

tumorigenesis. The same activity in gametes clarified why our children always started their 

aging from zero level and not from the level reached by the parents (by its cell) during 

conception. Therefore, it was logical to consider organismal aging to be a result of 

telomere shortening and limited cell proliferation. 

However, some facts instantly appeared which did not go in this line of telomere theory 

of aging. First, proliferative capacity of human cells appeared to demonstrate a very 

insignificant, if any, decrease with age (Francheschi et al., 1999). Moreover, skin 

fibroblasts of human at very old age never exllaust their Hayflick's limit (Cristofalo et al., 

1 998). Additionally, some other contradictions against the telomere theory of aging have 

been intensity discussed earlier. 

In 1998, Hayflick proposed a new hypothesis, according to which telomere shortening, 

leading to the loss of replicative capacity, determined only the species life span, whereas 

aging itself was caused by the aceumulation of some cell damages, as it had been 

suggested earlier by Orgel ( 1 973) though these damages still need to be clarified. 

Dr. Hayflick's hypothesis appears to be a misconception. First, the theory is at variance 

with the following observations. 

1 . The Hutchinson-Gilford progeria patients demonstrate the real accelerated aging and 

not a simple reduetion in the life span (AlISOpp et al., 1992). Similar phenomena are 

observed in the other forms of hereditary premature aging-Werner 's syndrome (Wyllie 

et al., 2000). 

2. Telomeres examined in cells of people extremely old at age never reach the critical 

length. Blocking nonual cellular proliferation (Mondello et al., 1999). 

Nevertheless, all old people die at an age nearing hundred years, and their telomeres by 

no means are exhausted. Thus, organisms die precisely because of aging, though they 

never live till all their cells stop proliferating. 

It was assumpted that aging and consequent death need not necessarily reach Hayflick's 

limit in all tissues of an organism. Exhausted proliferative potential of cells in some areas 

of organ tissue might be sufficient to promote one of the age-dependent diseases. 

Combination ofthese disorders, gradually increasing with age, is aging. At this point, again 

there is a contradiction with Dr. Hayflick's new hypothesis. 

Developing his idea, Hayflick ( 1 998) considers that it is necessary to distinguish aging 

from disease, in other words, to distinguish diseases from age-related changes and try to 

pick out pure aging. Such attempts seem unpromising in principle, because age-related 

diseases, to the common person are aging. Nobody dies just because of age. 

Telomere shortening in certain human tissues might promote disorders such as essential 

hypertension, non-insulin-dependent diabetes mellitus, atherosclerosis, and cancer (Aviv 

and Aviv, 1998). There are evidences for a possible role of telomere shortening in 
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malignancies, compared with the surrounding tissues, (Morin, 1997). Zeichner et al. (1999) 

found that accelerated cell division in children and hence higher rate of telomere 

shortening may provide an explanation for a more rapid progression to acquired 

inrmunodeficiency syndrome in infected infants. 

On the other hand, Omura et al. (1998) has shown that an average telomere length 

decrease with the advance of age in cells of all human tissues, except for heart, brain, 

retina and sex glands. It also appears that chronic degenerative diseases are accompanied 

by unusual low telomeres. It is noteworthy that the exceptions mentioned above might be 

well explained within the hypothesis suggesting irregular telomere shortening in different 

tissues of an organism. The absence of telomere shortening in gerrn cells is, apparently, 

because of telomerase activity in these cells. Brain neurons stop dividing at the time of 

birth although significant telomere shortening is not observed, which contradicts the 

proposed idea at first sight. The point is that cells reach their proliferative limit irregularly. 

and does not guarantee the rapid and full cessation of mitoses in the tissue. Meanwhile, 

brain cells need rapid and full cessation, because links between neurons must be settled 

from the time of birth, and if neurons continue to divide as other cells, these links will be 

surely destroyed. Therefore, it is the brain than j ust by telomere shortening, because the 

cessation of mitotic activity is probably provided by some additional and more effective 

mechanisms. The retina may operate in the same mechanism. 

Thus, there are many reasons to believe that the telomere theory of aging is in principle 

correet. A11 the above difficulties may easily find their explanation with regard to the 

phenomenon of uneven telomere shortening in different tissues and organs of the organism. 

Francheschi et al. ( 1 999) truly claimed that any living organism might be regarded as a 

mosaic of cells with different replicative histories and potentials. According to these 

authors, this particular fact throws doubt on the validity of the telomere theory of aging. By 

contrast, it is this fact that may explain all the apparent misunderstandings and difficulties 

within the frames ofthe telomere theory. 

2.3. Telomere theory ofaging in teleosts 

In fish, high telomerase activity has been deteeted in several nonnal organs of the 

rainbow trout Oncorhynchus mykiss (Klapper et al., 1998). Telomerase activity of the 

normal organs has been detected in both fry and adult fish, being I O - I OO-fold higher than 

that in the human tumor cell line L-428. In contrast, no telomerase activity has been 

detected in the differentiated organs of manunals. Greider (1998) has described the 

correlation between telomerase activity and the proliferation potential of cells. In general, 

rainbow trout grow continuously throughout their life and, therefore, the high telomerase 

activity detected in their normal organs is postulated to lead to cell proliferation and organ 
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growih. In previous investigation (Yoda et al., 2002), relative telomerase activity per cell in 

eyed embryos of rainbow trout was 19.3 - 50.7-fold higher than in Hela cells (a human 

cervical carcinoma cell line), whieh are well known to express a high level of telomerase 

activity (Morin, 1 989). Therefore, it is assumpted that aging and consequent death of fish 

need not to reach Hayflick's limit in all tissues of an organism. 

3. PROGRAMMED CELL DEATH 

Cells have a built-in cell death program, apoptosis (programmed cell death), which 

protects the organism by removing potentially damaged cells and unnecessary cells after 

drfferentiation. Apoptosis is induced in a wide range of physiological settings that are 

regulated by cell growih and differentiation in normal biological processes and in 

pathogenesis in vertebrates (Cohen et al., 1992; E1lis et al., 1991 ; Fernandes-Alnemri et al., 

1994; Jacobson et al., 1997; Nicholson and Thornberry, 1997; Steller, 1995). 

3.1. Deftningfeatures ofprogrammed cell death 

Despite the tremendous impact of researeh in apoptosis upon the understanding both of 

cellular and molecular mechanisms of cell demise, as well as mechanisms of degenerative 

diseases, the confusion between apoptosis and programmed cell death has been somewhat 

obscured. Regardless of whether this paradox is attributable either to disconnection of 

modern science from its philosophical foundations (Sloviter, 2002) or to a more trivial 

neglect of classical papers (Lockshin and Zakeri, 2001), it is likely that progress in the 

identification and understanding of nonapoptotic forms of progranuned cell death may 

have been unnecessarily delayed. 

Indeed, well before the upsurge in the understanding of mechanisms of apoptosis, a clear 

warning had been issued to avoid confusion between the fonn of cell death called 

apoptosis, and the concept of programmed cell death as a sequence of events, but not 

necessarily those that led to the morphology of apoptosis. However, the modern seience is 

recently identifying apoptosis as the programmed cell death. Therefore, apoptosis is used 

as the same term of the prograrumed cell death in this thesis. 

3.2. Multiple mechanisws of apoptosis 

Prograrnmed cell death with apoptotic morphology can be triggered by several stimuli, 

including intracellular stress and receptor-mediated signaling. These signals feed into an 

evolutionarily conserved intracellular machinery of execution (Green, 2000; Hengartner, 
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2000), the mechanisms of which have mainly been traced to the activity of the caspase 

fanrily of cysteine-proteases (Cryns and Yuan, 1998; Yuan et al., 1993; Zhivotovsky et al., 

1 997). Caspase-mediated apoptotic cell death has been extensively reviewed, e.g. Green, 

2000; Hengartner, 2000; Leist and Jaattela, 2001; Martin, 2002; Ravagnan et al., 2002; 

Wajant, 2002. The caspases are synthesized as zymogens and upstream signals convert 

these precursors into mature proteases. Inhibitor caspases; caspase-1, -2, -4, -5, -8, -9, -10 

and -14 are activated via oligomerization-induced autoprocessing (Butt et al., 1998; Li et 

al., 1997; Martin et al., 1998; Muzio et al., 1996; Srinivasula et al., 1998; Yang et al., 1998), 

while effector caspases; caspase-3, -6 and -7 are aetivated by other proteases, including 

initiator caspases and granzyme B. Proteolytic cleavage of cellular substrates by effector 

caspases largely determines the features of apoptotic cell death (Green, 1998; Liu, et al., 

1998; Sakahira et al., 1998; Stroh and Schulze-Osthoff, 1998; Wolf and Green, 1999; 

Zhang et al., 1998). 

Three major pathways have been identified according to their initiator caspase: the death 

receptor pathway involving caspase-8 (Medema et al., 1 997), the endoplasmic reticulum 

stress pathway attributed to activation of caspase-12 (Nakagawa et al., 2000), and the 

mitochondrial pathway, in which various signals can trigger the release of harmful proteins 

by mitochondria into the cytoplasm, Ieading to activation of caspase-9 and down-streanl 

cleavage of caspase-3, -7 or -6 (Green and Reed, 1998; Grutter, 2000; Li et al., 1997, 

1998a; Luo et al., 1998). 

Although caspase-3 is widely involved in the execution of apoptosis (Stennicke et al., 

2002), its effector functions may be dispensable for apoptotic-1ike cell death (Kuida et al., 

1996; Miyashita et al., 1998). The use of either pharmacological inhibitors or knockout 

animals further showed that cells could trigger alternative mechanisms of eell demise. For 

example, sympathetic and dorsal root ganglion neurons deprived of nerve growih factor 

(NGF) die in a caspase-2-dependent manner, but the same neurons derived from caspase-2 

knockout mice still die following nerve growih factor deprivation. The death depends on 

activation of caspase-9, which does not occur in wild-type mice (Troy et al., 2001). Thus, 

rather than a single linear mechanism, alternative caspase-mediated pathways may be 

activated for apoptotic cell death, depending on whether a preferential caspase is blocked. 

It is likely that the network of intrinsic regulatory pathways that impinge upon the activity 

of caspases, such as the inhibitors of apoptosis (IAPs) and IAP-binding proteins (Salvesen 

and Duckett, 2002), may regulate the choice between alternative pathways in normal cells, 

dependent on metabolic state, stage of differentiation and other conditions. 

In addition, caspase inhibition fails to block programmed cell death with apoptotic 

morphology in several experimental models (Assefa et al., 2000; Carmody and Cotter, 

2000; Lorenzo et al., 1999; Mateo et al,, 1999; Mathiasen et al. 1999). For example, the 

ultrastructural features of apoptosis inducing factor (AIF)-induced cell death represent an 
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example of a slight variation from the standard pattern of apoptosis morphology, which 

appears to be independent of caspase activation (Arnoult et al., 2003; Joza et al., 2001). 

Cell death pathways independent of caspase activation have been described, for exarnple, 

even in some fonns of cell death induced either by the Bcl-family protein Bax 

(Jtrgensmeier et al., 1998), as well as I cell death involving the activation of other 

proteases, such as calpain (Squier et al., 1994), proteasome (Hirsch et al., 1998) and serine 

proteases. 

Recent reports shows that the serine protease Om~HtrA2 is a mitochondrial direct 

X-chromosome-linked inhibitor of apoptosis protein (XIAP)-binding protein, which is 

released from mitochondria upon induction of apoptosis together with cyiochrome c and 

Smac/Diablo (Hegde et al., 2002; Martins, 2002; Martins et al., 2002), and its release ean 

be inhibited by Bcl-2 (van Loo et al., 2002). These reports suggest that in some cases there 

may be a cooperative action between serine proteases and caspases in the execution of cell 

death. 

The previous studies show that the elassically defined apoptotic morphology can be 

achieved either by activation of caspases, or through the mediation of other fanrilies of 

proteases, although the exact cyiological features of cell demise may vary slightly among 

these various forms of apoptosis. 

3.3. Apoptotic pathway in fish 

The charaeterization of genes that are involved in apoptosis has been pursued intensively, 

and has led to the identification of several classes of genes, the Bcl-2 family, 

apoptosis-inducing factor Bax, and the caspase family. Many genes with homology to 

marnmalian apoptosis regulators have been identified in zebrafish DNA databases (Inohara 

and Nunez, 2000), suggesting that most apoptotic pathways are evolutionally well 

conserved between fish and higher vertebrates. 

3.3. 1. The caspase family genes 

Cell death genes were frrst identified in the nematode Caenorhabditis elegans. The 

ced-3 gene encodes a cysteine protease that has a key role in the cell death-signaling 

pathway (Hengartner and Horvitz, 1994; Yuan et al., 1993). Vertebrate cells also possess 

several cysteine proteases belonging to the caspase fanrily; which are homologous to ced-3 

cysteine protease (Alnernri et al,, 1996). Caspase is produced as an inaetive precursor 

composed of four distinct dornains: the prodomain, Iarge subunit, and small subunit, and a 

linker region between the two subunits flanked by aspartic residues (Nicholson and 

Thornberry, 1 997). The pro-caspase is activated by hydrolysis between the large and small 

14 



subunits, resulting in removal of the prodomain and linker region and the large and small 

subunits form an active mature enzyme (Nicholson and Thornbeny. 1 997). X-ray crystal 

structural analysis of caspase- I and caspase-3 revealed that mature caspase forms a 

tetramer with two catalyiic sited that interacts via the small subunit (Rotonda et al., 1 996; 

Walker et al., 1994; Wilson et al., 1994). Multiple forms of caspase have been found in 

other vertebrates, e.g. 12 type in humans (Nicholson et al., 1995; Yaoita and Nakajima, 

1997), 10 type in mice (Hu et al., 1998; Kumar et al., 1994; Van de Craen et al., 1997; 

Wang et al., 1996), and eight types in X Iaevis (Kumar, 1999; Nakajima et al., 2000). 

Cascade reactions of proteolyiic processing of caspases induce apoptosis. Class I caspases, 

such as caspase-2, -8, -9 and -10, promote the upstream part of the cascade reaction via 

N-terminal prodomains, bound to specific death adaptor molecules (Colussi and Kumar, 

1999; Cryns and Yuan, 1998). Class 11 caspases with short N-terminal prodomains, e.g. 

caspase-3, -6 and -7, act as effectors caspase in proapoptotic signaling from the caspase 

cascade to cell death by porteolyiic processing of proteins, such as the inhibitor of 

caspase-activated DNase (Sakahira et al., 1998), poly-ADP-ribose polymerase (Earnshaw 

et al., 1999), and protein kinase C6 (Emoto et al., 1995). In fish, caspase-3 was recently 

cloned and characterized (Yabu et al., 2001). 

The full-length CDNA sequence of zebrafish caspase was isolated from CDNA Iibrary of 

zabrafish 12-h embryos (Yabu et al., 2001). This clone had an 846 bp ORF encoding a 

protein of 282 amino acids with a predicted molecular mass of 3 1 .5 kDa. The amino acid 

sequence identities of the zebrafish caspase-3 with chicken, hamster, human, rat, mouse, 

and X Iaevis caspase-3 were 64, 62, 62, 62, 61 and 580/0, respectively. According to the 

X-ray crystal structure of human caspase-3 (Rotonda et al., 1996), Cys-166, His-124, and 

Gly-125 in the catalyiic center, and Arg-97, Gln-164, Arg-243 and Ser-256 Iocated in the 

binding pocket in the S I subsite, are conserved in the zebrafish caspase-3. The 

pentapeptide motif QAC (R/Q/G) G around the active center Cys-166 is conserved in 

zebrafish caspase-3 (Yabu et al., 2001). 

A recombinant zebrafish caspase-3 Iacking the prodomain showed high activity toward 

the mammalian caspase-3 and -7 substrate, AC-DEVD-MCA. However, the enzyme had 

only low activity against caspase - I substrate AC-YVAD-MCA, caspase-6 and -8 substrate 

AC-IETD-MCA, and caspase -9 substrate AC-LEHD-MCA. Therefore, zebrafish caspase-3 

has strict substrate specificity, which is similar to that of known members of the caspase-3 

subfamily, such as human caspase-3 and caspase-7 (Thornberry et al., 1997). 

By homology analysis using current nucleotide databases of zebrafish and Taklfugu 

rubripes, several fish genes encoding caspases are available (Inohara and Nunez, 2000). 

Functional assays by overexpression of zebrafish caspase-3 in fathead minnow tailbud 

cells and zebrafish embryo (Yabu et al., 2001) and zebrafish caspy and caspy2 in human 

293T cells showed their induction of apoptosis (Masurnoto et al.,2003). 
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3.3.2. Expression ofcaspase-3 mRNA infish 

Zebrafish caspase-3 transcripts were expressed at all developmental stages examined by 

Northern blotting (Yabu et al., 2001). At the 4- and 1000- cell stages, high levels of 

caspase-3 mRNA were present in fertilized eggs as a maternal factor. Furthermore, 

caspase-3 mRNA was expressed in the shield, I -somite, pharyngula, and hatching periods, 

which coincided with zygotic gene expression after gastrulation. In situ hybridization 

demonstrated that caspase-3 mRNA was expressed throughout the embryo at every 

developmental stage. In the pharyngula period, caspase-3 mRNA is present at higher levels 

in the pectoral fin bud, otic vesicle, and hindbrain. 

When caspase-3 was overexpressed by introducting its CDNA into fish cultured cells and 

embryos, extensive apoptosis and ceramide generation were induced (Yabu et al., 2001). 

This suggests that the tissue-specific, developmental expression patterns of the caspase-3 

gene regulate the spatial and temporal distribution of apoptotic cells. In mammals, 

caspase-3-knockout mice are born infrequently, die after only a few weeks, and have brain 

defects (Colussi and Kumar, 1999; Kuida et al., 1996; Woo et al., 1998). Therefore, both 

mammalian and fish caspase-3 may have important functions modulating a proapoptosic 

signal during development. 

3.3.3. Death receptors 

Plasma membrane death receptors, belonging to the tumor necrosis factor (TNF) family, 

have been cloned in fish (Hirono et al., 2000). TNF receptor containing an intracellular 

death domain is assoeiated with cellular infrarnmatory and irumune responses in mammals. 

Interaction of extracellular ligands, such as Fas ligand and TNFoe, to death receptors is 

considered to induce apoptosis by activation of caspase-8 signaling. When a ligand binds 

to death receptors, the receptor-specific adapter protein Fas-associated death domain 

(FADD) is recruited, and then '*aspase-8 is activated by autolyiic processing. Activated 

caspase-8 is known to promote the apoptotic signal by directly cleaving and activating 

downstream caspases. In the caspase-8-knockout mouse, caspase-8 is found to be required 

for killing induced by the death receptors Fas, tumor necrosis factor receptor I and death 

receptor 3 (Varfolomeev et al., 1998; Yeh et al., 1 998). The heart muscle and fewer 

hematopoetic progenitor cells suggest that the FADD/caspase-8 pathway is required for 

growih and developmental roles for this death receptor pathway remain to be identified in 

zebrafish embryos, 

3.3.4. The Bcl-2 and Baxfamilies 
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Pro- and anti-apoptotic members of the Bcl-2 family (ced-9 homologs) regulate 

mitochondrial participation in cell death (Bernardi et al., 2001; Gottlieb, 2001). Current 

models are proposed that the release of cyiochrome c from mitochondria triggers activation 

of caspase-9 in a complex with dATP and Apaf-1 (Yoshida et al., 1 998). Activated 

caspase-9 then activates further downstream caspases. Bcl-2 family proteins, such as 

ZfMcl-10e (Chen et al., 2000). Bcl-XL (Chen et al., 2001). MCL-1 (Hong et al., 1999), 

have been cloned in zebrafish. They are expressed in oocyies and early embryos (Chen et 

al., 2000, 2001 ; Hong et al., 1999). In contrast, ced-4 homolog Bax triggers a mitonondrial 

proapoptotic pathway by promotion of mitochondrial release of cytochrome c (Bemardi et 

al., 2001; Gottieb, 2001). Functional analysis of the Bcl-2 and Bax families is required to 

establish experimental models regulating chemical and oxidative stress responses. 

4. p53 TUMOR SUPPRESSOR PROTEIN INDUCED APOPTOSIS 

Mutation in the p53 tumor suppressor gene occur in about 50 o/o Of all hurnan tumors, 

making it the most frequent target for genetic alterations in cancer (Agarwal et al., 1 998; 

Almog and Rotter, 1998; Hansen and Oren, 1 997; Levine, 1997; Prives and Hall, 1999). 

Such mutations probably facilitate carcinogenesis primary through abrogating the tumor 

suppressor activities of the wild type p53 protein, although at least some forms of 

tumor-associated mutant p53 proteins may also contribute overt oncogenic activities, gain 

of function. Excessive wild type p53 can reduce cancer incidence through elimination of 

cancer-prone cells from the replicative pool. However, such effects might become very 

undesirable if occurring in a normal, unperturbed cell. p53 activity must be, therefore, kept 

under tight control, being unleashed only when a cell accumulates lesions the may 

otherwise drive it into a cancerous state. 

4.1. p53-activating signals 

Under normal conditions, p53 is most probably latent. Consequently, it does not 

interfere with cell cycle progression and cell survival. Moreover, p53 knock-out mice 

appear in most cases to undergo proper development and maturation (Donehower et al., 

1 992), suggesting that p53 is not essential for the normal performance of cells within the 

body. However, a variety of conditions can lead to rapid induction of p53 activity. The 

corumon denominator of these conditions is that they represent various types of stress, 

which are likely to favor the emergenee of cancer-bound cells. Such conditions include 

direct DNA damage (Huang et al., 1 996; Kastan et al., 1 991 ; Maltzman and Czyzyk, 1 984) 
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as well as damage to components genetic material (e,g, the mitotic spindle (Cross et al., 

1 995)), ribonucleotide depletion (Linke et al., 1996), hypoxia (Graeber et al., 1996), heat 

shock (Ohnishi et al., 1996), and exposure to nitric oxide (NO) (Forrester et al., 1996). 

Accumulation of genomic aberrations is a key carcinogenic mechanism; the rapid 

induction of p53 activity in response to genomic damage thus serves to ensure that cells 

carrying such damage are effectively taken care of. Furthermore, p53 may also contribute, 

directly or indirectly, to particular DNA repair processes (Offer et al., 1999; Smith et al., 

1 995). The pivotal role of p53 in maintaining genomic integrity has eamed it the guardian 

ofthe genome (Lane, 1992). In addition, p53 activity is triggered by a variety ofoncogenic 

proteins, including Myc. Ras, adenovirus EIA, and p-catenin (Damalas et al., 1999; 

Debbas and White, 1993; Hermeking and Eick, 1994; Serrano et al., 1 997), providing a 

direct link between oncogenie processes and the tumor suppressor action of p53. 

4.2. Regulation ofp53 gene expression 

Induction of the p53 response upon stress occurs largely through alteration in the p53 

protein. Changes in the rate of transcription of the p53 gene play a minor role, if any, in 

such induction. Consequently, the transcriptional regulation of p53 gene has received very 

little attention during recent years. This need not imply that the regulation of p53 gene 

expression is totally irrelevant. In fact, it was observed long ago that p53 mRNA Ievels 

rised substantially upon serum stimulation (Reich and Levine, 1 984). This rise may be 

because of the presence of binding sites for serum-induced factors in the p53 promotor 

(Ginsberg et al., 1990) as well as to the ability ofthe p53 gene to bind the c-Myc (Reisman 

et al., 1 993). The induction of an anti-proliferative gene, p53, by serum and growih factors 

may at first glance seem paradoxieal. Cell undergoing DNA replication and extensive 

proliferation are, however, at higher risk of acquiring DNA damage and giving rise to 

multiple cancer-prone progeny than quiescent cells. Without DNA damage or other stress, 

p53 remains latent and once those conditions emerge call for a p53 response, the high 

levels of p53 mRNA ensure that such a response will be rapid and effective. 

4.3. Activation of p53 by post-transcriptional mechanislns 

Exposure of cell to p53-activating signals can lead within a relatively short time to a 

marked elevation in p53 protein. To some extent, this can be achieved by increased 

translation of the p53 mRNA, probably involving relief of a translational repression 

mechanism operating through the 3'-untranslated region of this mRNA (Fu et al., 1996). 

There also exists evidence that p53 itself can inhibit p53 synthesis through binding to its 

own mRNA (Fontoura et al., 1997; Mosner et al., 1995). Yet, it is generally accepted that 
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the accumulation of active p53 in response to stress occurs mainly through 

post-transcriptional mechanisms. Pivotal is the increase in the protein half-1ife of p53, 

since p53 is usually a very labile protein, turning over with a half-1ife sometimes as short 

as a few minutes (Rogel et al., 1985). In response to DNA damage and other type of stress, 

p53 was markedly stabilized (Kastan et al., 1991; Maltzman and Czyzyk, 1984). A rapid 

increase in p53 concentration without a need for de novo transcription is particularly 

advantageous in cells with severely damaged genomes. In addition, there is most probably 

a qualitative conversion of p53 from latent to active fonn. The best documented change 

concerns the sequence-specific DNA binding activity of p53. p53 operates as a 

gene-specific transcriptional activator, which relies on its ability to bind defined sequence 

elements within target genes (Agarwal et al., 1998; Almog and Rotter, 1998; Hansen and 

Oren, 1997; Levine 1997; Prives and Hall, 1999). The sequence-specific DNA binding 

activity of p53 is subj ect to constitutive negative regulation, primary through its inhibitory 

C-teuninal domain (Bayle et al., 1995; Hupp et al., 1992; Wolkowicz et al., 1995). Relief 

of this inhibition upon exposure to stress results in increased DNA binding (Gu and Roeder, 

1997; Hupp and Lane, 1995; Waterman et al., 1998) and consequently increased 

biochemical and biological activity. The transcriptional activity of p53 may also be induced 

by changes in other regions, e,g. modifications within its N-tenuinal transactivation 

domain, enabling a more efficient recruitment of eomponents of the transcription 

machinery (Lanrbert et al., 1998). Finally, p53 activation may also involve a ehange in 

subcellular localization; whereas latent p53 may often be cyioplasmic, at least during part 

ofthe cell cycle (Shaulsky et al., 1990), exposure to stress results in its accumulation in the 

nucleus, where it is expected to exert its biochemical activities. 

4.4. Thep53-Mdm2 Ioop 

A key player in the regulation of p53 is the Mdm2 protein. Mdm2 is the product of an 

oncogene, whose excess activity facilitates several types of human cancer (Lozano et al., 

1998; Freedman et al., 1999; Juven-Gershon and Oren, ' 1999). Mdm2 exhibits a unique 

relationship with p53. On the one hand, the Mdm2 protein binds to p53 and inactivates it 

(Chen et al., 1996; Haupt et al., 1996; Momand et al., 1992). The binding occurs right 

within the p53 transactivation domain, interfering with recruitment of basal to p53 

transactivation domain, interfering with recruitment of basal transcription machinery 

components (Lu and Levine, 1 995; Thut et al., 1995). Moreover, Mdrn2 actively represses 

transcription when tethered to p53 (Thut et al., 1997). Iinportantly; Mdm2 binding can also 

lead to complete elimination of p53 through proteolyiic degradation. On the other hand, 

p53 binds specifically to the mdm2 gene and stimulates its transcription (Barak et al., 

1 993; Wu et al., 1993). This duality defines a negative feedback loop, which probably 
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serves to keep p53 in tight check and to terminate the p53 signal once the triggering stress 

has been effectively dealt with. In some situations, mdm2 transcription is induced later 

than that of other p53 target genes (Perry et al., 1993; Wu and Levine, 1997); this may set a 

time window within which p53 is allowed to exert freely its biochemical and biologiacal 

effects. The critical importance of the p53-Mdm2 Ioop is best illustrated by the analysis of 

mdrn2 knockout mice. Inactivation of the mdm2 gene results in early embryonal lethality, 

but this is completely prevented by simultaneous inactivation of p53 (Jones et al., 1995; 

Montes et al., 1995). Conceivably, in the absence of functional Mdm2 protein, p53 

becomes strongly deregulated to the extent that its exeess activity leads to embryonic death. 

The other side of the coin is revealed in certain human cancers; excessive Mdm2 

expression, achieved through mdm2 gene amplification (Oliner et al., 1992) or other 

mechanisms (Landers et al., 1 994), can lead to constitutive inhibition of p53 and thereby 

promote cancer without a need to alter the p53 gene itself. It should be kept in mind, 

however, that excess Mdm2 can also promote cancer independently of p53 (Lundgren et al., 

1997; Sun et al., 1998). 

4. 5. Covalent Modification ofp53 

Rapid post-translational activation of signaling protein is often achieved through 

covalent modifications, particularly protein phosphorylation. It was thus conceivable that 

the rapid stabilization and activation of the p53 protein upon stress also involves 

stress-induced covalent modifications of p53. Indeed, there is mounting evidence in 

support of this conjecture. p53 becomes phosphorylated on multiple sites in vivo in 

response to various types of stress, and many stress-aetivated kinase can phosphorylated 

p53 in vitro (Fuchs et al., 1998; Giaccia and Kastan, 1 998; Jayaraman and Prives, 1999; 

Meek, 1998). A potential outcome of such phosphorylation is the stabilization of p53 

through inhibition of p53 ubiquitination and degradation. The pivotal role of Mdm2 to p53 

(Haupt et al., 1 997; Kubbutat et al., 1997), phosphorylation of residues positioned within 

the binding interface of either protein may interfere 'with binding and lead to p53 

stabilication. In the case of p53, several candidate sites within its Mdm2-binding domain 

have been identified which are modified in response to DNA damage and whose 

phosphorylation reduces the afEimity of p53 for Mdm2 (Shieh et al., 1997, 1999; Unger et 

al., 1999). Of particular interest are serines 15 and 20 and threonine 1 8 of human p53, 

which locate within or very close to the Mdm2-binding domain of p53. Serine 15 

particularly is the site of p53 phosphorylation by the ATM kinase (Banin et al., 1998; 

Cauman et al., 1998), whose aetivity is required for p53 stabilization in response to 

ionizing radiation and some other types of DNA damage (Kastan et al., 1 992; Khanna et al., 

1 995). It should be noted that although the idea that such a phosphorylation events are 
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responsible for p53 stabilization is very attractive, the in vivo relevance of this idea has 

been challenged recently (Ashcroft et al., 1999; Blattner et al., 1999). Hence, the effect of 

p53 phosphorylation on stability may depend on the intracellular context and particularly 

on the availability of alternative mechanisms for p53 degradation. 

4.6. p53 and apoptosis infish 

Tumor suppressor gene, p53, was cloned from zebrafish and its expression was 

examined during embryogenesis (Cheng et al., 1997; Langheinrich et al., 2002; Thisse et 

al., 2000). Mdm2 and p53 was fimctionally analyzed in zebrafish by generating early 

embryonic knockdowns and exanrined the involvement of p53 in DNA danraged-induced 

apoptosis. Double knockdowns of p53 and Mdm2, induced by injection of antisense 

morpholinos, showed that p53-deficiency rescued Mdrn2-deficient embryos completely, 

similar to observations in mice. p53-deficiency markedly decreased DNA damage-induced 

apoptosis, elicited by ultraviolet irradiation or by the anti-cancer compound camptothectin 

(Langheinrich et al., 2002). Thus, p53 may play a key role in DNA damage induced 

apoptosis by irradiation and chemicals. 

5. CALORIC RESTRICTION 

For almost 70 years, caloric restriction has been known to extend life span. Despite the 

extensive physiological characterization ofthis dietary regimen, the molecular basis for the 

slowing in aging remains unsolved. Recent findings have pinpointed a few molecular 

pathways that appear to regulate the aging process. 

Caloric restriction (CR) refers to a dietary regimen low in calories without 

undernutrition. It was first noted in the 1 930s that food restriction significantly extends the 

life span of rodents (McCay et al., 1989). This longevity results ffom the limitation of total 

calories derived from carbohydrates, fats, or proteins to ' a level 25-60 o/o below that of 

control animals fed ad libitum (Weindruch et al., 1986). The extension in life span can 

approach 50 O/o in rodents (Sohal and Weindruch, 1996). CR extends life span in a 

remarkable range of organisms, including yeast, rotifers, spiders, worms, mice, and rats. 

Emerging data show that its effect may also apply to nonhuman primates (Lane et al., 

2001). 

CR delays a wide spectrum of diseases in different experimental animals; for exarnple, 

kidney disease, a variety ifneoplasias, autoimmune disease, and diabetes (Engelman et al., 

1990; Fernandes and Good, 1984; Fernandes et al., 1 976; Johnson et al., 1997; Kubo et al., 

1984; Sarkar et al., 1 982; Shield et al., 1 991). CR reduces age-associated neuronal loss in 
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most mouse models ofneurodegenerative disorders such as Parkinson's disease (Duan and 

Mattson, 1999) or Alzheimer's disease (Zhu et al., 1999). However, beneficial effects in a 

mouse model for amyotrophic lateral sclerosis were not observed (Pedersen and Mattson, 

1999). The CR regimen also prevents age-associated declines in psychomotor and spatial 

memory tasks (Ingram et al., 1 987) and loss of dendritic spines necessary for leaming 

(Moroi-Fetters et al., 1989) and improves the brain's plasticity and ability for self-repair 

(Mattson, 2000). 

5.1. Mechanisms of aging and classical views of how CR works 

It has been documented that oxidative damage is reduced in CR animals (Lee and Yu, 

1 990). If CR were to slow metabolism, the production of reactive oxygen speeies (ROS) 

would decrease as a simple consequence. However, studies measuring metabolic rate in 

CR animals give conflicting results. The weight of evidence in rodents indicates that 

metabolism, measured with oxygen consumption normalized to the reduced body mass of 

the animal, does not slow down (McCarter et al., 1985). Because the balance of existing 

data does not support a long-term overall reduction in metabolic rate, more subtle 

explanations must be adduced. One possibility is that a more effilcient transport of elections 

through the respiratory chain might reduce the production of ROS and slow aging (Duffy 

et al., 1989, 1990; Weindruch et al., 1986). Another is that an increased ability to detoxify 

ROS slows oxidative danrage in CR. The data relating CR to detoxifieation of ROS is 

again conflicting. On the one hand, organisms tend to be more resistant to an acute 

challenge by an exogenous oxidative stressor. For exanrple, Iife-10ng CR seems to increase 

expression of SOD in rat liver (Semsei et al., 1989). On the other hand, in genetically 

altered strains of mice, there is no consistent correlation in the expression levels of SOD 

and life span (Hauck and Bartke, 2000). 

Another theory suggests that lack of protein turnover may cause aging. Multiple studies 

of aging organisms have shown accumulation of aberrant (e.g., oxidatively damaged) 

proteins and a reduction in protein tumover (Gracy et al., 1985; Lavie et al., 1982). CR 

may slow down accumulation of these potentially harmful and abnormal proteins by 

speeding up protein turnover (Sohal and Weindruch, 1996; Taylor et al., 1 989). As the body 

runs out of fat during CR, it may trigger the degradation of proteins, thereby increasing 

their turnover. The age-associated accumulation of oxidized proteins indeed declines with 

CR (Aksenova et al., 1998; Dhahbi et al., 1999), and the activity of the liver 20S 

proteosome may increase during CR (Scrofano et al., 1998). Microarray study of mouse 

skeletal muscle also showed an increase in protein synthesis and degradation during CR 

(Lee et al., 1999). However, the elevated turnover during CR is not uniform; although 

some damaged proteins were degraded, others continued to accumulate (Scrofano et al., 
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1 998). Briefly, the data suggest an increase in protein tumover during CR, but it is 

uncertain whether this change has an impact on the rate of aging. 

The covalent modification of proteins by derivatives of glucose has also been shown to 

increase with aging (Cefalu et al., 1995; Masoro et al., 1 989; Sell et al, 1996; Smith et al., 

1 994). These modified adducts in macromolecules, termed advanced glycation end 

produets (AGE), have been linked to age-related pathologies (Lee and Cerami, 1992). A 

reduction of AGE during CR has been demonstrated (Cefalu et al., 1995; Masoro et al., 

1989). The blood profile of CR animals predicts this reduction, because both glucose and 

insulin levels are reduced in CR animals (Masoro et al., 1983, 1992). However, a lower 

percentage of AGE during CR does not clearly explain the multiple other effects that are 

known occur. It is unlikely that a decrease in AGE is responsible for the long life span in 

CR because AGE is one of many degenerative changes in aging. 

5. 2. Regulation ofyeast replicative hfe span by CR 

In budding yeast, mother cells divide asymmetrically, giving rise to a newly made 

daughter cell and an aging mother cell. The mother cell adopts phenotypes of aging, 

including an enlarged size and sterility, and senesces after -20 divisions. This aging has 

been linked to the repeated rDNA genes, which encode the large and small subunits of 

ribosomal RNA (Sinclair and Guarente, 1997), Aging mother cells accumulate 

extrachromosomal rDNA instability has not been observed in other organisms, and is 

evidently an idiosyncratic feature of yeast aging. 

The SIR2 gene regulated the life span in yeast mother cells; mutations that inactivate 

SIR2 shorten the life span, and overexpression of SIR2 extends it (Kaeberlein et al., 1999). 

SIR2 fimctions to silence chromatin by deacetylating the histons in targeted regions of the 

yeast genome, including the rDNA. The silences chromatin is structurally less accessible to 

RNA polymerase and to recombinational enzymes, thereby reducing gene expression and 

stabilizing repeated DNA. The Sir2p deacetylase is unusual because it requires NAD as a 

consubstrate (Imai et al., 2000; Landry et al., 2000; Smith bt al., 2000). NADH, NADP, and 

NADPH neither activate nor inhibit the enzyme (Imai et al.. 2000). 

CR can be imposed in yeast by reducing the glucose concentration in the media from the 

usual 2 to 0.5 "/~ (Lin et al., 2000). Because cells continue to feed on yeast extract plus 

peptone, which are rich in amino acids, nucleotides, and vitamins, the growih rate remains 

rapid as glucose levels are lowered. Thus, the reduction in glucose from 2 o/* to 0.5 olo, 

although modest, Iikely imposes a state of partial energy (ATP) Iimitation. Other dietary 

restriction protocols, whieh also limit amino acids and other nutrients (Jiang et al., 2000, 

2002), drastically slow the growih rate and may make it more difficult to impose energy 

limitation. 
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When the glucose level in the media is lowered, yeast cells respond to that through 

shunting more of the carbon to the TCA cycle to generate ATP by respiration (Lin et al., 

2002). This comes at the expense of fermentation, which is the preferred pathway of 

carbon use when glucose levels are high. This metabolic shift makes sense because cells 

harvest much more ATP by metabolizing the glucose to C02 in the TCA cycle than by 

fermenting it to ethanol. 

The shift toward respiration is necessary and sufficient to extend the life span in yeast. It 

is still not certain how this shift activates Sir2p to provide greater longevity. One 

possibility is that the activation of respiration converts more NADH to NAD and the 

resulting increase in the NAD/NADH ratio activates Sir2p. It has also been suggested that 

nicotinamide, which is generated during the deacetylation reaction and can inhibit Sir2p in 

vitro, is a negative regulator of Sir2p in vivo (Bitteunan et al., 2002). There is still no 

direct evidence for either of these models. Another possibility is that the increase in 

respiration during CR slows glycolysis, and this metabolic change activates Sir2p. Any 

mechanism for this latter effeet is at present unknown. 

The important lesson from the yeast studies is that the extension in life span by CR is 

not a mechanical consequence of a reduction in ROS or AGE. The extension is indeed a 

regulated response requiring SIR2. This regulation must involve a qualitative shift in 

metabolism that can be sensed by Sir2p. The deacetylase activity of the enzyme must then 

slow any degenerative processes that limit the life span. 

5.3. Links between CR, aging, and apoptosis 

Several recent studies suggest that apoptosis may limit marmnalian life span. Mice with 

a targeted disruption in the p66shc gene exhibit a longer life span than wild-type animals 

(Migliaccio et al., 1999). Importantly, cells derived from the p66shc mice are resistant to 

DNA-damage-induced apoptosis in culture. Further, p66shc is one of the down-stream 

targets of the key regulator of damage-induced apoptosis, the tumor suppressor p53 (Trinei 

et al., 2002). In the cell culture studies, p66she cells wete resistant to oxidative stress or 

ionizing radiation, whieh both kill eells by the p53-dependent cell death pathway. This 

finding suggests that apoptosis may be a two-edged sword, providing critical tumor 

surveillance during the reproductive yeast, but contributing to organ dysfunction and aging 

in a postreproductive period. 

The second finding may also implicate apoptosis in marumalian aging. The yeast SIR2 

gene appears to promote survival in a wide range of organisms. In yeast, this gene 

promotes long life span in mother cells, and is also crucial to the generation of the 

10ng-surviving, specialized cell type terrned spores. In C. elegans, an organism that 

diverged from the yeast lineage a billion years ago, the SIR2 ortholog sir-2. I also promotes 
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10ng life in adult animals and regulates the fonuation of dauers during development 

(Tissenbaum and Guarente, 2001). It has been recently shown that a cyioplasmic Sir2p 

homolog can promote survival in the protozoan parasite Leishmania by preventing 

apoptosis (Vergnes et al., 2002). The manunalian ortholog of SIR2, SIRT1, represses the 

activity of p53 and therefore down-regulates apoptosis (Luo et al., 2001; Vaziri et al., 

2001). If the survival function of SIR2 genes observed in yeast, wonns, and protozoans 

extends to mammals, apoptosis may be, thus, important in limiting mammalian life span. 

Furthennore, a hyperactive allele of p53 has been described that confers enhanced tumor 

surveillance on transgenic mice (Tyner et al., 2002). Interestingly, these mice develop early 

organ degeneration and signs of premature aging. These phenotypes further support the 

idea that apoptosis may limit marnmalian life span, because its enhancement apparently 

speeds up the aging process. 

The above studies raise the possibility that any process extending marDmalian life span 

would have toe slow down apoptosis. However, in some organs with rapidly dividing cells, 

apoptosis actually increases during CR, for example, in the liver (James et al., 1998) and 

the gut (Holt et al., 1998). This increase, along with the known shrinkage of cells during 

CR (Birchenall-Sparks et al., 1985), may both contribute to the down-sizing of these 

organs in the restricted animal. The increased rate of apoptosis may minimize the risk of 

cancer during CR (James et al., 1998). The increase in apoptosis in these organs appears at 

odds with any central role for SIR2. However, it is possible that neuroendocrine changes 

are dominant in up-regulating apoptosis in this subset of organs. 

The brain is one organ that does not shrink during CR (Keenan et al., 1 995; Weindruch 

and Sohal, 1 997). It would be of interest to determine whether CR slows cell death of 

neurons. This may be diffircult to visualize in animals, because apoptosis is transient and 

the number of apoptotic cells at any given time will be low. However, it may be possible to 

test whether interventions that slow aging, such as CR, result in less apoptosis when 

neuronal cells are harvested and cultured. 

6. REGULATORY PEPTIDES AND CONTROL OF FOOD INTAKE 

The control of food intake is highly complex and involves numerous external and 

internal factors. The past decade has witnessed an upsurge in our understanding of the 

hypothalarnic regulation of appetite. Expression of appetite or the motivational drive 

toward an energy source is a highly regulated phenomenon in vertebrates. It is considered a 

cornerstone for maintenance of energy homeostasis and for rigidly guarding the body 

weight around a set point. Abnormalities in the onset, periodicity; duration, and magnitude 

of eating episodes generally underline argument appetite (Kalra, 1 997; Stunkard, 1 996). 
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Some peptide participating in the regulation of appetite or feeding behavior have been 

discovered by the recent advancement of biological techniques. Many neuropeptides, sueh 

as neuropeptide Y (NPY), corticotrophin-releasing factor, agouti-related protein (AgRP), 

oe-melanocyie stimulating hormone (oe-MSH), cocaine- and amphetanrins- regulated 

transcript (CART) peptides, melanin coneentrating hormone, orexins, and leptin, interact 

with each other to regulate appetite and energy balance (Elmquist et al., 1 999; Schwartz et 

al., 1999). Furthermore, various lines of evidence suggest that these peptides participate in 

cardiovascular and sympathetic regulations as well as in the regulation of appetite and 

feeding behavior (Elmquist et al., 1999; Schwartz et al., 1999). Physiological effects of 

these peptides are extensive and complex. This thesis, therefore, also focuses on the effects 

of leptin and ghrelin and sympathetic regulations within the honuonal system. 

6.1. Leptin 

In 1953, Kennedy proposed that body weight was maintained by the regulation of body 

content (Kennedy, 1 953). His adipostat mechanism anticipated the presence of an unknown 

circulating factor that provided the hypothalamus with information on the extent of body 

fat stores. Although several adipostat factors were proposed in the intervening years, the 

diseovery of leptin in 1994 revolutionized the field (Zhang et al., 1994). In accordance 

with its putative adipostat role, Ieptin is expressed and secreted by adiposites in white 

adipose tissue and circulates in plasma at concentrations proportional to fat mass, with a 

relatively long half-1ife. Peripheral or central nervous system administration of leptin to 

rodents reduces food intake and body weight and increase energy expenditure (Friedman 

and Halaas, 1 998). Much lower dose are required with central nervous systems (CNS) 

administration, and peripheral leptin administration activates hypothalanric neurons 

expressing the leptin receptor, suggesting that these effects are mediated via the 

hypothalamus., Peripherally secreted endogenous leptin enters the CNS by either active 

uptake or simple diffusion in areas outside the blood-brain barrier. Leptin directly inhibits 

orexigenic ARC (arcuate nucleus) NPY/AgRP neurons and stimulates anorectic ARC 

POMC (pro-opiomelanocortin) neurons (Sahu, 2003). Leptin, therefore, acts as the afferent 

limb of a body fat regulation feedback loop. 

The hyperphagic and obese ob/ob mouse lacks functional leptin (Zhang et al., 1 994). 

Administration of exogenous leptin ameliorates these abnonnalities in mice and men 

(Farooqi et al., 2002; Pelleymounter et al., 1 995). However, the vast majority of obese 

humans have norrnally functioning ob genes and high plasma leptin levels reflecting their 

high fat mass, suggesting leptin resistance in, obese individuals (Considine et al., 1 996). 

The mechanism may involve reduced passage and capillary transport of leptin into the 

CNS and reduced leptin receptor expression and /or suppressed intracellular signaling may 
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occur. These factors would be responsible for the limited ef~ircacy of leptin as an 

antiobesity drug in human trials to date (Mantzoros and Flier, 2000). While the absence of 

circulating leptin, conununieating low or nonexistent body fat stores, has profound effects 

on appetite, body weight and fertility, raised leptin levels have much less dramatic results. 

Leptin may, therefore, play an important role during periods of starvation, but be less 

significant when food is freely available. 

Leptin also plays important roles in neuroendocrine signaling and reproduction (Auwelx 

and Staels, 1 998). Although leptin or leptin receptor has not been yet characterized in fish, 

heterologous Southern blotting (Zhang et al., 1 994) and immunological screenings 

(Johnson et al., 2000; Yaghoubian et al., 2001) suggested fish would also express 

leptin-1ike proteins. Although some investigators, however, stated that mammalian leptin 

had no marked effect in immature coho salmon (Baker et al., 2000) or catfish (Silverstein 

and Plisetskaya, 2000), some leptin-administration studies suggest that leptin is able to 

modulate the fish food intake activity and other physiological responses. It was 

demonstrated that leptin stimulated luteinizing hormone (Peyon et al., 200 1 ) and 

somatolactin releases (Peyon et al., 2003) in European sea bass. Weil et al. (2003) have 

recently revealed that the high concentration of human leptin at the pituitary level directly 

stimulated FSH and LH releases in female rainbow trout. Volkoff et al. (2003) have 

recently demonstrated that murine leptin injection reduced food intake activity of goldfish 

and that the leptin function was antagonized by orexin A, a food intake enhancing hormone. 

It is, therefore, supposed that fish also have a functional leptin system for modulating food 

intake activity and some physiological signalings. Investigations in rodents indicate that 

sex hornrones may be important in determining plasma leptin. Frederich et al. (1995) found 

that at any given body fat content, female rats had higher leptin levels compared to male 

rats. In woman of reproductive age, Ieptin and estradiol showed similar profiles throughout 

the menstrual cycle (Cella et al., 2000; Mannucci et al., 1998). The primary ovarian signal 

responsible for regulating body weight and adiposity has been suggested to be 

1 7 P-estradiol (Czaja et al,. 1983; Wade, 1975) and it has been shown that ovaries 

expressed leptin receptor messenger RNA (nIRNA) (Cidffi et al., 1996; Karlsson et al., 

1 997). The administration of leptin also antagonized ovarian honnone secretion (Zachow 

et al., 1999). In manunals, 17 ~-estradiol regulated leptin secretion (Kikuchi et al., 2001). 

However, studies on the relationships between leptin and 1 7 p-estradiol are limited in fish. 

Prolactin (PRL) is considered as a primary an osmoregulatory hormone in fish (Manzon, 

2002). Some studies also suggest that PRL may be associated with production of steroid 

hormones in the gonads, the onset of gonadal development, and reproductive behavior (De 

Ruiter et al., 1 986). The result that PRL stimulated leptin secretion in manunalian (Gualillo 

et al., 1 999) bethinks us of a possible role for PRL in the regulation of food intake. On the 

other hand, 1 7 ~-estradiol enhances PRL production by directly stimulating PRL gene 
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transcription, Ieading to increased synthesis of PRL nIRNA and PRL (Maurer, 1 982). In 

teleosts, it is also suggested that 17 P-estradiol is involved in expression of PRL and PRL 

receptor mRNA of the gilthead seabream (Cavaco et al., 2003). 

6.2. Ghrelin 

Ghrelin is the only peripherally active appetite-stimulating hormone so far discovered. 

Ghrelin potently stimulates food intake and growih hormone secretion following peripheral 

administration in man and rats (Tsch6p et al., 2000; Wren et al., 2000, 200la). Plasma 

ghrelin levels are inversely correlated with body weight and rise following weight loss in 

humans (Cununings et al., 2002). The major source of cireulating ghrelin is the stomach, 

though ghrelin mRNA and immunoreaetivity are also found in other regions of the 

gastrointestinal tract (Date et al., 2000). Ghrelin is composed of 28 aminoacids with an 

acyl sidechain attached to the serine residue at position 3 . This acyl group is crucial to 

ghrelin's orexigenic and growih hormone-releasing actions, which are mediated through 

the growih hormone secretagogue receptor (GHS-R; Kojima et al., 1999). The GHS-R is 

highly expressed in the hypothalamus, including the ARC, but also found in the brainstem, 

pituitary, gastrointestinal tract, adipose tissue and other peripheral tissues (Peterseun, 2002). 

It has been suggested that desacylated ghrelin has other biological functions mediated by 

separate GHS-R subtypes (Baldanzi et al., 2002). 

Circulating ghrelin concentrations rise during fasting and fall rapidly after a meal. 

Ghrelin may be, therefore, involved in meal initiation (Cummings et al., 2001), though a 

recent work has shown that circulating ghrelin levels do not predict intermeal interval in 

humans (Callahan et al., 2004). Although calorie intake appears to be the primary regulator 

of plasma ghrelin levels (Tsch6p et al., 2000), the exact mechanisms mediating ghrelin 

release are unknown. There is some suggestion that glucose and /or insulin suppress 

ghrelin release (Yoshihara et al., 2002), but another study has shown that physiological 

levels of either appear to have little effect on plasma ghrelin concentrations (Schaller et al., 

2003). Circulating ghrelin levels are lower in obese individuals, perhaps reflecting a 

feedback mechanism to reduce appetite (Tschdp et al., 2001). 

The orexigenic effects of peripheral ghrelin are mediated via the CAN. Peripheral 

administration of ghrelin activates neurons in the ARC and the paraventricular nucleus 

(Ruter et al., 2003) and intracerebroventricular administration of ghrelin antibodies into the 

rat brain inhibits fasting-induced feeding. The orexigenic effects of ghrelin are thought 

mediated via NPY and AgRP. Central injection of ghrelin activates NPY/AgRP neurons 

and increases hypothalamic NPY and AgRP. In NPY/AgRP double knockout mice, the 

orexigenic action of ghrelin are abolished (Chen et al., 2004)., Ghrelin has been recently 

found to be expressed in a previously uncharacterized neuronal population adj acent to the 
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third ventricle (Cowley et al, 2003). These hypothalamic ghrelin neurons may be involved 

in another hypothalamic appetite circuit, though the relationship between central and 

peripheral ghrelin signaling is currently unknown. It is interesting that the patterns of 

neuronal activation following peripheral and central ghrelin administration differ 

(Lawrence et al., 2002; Ruter et al., 2003). 

Chronic peripheral ghrelin administration causes hyperphagia and obesity in rats 

(Tschdp et al., 2000; Wren et al., 200lb). The ghrelin system, therefore, offers a potential 

target for long-tenu antiobesity therapy. There is little ehange in body weight or food 

intake in ghrelin or GHS-R knockout animal models, but this may be due to compensatory 

developmental changes in other appetite regulatory systems (Sun et al., 2003, 2004). 

A ghrelin-1ike ligand was detectable in the blood of a teleost as predicted by Shephred et 

al. (2000). Ghrelin cDNA has been also identified and characterized in some teleosts. 

Goldfish (Carassius auratus) ghrelin has 47 o/o similarity with the amino acid sequence of 

human ghrelin (Unniappan et al., 2002). Tilapia preproghrelin is a polypeptide of about 

1 07 amino acids, consisting of a signal peptide (26 amino acids), the mature peptide (22 

amino acids) and a C-terminal peptide (59 amino acids). Comparison of amino acid 

sequence of the mature peptide of tilapia with known sequences of other species show a 

50-70 o/* homology between both teleost and avians, and about 40 o/* homology between 

bullfrog and mammals. The C-terminal portion rather than its N-terminal end of the mature 

peptide has high variability (Parhar et al., 2003). This is noteworthy because the 

N-terminal region is the biologically active segment of the ghrelin. The first four amino 

acids "GSSF" considered to be the active core of the of the ghrelin peptide in manunals 

(Bednarek et al., 2000) are conserved in tilapia but are different from those of bullfrog 

(GLTF: Kaiya et al., 2001) and goldfish (GTSF: Unniappan et al., 2002). The goldfish have 

two alternatively spliced ghrelin molecules (Unniappan et al., 2002) but tilapia and other 

vertebrates have a single ghrelin molecule because of the presence of a single cleavage site 

in their preproghrelin structure. In the Japanese eel (Anguilla japonica), the overall 

similarity is the same but the first seven amino acids are I OO o/, identical to mammalian 

ghrelins and eel ghrelin has the ability to stimulate growih hormone (GH) and prolactin 

release from the pituitary (Kaiya et al., 2003). The same effect can be induced in vitro in 

the tilapia (Oreochromis mossambicus) with rat ghrelin (Riley et al., 2002). This suggests 

that ghrelin peptide and its function in GH secretion are evolutionarily quite conserved. 

The tilapia ghrelin gene consists of four exons and three introns, and this structural 

organization resembles those of the goldfish ghrelin gene (UnJaiappan et al., 2002) but 

differs from those of the mouse and rat ghrelin, which contains an additional non-coding 

exon of 19 bp in the 5'-untranslated region (Tanaka et al., 2001). Furthermore, the sizes of 

introns in the ghrelin gene vary among animal species. Phylogenic variations in the 

organization of ghrelin molecules are not unexpected because the metabolic needs of each 
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animal species may have required the ghrelin protein to perform subtly different functions. 

In tilapia, RT-PCR analysis revealed a strong signal derived from ghrelin mRNA in the 

stomach but no signal could be detected in other tissues (Parhar et al., 2003). These are 

consistent with the fact that the stomach is the major ghrelin-producing site in the rat, 

human, chicken amphibians. 
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Section 2 

The purpose and brief sununaries of this research 
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Some fish species show parental death shortly after their first spawning. The well-known 

examples are ayu (Plecoglossus altivelis) which dies in only one year. Although the 

mechanisms for such a short life span are still unclear, there have been proposed some 

hypotheses. Since it is shown clearly that ayu produced ROS higher than other species, it is 

supposed that high ROS production strongly related in aging advances, resulting in 

shortened life span. Homeostasis disturbances by maturation, debility for exhausting 

energy of spawning and decreasing of feeding activities during spawning and after 

spawning are also considered to be factors which ayu dies in only one year. Along these 

hypotheses, this study dealed with carp as a model fish with long life span and ayu as a 

model fish with short life span and was perfonued for disclosing whether I ) influence of 

the oxidative stress on biomembrane, 2) apoptosis related factors, 3) caloric restriction, 

and/or 4) feeding activity would be relevance to short life span or not. Clarification of fish 

life span determination factors will also contribute to the stable fish culture techniques 

including 'programmed' fish eulture on the basis of mechanism elucidations. 

This thesis is composed of five chapters. Chapter I deals with introduction and general 

discussion. It was given for gaining insight into aging and senescence studies. The free 

radical theory of aging, telomere theory of aging, progranuned cell death, p53 tumor 

suppressor protein indueed apoptosis and caloric restriction were reviewed 

comprehensively. Regulatory peptides and control of food intake were also described. 

In Chapter II, it was investigated the influence ofpartial oxidative stress on permeability 

and fluidity of nucleated fish red blood cells for simulating nucleated somatic cells. 

Peroxide value indicating lipid hydroperoxide level in nucleated red blood cells of 

common carp (Cyprinus carpio) increased with increasing body size. It was detected that 

oxidation of nucleated red blood cells led to the degraded PUFA compositions and 

accelerated the penueability of calcein and ATP in the nucleated red blood cells restrictedly 

oxidized with AAPH treatment, Using fluorescence probes, PC3P, it was found that 

oxidative stress reduced the membrane fluidity of nucleated red blood cells. It was also 

observed that AAPH had no significant influence on the osmotic fragility and 

electrophoretic profiles of red blood cell proteins. These results suggest that partial 

oxidative-stress, even if failure to fragment the membrane, may affect membrane 

permeability of fish nucleated red blood cells for an important energy molecule, ATP. 

It is well known that ayu (Plecoglossus altivelis) die after spawning and the life span is 

only one year. One possible cause is that enhanced oxidative stress might induce DNA 

damage and subsequent DNA repair systems as phosphorylated p53 in ayu, Ieading to 

apoptosis and relating to their short life span. Telomeres, the non-coding sequences at the 

ends of chromosomes, shortening of telomeres can induce cell cycle arrest and apoptosis. 

Chapter 111, then, was addressed to the p53 and its phosphorylation in ayu brain, the 

oxidative DNA damage by measuring the levels of 8-0HdG and the induction of apoptosis 
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by measuring the levels of easpase-9/6, -3 with aging in brain and liver. It was also 

investigated that age related changes in telomere length in the ayu. The findings indicate 

that oxidative stress activated caspase-9/6, -3 in brain and liver, and activated p53 through 

the phosphorylation of p53 and p53 with aging in ayu brain. There was no significant 

change in telomere length through life span. It was suggested that the age-related of 

apoptosis might be involved in increasing of DNA damage and mutations in brain and liver, 

and could partially explain the short life span of ayu. 

The effects of caloric restriction on post-spawDing death of ayu were investigated in 

Chapter IV. Calorie restriction is the only established intervention that extends life span in 

mammals, insects and nematodes. One ofthe hypotheses suggested that most ofthe effects 

of CR on aging may be due to reduced oxidative stress at the cellular level. It was known 

that ayu produced ROS higher than other fish and that the life span of ayu is only one year. 

It was attempted to quantify age-associated changes of the degree of attenuation on 

oxidative damage and hormonal homeostasis in CR. The oxidative DNA damage by 

measuring the levels of 8-0HdG and the induction of apoptosis by measuring the levels of 

caspase-9/6, -3 with aging in brain and liver were surveyed. Changes in maj or sexual 

hormones were also investigated. Caspase activities in brain and liver were reduced by CR, 

although CR was no influence to DNA damage level. Plasma testosterone levels of CR ayu 

were significantly higher and progesterone and 1 7 p-estradiol levels were lower than the 

control ayu. However, Iife span of ayu was not prolonged by CR. These results suggest that 

there would be factors determining life span of ayu other than CR and apoptosis. 

Chapter V deals with roles of leptin in post-spawning death of ayu. It is well known that 

ayu dye after spawning and the life span is only one year. The determinants for such a short 

life span are probably involved in spawning and some accompanied changes in hormonal 

homeostases. It is one of the accompanied changes that feeding activity of ayu decreases 

during spawning and after spawning. Then, it was investigated the relationships arnong 

leptin and ghrelin, they are regulators for food intake, and other major hormones, 17 

P-estradiol and prolactin. Leptin levels were significantly higher during spawning, 

associated with decrease in appetite. Leptin levels were alsb synchronized with levels of 1 7 

P-estradiol and prolactin. Ghrelin levels were no significant difference. Therefore, one 

possible explanation for decrease in appetite during ayu spawning is that the alteration of 

1 7 P-estradiol homeostasis induced the secretion of leptin. The inability to reduce the 

leptin level into the basal after spawning would be in part responsible for a short life span 

of ayu. 

In conclusion, it was revealed that the mechanisms governing life span of ayu were 

through at least two pathways. One is apoptosis induced by oxidative stress with aging. 

This pathway is probably~ however, an alleyway, since CR could afford to downregulate 

apoptosis pathway but did not extend the life span of ayu. Another is decreasing appetite 
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during and after spawning induced by leptin in ayu. 

anorexia: it is beginning to death, 

Reproduction induced physiological 

The contents of this thesis are partly submitted and have been published or will be 

published soon as follows. 
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1. INTRODUCTION 

In many ways, the red blood cells (RBCs) of non-manunalian vertebrates are very 

different from those of the mammalian. One of the most obvious differences is that 

non-manunalian RBCs, for instance, the fish RBCS are nueleated whereas mammalian 

RBCS extrude their nuclei before entering the circulation. In addition, in nucleated RBCS 

ribosomes are retained (Lane and Tharp, 1980; Lane et al., 1982; Sekhon and Beams, 

1 969), which enable them to synthesize proteins such as hemoglobin after their maturation 

(Keen et al., 1989; Speckner et al., 1989). They also retain functional mitochondria and 

maintain higher rates of metabolism than their mammalian counterparts (Boutilier and 

Ferguson, 1 989). Rl3Cs of lower vertebrates experience many structural and fimctional 

changes throughout their 4-6-month life span, including loss of mitochondria (Keen et al., 

1989; Lane, 1984; Lund et al., 2000; Phillips et al., 2000; Speckner et al., 1989; Tiano et al., 

2000, 200 1). 

Fish biological membranes are rich in polyunsaturated fatty acids such as 

docosahexaenoic acid, and would be sensitive to oxidative stress, directly or indirectly 

causing many fish illnesses (Ito et al., 1999, 2000; Sakai et al., 1989; Slater, 1982). 

Moreover, the RBCs, because of its role in the transport of oxygen via hemoglobin, are 

constantly exposed to reactive oxygen species (ROS) during life span. Hence, it is thought 

that nucleated fish RBCS suffer more oxidative stress than do mammalian RBCs. 

Although there is repair systems against oxidative stress in cells. RBCS are constantly 

exposed to ROS during their life span, oxidative damages might be accumulated with 

aging. The protective responses against oxidative stress may decline with aging, thus 

predisposing cells and organisms to oxidative damages. Accumulation of membrane lipid 

peroxidation is one of the oxidative damages. We have recently demonstrated that sweet 

smelt RBCS accumulated lipid hydroperoxides with aging (Kaewsrithong et al., 2001). 

Although it is probable that whole body aging might go with such damages, the details for 

such damage are still anrbiguous. 

In this study, we explored the effects of the partial oxidative stress on the membrane 

peuneability in the nucleated RBCS of the carp. The restricted oxidation of the biological 

membrane of flsh nucleated RBCS With a free radical initiator, 2,2'-azobis 

(2-amidinopropane) dihydrochloride (AAPH), was carried out as the model system for 

membrane lipid peroxidation associated with aging and other physiological abnormalities. 

This investigation could be of use for a better understanding of the molecular mechanisms 

of the aging process in aquatic organisms. 
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2. MATERIALS AND METHODS 

2.1. Fish and handling of blood 

The carp, Cyprinus carpio (about 30-400g), were obtained from Yoshida Research and 

Training Station of Tokyo University of Marine Science and Technology. Fish were fed a 

commercial diet until being sacrificed. Blood was collected from caudal vessels of carp 

with heparinized plastic syringes. Blood was centrifuged at 700 g for 5 min at 4'C to 

separate plasma from RBCs. The RBCS were washed three times with buffered isotonic 

solution containing 128 mM NaC1, 3 mM KCl, I .5 mM MgC12 and 10 mM Hepes 

(Tiihonen et al., 1995). The buffy coat was removed and the resulting RBCS Were 

immediately used for the following analyses. 

2. 2. Restricted oxidation of RBC membran e lipid with AAPH 

The RBCS collected from carp (approximately 200 g) suspended in a buffered isotonic 

solution (about 2.0xl09 cells/ml) were oxidized by the addition of I mM 2,2'-azobis 

(2-amidinopropane) dihydrochloride (AAPH; Wako Pure Chemicals, Tokyo, Japan) and 

incubated for 30 min at 21 'C in the dark. This condition was set for matching lipid 

peroxidation levels of the AAPH-treated RBC with those of larger carp RBCS as described 

below. After incubation with AAPH, the RBCS were separated by centrifugation at 700 g 

for 5 min at 4 'C and washed 3 times with the buffered isotonic solution. 

2. 3. Determin ation of hydroperoxides 

Total lipids of carp RBCS obtained from various body sizes of carp (about 30-400g), and 

total lipids of the control and the AAPH treated (final concentration of I mM) RBCS were 

extracted according to the proeedure of Bligh and Dyer (1959). Peroxide value of lipid 

extract from Rl3Cs was determined according to Akasaka et al. (1992). Briefly, 50 u1 of 

250 uM diphenyl-1-pyrenoylphosphine (DPPP. DOJlNDO Laboratories. Kumamoto, 

Japan) methanol solution was added to one hundred mieroliter of sample lipid in a glass 

tube with a screw cap under cooling in an ice bath. The tube was capped tightly and left 

standing for 60 min at 60 'C in the dark. Then, it was cooled in an ice bath and 2-propanol 

was added before the measurement. The fluorescence intensity at 3 80 nm derived from 

DPPP oxide was measured with an excitation wavelength of 3 52 nm. The hydroperoxide 

concentration was calculated from the resulting fluorescence intensity with a calibration 

curve using peroxide values estimated by the iodometry according to the Japan Oil 

Chemists' Society Standard Method for Analysis of Fats and Oils (Chapman and Mackay, 
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1949), 

2.4. Determination offatty acid composition 

Total lipids of the control and the AAPH-treated Rl3Cs were separately extracted 

according to the procedure of Bligh and Dyer (1959). An aliquot of the total lipid was 

saponified with 0.5 M methanolie sodium hydroxide and subsequently methyl-esterified by 

1 40/* BF3 m methanol to obtain the corresponding fatty acid methyl esters, according to the 

A.O.C.S. method. Composition analysis of the fatty aeid methyl esters was carried out 

through gas-1iquid chromatography (GLC) with a Shimadzu GC- 1 4B instrument equipped 

with a Supelcowax-10 fused silica open tubular colunm (0.25nun i.d. x 30m. 0.25 um in 

fllm thickness; Supelco, PA) and a flame ionization detector. The column oven temperature 

was programmed from 140 to 240 'C at a rate of I .2 'C/min. Peak identification was 

accomplished by reference to Equivalent Chain Length standard (Ackman, 1 990). 

2. 5. Permeability measurement 

RBCS (about 2.0xl09 cells/ml) were incubated in the buffered isotonic solution 

containing 70 nM Calcein-AM (Dojindo Lab) at 21 'C for 30 min. After washing three 

times with the buffered isotonic solution, RBCS were incubated in the presence of I mM 

AAPH at 2 1 'C for 3 O min. After washing three times with the buffered isotonic solution, 

the fluorescence intensity was measured at the excitation and emission wave lengths, 490 

and 5 1 5 nln, respectively. Control experiments were carried out in the absence ofAAPH. 

2. 6. Determination ofATP and its related compounds 

One hundred microliter of the control or the AAPH treated RBCS (about 2.0xl09 

cells/ml) was homogenized with the same volume of I O "/. (v/v) perchloric acid solution 

and centrifuged at 1 8,000 g for 5 min. The resulting superilatant was neutralized with KOH, 

centrifuged at 1 8,000 g for 5 min, and filtered with a piece of Millipore filter. The resulting 

filtrate was subjected to the following HPLC analyses. ATP and its related compounds 

were determined according to the method of Matsumoto and Yamanaka ( 1 990) on a HPLC 

system (LC-10A system, Shimadzu, Kyoto. Japan) equipped with an Asahipak GS-320 

column (Asahi Chemical Industry Co.). Mobile phase of 200 nlM NaH2P04 (pH 2.9 at 25 

'C) with the flow rate of 0.6 mymin was used. Eluted compounds were monitored with the 

absorbance at 260 nm. 
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2. 7. Determination of Osmotic Fragility 

Fifty microliter of the control or the AAPH-treated RBCS (about 2.0x I 09 cells/ml) was 

added to I ml of 0-0.7 o/o NaC1 solution, then incubated at 4 'C for 30 min. After 

centrifugation at 700 g for 5 min the absorbance of supernatant was measured at 540 nrn. 

The NaCl concentration causing 5 O "/, of hemolysis was determined, 

2.8. Membranefluidity analysis 

The membrane fluidity of RBCS Was determined using a fluorescence probe, 

1 ,3-bis(1-pyrenyl)propane (PC3P; Dojindo Lab, Kumamoto) (Zachariasse et al., 1982). The 

final probe concentration was less than 5 .OxlO ~7 M, and the incorporation of the probes 

was carried out according to the method ofAlmeida et al. ( 1 982). 

After incubation for 1 8 hr at 4'C with PC3P, RBC samples were separated by 

centrifugation at 700 g for 5 min at 4'C and washed 3 times with the buffered isotonic 

solution. Rl3Cs were, then, subj ected to an oxidative challenge with AAPH as described 

above. 

The fluorescence intensity was measured with a Shimadzu RF- 1 500 

spectrofluorophotometer at the excitation wavelength of 330 nm. The parameter of fluidity, 

the excimer to monomer fluorescence intensity ratio (1'/1), was calculated from the 

emission signal intensities at 490 and 3 78 nm, respectively. 

2.9. SDS-PAGE 

RBCS (about 2.0xl09 cells/ml) were oxidized by the treatments with 1, 100, 200, and 

300 mM (final concentration) AAPH and incubated for 30 min at 21 'C in the dark. After 

incubation with AAPH, the RBCS were separated by centrifugation at 700 g for 5 min at 4 

'C and washed 3 tirnes with the buffered isotonic solution. 

To prepare samples for SDS-PAGE, samples were boile;d in a solution containing 10 olo 

(v/v) glycerol, 125 nlM Tris-HCl, I O o/o (v/v) 2-mercaptoethanol, 4 o/o (w/v) SDS, and 

0.004 o/o (w/v) bromophenol blue for 10 min at 100 'C, ftozen in liquid nitrogen, and 

boiled again for I O min at I OO 'C for complete solubilization of membrane proteins after 

AAPH treatments. Samples were separated on a 2-15 o/o gradient gel (Daiichi Pure 

Chemicals, Tokyo) at the electrophoresis current of 50 mA. A11 buffers and gel systems 

were those of Laenunli ( 1 970). Gels were stained with a silver staining kit for proteins 

(Amersharn Biosciences, Tokyo). 
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2. 10. Statistical analyses 

Data obtained were analyzed using one-way ANOVA. 

3. RESULTS 

3.1. Hydroperoxides in RBC 

DPPP is known to react with hydroperoxide to give fluorescent DPPP oxide. Therefore, 

the fluorescence intensity of DPPP oxide is directly correlated with the amounts of 

hydroperoxide. Figure II- I shows lipid peroxide value in RBCS of various body sizes of 

carp. A high correlation was observed between carp body size and the peroxide value in 

carp Rl3Cs (r=0.61, P<0.01). The present result indicates that carp body size is correlated 

closely with lipid hydroperoxide levels in RBCs. 

Lipid peroxide values of the control and the AAPH-treated RBCS were I .3~0.5 and 

3.8~1.9 meq/2.0xl06 cells, respectively (Figure II-2). Lipid peroxide value of the 

AAPH-treated RBCS was significantly higher (P<0.05) than the control value and was 

almost similar to that of large carp RBCS in Figure II-1 . 

3.2. Fatty acid composition 

Changes in saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and 

polyunsaturated fatty acid (PUFA) compositions of the carp RBCS are shown in Table II-1. 

No significant difference in MUFA compositions was observed. On the other hand, PUF~ 

composition of the AAPH-treated RBCS (19.2 o/o) was significantly lower (P<0,01) than 

those of the control (3 1 .5 o/o), and SFA composition of the AAPH-treated RBCS (61.7 olo) 

was significantly higher (P<0.01) than those ofthe control (48. I olo). 

3.3. Permeability 

Changes in fluorescence intensity of Calcein in RBCS are shown in Figure II-3. The 

initial value, I .7~0.4, suggested that the carp RBCS Should have no autofluorescence at this 

excitation wave length. The remaining fluorescence intensity of the treated RBCs, 

213 ,6~76.9, was significantly lower than that of the control RBCs, 33 1 .3~95.3 (P<0.01). 
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3.4. ATP and its related compounds 

Effect of AAPH treatment on ATP Ievels of RBCS was examined. The control and the 

AAPH-treated RBCS showed ATP Ievels of 0.68~0.035 and 0.66~0.017 fulol/cell, 

respectively (Figure II-4a). Thus, no significant difference in ATP Ievels between the 

control and the ~PH-treated RBCS was observed in this study. On the other hand, the 

ratio value of ATP to ATP+ADP for the AAPH treated RBCS (0.43 1~0.01) was 

significantly lower than those for the control (0.567~0.01) (Figure II-4b) (P<0.01). 

3.5. Osmoticfragility 

Figure II-5 shows the hemolysis curves of the control and the AAPH-treated RBCs. No 

change in the hemolysis curve through AAPH treatment was observed. The 5 O olo 

hemolysis occurred at the NaCl concentration of 0.45~0.02 and 0.44~0.00 o/o for the 

control and the AAPH-treated RBCs, respectively. Thus, no significant difference in 

osmotic fragility between the control and the treated RBCS Was observed in this study. 

3. 6. Membrane fluidity 

Figure II-6 shows the membrane fluidity of the control and the AAPH-treated RBCS 

determined from PC3P excimer to monomer fluorescence intensity ratios. The fluidity 

value of the treated Rl3Cs, 62.3, was markedly lower than that of the control RBCs, 1 18.4 

(P<0.0 1), suggesting that the RBCS membrane became more rigid after exposure to AAPH. 

3. 7. SDS-PAGE 

Protein profiles of the 1, 100, and 200 mM AAPH-treated and the control RBCS were 

almost sirnilar to one another as shown in Figure II-7, while the 300 mM AAPH-treated 

RBC exhibited different patterns. Stacked protein aggregates were observed around 

200.000 Da in molecular mass. Thus, such a strong oxidative stress would induce 

decomposition and/or aggregation of proteins. 

4. DISCUSSION 

We confirmed that lipid hydroperoxides are accurnulated in RBCS of older earp, as 

demonstrated by the significant augmentation in RBC Iipid hydroperoxide, probably 

because of diminished removal rates of damaged cell components. The results also indicate 
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that the partial oxidative stress without obvious hemolysis led to I ) accurnulation of 

hydroperoxide, 2) Ioss of small molecules, such as calcein and ATP, 3) reduction of 

membrane fluidity and 4) degradation of PUFAS of carp RBC membrane. 

AAPH, a relatively acute radical initiator, is generally used in the concentration of over 

30 mM at 37 'C. Sato et al. (1995) demonstrated that the formation of DMPO-AAPH 

radical adduct was highly dependent on temperature and coneentration. The ratio of the 

radieal formation level at 25 'C to that at 37 'C calculated from their data was about 1/4 in 

the presence of 30 mM AAPH. Their data also suggested that 30 mM AAPH gave over 

two-fold DMPO-AAPH radical adduct, compared with the case of I mM AAPH. The 

condition of I mM AAPH for 30 min at 21 'C used in the present study is, therefore, much 

milder than the generally adopted conditions. This mild oxidation is probably responsible 

for very low values of lipid hydroperoxide and no obvious protein aggregation obtained in 

the present study. 

Calcein-AM is converted into a non-membrane permeable form, calcein, and is well 

retained in cyioplasm. This fluorescence probe is emitted by collapse of a cell membrane 

or rise in cell membrane permeability (Miller et al., 1997; Petronill et al., 1999; Yano et al., 

1 996). In this study, the oxidization by AAPH did not cause RBC burst, but the calcein 

fluorescence decreased as shown in Figure II-3. It is suggested that the Rl3C membrane 

was penneated by the AAPH oxidative stress and that such an oxidized biological 

membrane might also become leaky for ions and ATP, much smaller than calcein molecules. 

However, no significant decrease of ATP Ievels after ~PH treatment was observed as 

shown in Figure II-4a. One possible explanation of such a discrepancy is as follows: some 

ions and/or ATP would leak out through cell membrane penueabilized by lipid 

peroxidation as suggested by Deuticke and Haest (1987), Deuticke et al. (1987, 1991) and 

Ney et al. ( 1 990). Cells must activate metabolisms in order to maintain the homeostasis of 

ions and ATP Ievels. This hypothesis would be also conflrmed by a significant decrease in 

the ratio of ATP to ATP+ADP under the AAPH-elicited oxidative stress as shown in Figure 

II-4b. There are, however, possibilities that other oxidative damages such as protein 

cross-linking might be responsibl*~ for increase in membrane permeability as reported by 

Deuticke et al. (1983). In the present study, no obvious cross-linking pattern was observed 

in protein profiles of SDS-PAGE. Further investigations are required for disclosing the 

mechanism of the membrane permeability increase by the AAPH treatment. Thus, the 

oxidized fish nucleated RBCS might be always exposed to the risk for the loss of bioenergy. 

That might be a reason why the fish PUFA-rich Rl3Cs retain functional mitochondria and 

maintain higher rates of metabolism but not mammalians. On the other hand, Phillips et al. 

(2000) reported that the rate of 02 consunrption declined in older rainbow trout RBCS by at 

least 50 ~/o, compared to the younger. Rabini et al. (1997) reported that aging eauses a 

reduction in the Rl3C ATP content. RBCS of older carp would also show a lower 
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respiration rate to meet their energy requirements adequately. On the other hand, there are 

also some evidences that the glycolyiic production of ATP increases with aging (Lane, 

1984; Phillips et al., 2000). We also believe that the alternative route of ATP production, 

glycolysis, is likely to be up-regulated in older carp as suggested by Phillips et al. (2000) 

for rainbow trout. 

The composition of SFA and MUFA slightly increased and PUFA decreased in the 

AAPH-treated RBC, compared with control. The decrease in PUFA composition is 

probably due to lipid peroxidation by the AAPH treatment. It is known that once the 

unsaturation is removed by addition of peroxyl or hydroxyl groups, the membrane 

becomes more rigid (Borst et al., 2000). The present result that the fluorescence intensity 

I'/1 ratio significantly decreased by the AAPH treatment suggests that membrane lipid 

oxidation would reduce membrane fluidity with decreasing PUFA composition. 

The membrane fluidity is mamly determined by their lipid composition. The 

cholesterol/phospholipids molar ratio is not only a determinant of membrane fluidity; but 

the phospholipid composition and the length and the degree of unsaturation of the 

phospholipid fatty acyl chains also affect membrane fluidity. Many clinical studies have 

suggested that impaired RBCS deformability in humans has pathological consequences 

(Owen et al., 1982; Shiraishi et al., 1993; Zicha et al., 1999; Zubenko et al., 1996). 

However, there have been few previous studies of the rheology of nucleated RBCs. The 

fish RBCS are larger than human RBCs, have a stiffer membrane (more resistant to shear 

and bending) and contain a large nucleus that is absent from the human cells. Regardless of 

their large size, the fish RBCS do have sufficient membrane surface area to enable them to 

adapt their shape to traverse capillaries. Nash and Egginton (1993) noted that calculations 

and direct observation show that trout Rl3Cs can enter cylindrical apertures down to 3 um 

in diameter. This limiting size was similar to that in human RBCs. However, near this 

limiting diameter, their resistance to pore entry is about a thousand times higher than that 

of human RBCs. The relatively poor overall deformability of nucleated RBCS could arise 

from their decreased membrane fluidity, Iarger size and the presence of a larger nucleus. 

The results indicate that RBCS aceumulating lipid hydroperoxides would be less 

deformable with membrane rigidity. RBCS With hydroperoxides are, therefore, hard to go 

through microcirculation and to perform satisfactory oxygen supply. Larger carp RBCS 

accumulating lipid hydroperoxides in Figure II- I might also perturb oxygen supply and 

related homeostases. 

Several series of studies demonstrated that aging of fish nucleated RBC was 

accompanied with many events, such as increase in hemoglobin concentration, decreases 

in metabolic enzymes such as citrate synthase, decrease in 02 consunrption (Phillips et al., 

2000), accumulation of DNA damage (Moretti et al., 1998), increase in intracellular ROS 

and decline in mitochondrial membrane potential (Tiano et al., 2001). This study, focusing 
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on effects of very low levels of lipid hydroperoxide in the fish nucleated RBC membrane, 

has raised the additional viewpoint. It deserves further attention whether abnormalities in 

nucleated RBC functions are indeed related to changes in membrane lipid composition and 

membrane fluidity, since it may lead to a clearer understanding of metabolic abnormalities 

and mechanisms of fish RBCs. From the view of diagnostics, we had better give attention 

to not only changes in osmotic fragility and primary structure of proteins but changes in 

membrane permeability and fluidity. This and further studies in this area will be helpful to 

clarify how fish responds to oxidative stress. 
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ABSTRACT 

We investigated the influence of partial oxidative stress on permeability and fluidity of 

nucleated fish red blood cells for simulating nucleated somatic cells. Peroxide value 

indicating lipid hydroperoxide level in nucleated red blood cells of common carp 

(Cyprinus carpio) increased with increasing body size. We detected that oxidation of 

nucleated red blood cells led to the degraded PUFA compositions and accelerated the 

peuneability of calcein and ATP in the nucleated red blood cells restrictedly oxidized with 

1 mM AAPH treatment for 3 O min 2 1 'C in the dark. Using fluorescence probes, PC3P, we 

found that oxidative stress reduced the membrane fluidity of nucleated red blood cells. It 

was also observed that AAPH had no significant influence on the osmotic fragility and 

electrophoretic profiles of red blood cell proteins. These results suggest that partial 

oxidative-stress, even if failure to ftagment the membrane, may affect membrane 

penneability of fish nucleated red blood cells for an important energy molecule, ATP. 
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Table II- I . Changes in saturated, monounsaturated and polyunsaturated fatty 

compositions of the carp RBCS by the AAPH treatment 

(Area "/.) 

acid 

Control AAPH treated 

Total saturated fatty aeid 

Total monounsaturated fatty acid 

Total polyunsaturated fatty acid 

48.1~4.7 

20 .4~3 . O 

3 1 .5~2.6 

6 1 .7~7.4** 

1 9 .2~4.9 

19.2:1:5.0** 

* *The asterisk denotes that there are significant differences (P<0.01) between the control 

and the AAPH-treated RBCs. 
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Figure II-1. Peroxide value in RBCS of carp with various body sizes. A high correlation 

was observed between body size and peroxide value (r=0.61 , P<0.01). 
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Figure II-2. Peroxide value in the control and the AAPH-treated RBCs. The mean values 

were represented with SD bars (n=5). The asterisk denotes that there are 

significant differences (P<0.01) between the control (black column) and the 

AAPH-treated (white colunm) RBCs. 
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Figure II-3. Effect of mild oxidative stress on calcein holding capacity in carp Rl3Cs. The 

mean values were represented with SD bars (n= 1 5). The asterisk denotes that 

there are significant differences (P<0.01) between the control (black eolumn) 

and the AAPH-treated (white coluum) RBCs. 
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Figure II-4. ATP amount (a) and ATP/ATP+ADP ratio (b) of carp RBC ofthe control (black 

colunm) and the AAPH-treated (white colurcn) RBCs. The mean values were 

represented with SD bars (n=10). The asterisk denotes that there are 

significant differences (P<0.01). 
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control and AAPH-treated RBC were observed. 
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Figure II-6. Excimer (1') to monomer (1) fluorescence intensity ratio, I'/1, of PC3P in carp 

RBCs. The fluidity value of the AAPH treated (white column) RBCS and that 

of control (black columu). The mean values were represented with SD bars 

(n=24). The asterisk denotes that there are significant differences (P<0.0 1 ). 
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Figure II-7. The protein profiles of RBCS separated on a 2-150/0 SDS-PAGE gradient gel. 

Control (a) and AAPH-treated RBCS at fmal concentration of I (b), I OO (c), 

200 (d) and 300mM (e). 
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　　　　　　　　CHAPTER　III

APOPTOSIS　IN　AYU　BRAINAND　HVER
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Oxidative stress elicits a wide variety of cellular events such as apoptosis (Ueda, et al., 

1 998), cell cycle arrest (Ueno et al., 1 999), and induction of antioxidant enzymes (Kim et 

al., 2001). Several lines of evidence suggest that aging is accompanied by alterations in the 

apoptotic processes and the DNA repair systems. Shimohama et al. (1998, 2001) reported 

differential expressions of caspase family proteins during aging in rat brain. Beckman and 

Ames ( 1 998) proposed one theory that aging is characterized by increasing production of 

reactive oxygen species (ROS) in somatic tissues. In general, fish have 5-7 years of life 

span, while the life span of ayu (Plecoglossus altivelis) is only one year. Moritomo et al. 

(2003) have recently demonstrated that ayu produced ROS higher than other species and 

suggested that high levels of ROS might relate to their short life span. In this chapter, the 

oxidative DNA damage in ayu brain and liver by measuring the levels of 

8-hydroxy-2'-deoxyguanosine (8-0HdG), the most abundant oxidative products of DNA 

(Takeuchi et al., 1 994) was examined. This chapter also surveyed the levels of caspase-9/6 

and -3, apoptosis induction factors. 

Telomeres are the physical ends of linear chromosomes. In mamnrals, telomeres are 

composed of a variable number of tandem repeats of DNA that are made up of 

(TTAGGG)n repeats (Meyne et al., 1 989). Although the bulk of telomeric DNA is double 

stranded, the extreme terminus is a single-stranded G-rich 3 ' overhang that serves as a 

template for elongation and forms a telomeric 'T-loop'. This loop is stabilized by certain 

telomere-binding proteins, notably TRF I and TRF2 (Zakian, 1 996). The functions of 

telomeres appear to include protection of chromosomes from illegitimate fusion, the 

localization of chromosomes in the nucleus and the selective silencing of proximal 

subtelomeric genes (Greider, 1 994). The telomeric repeat sequences are added on by the 

enzyme telomerase (Greider and Blackburn, 1985; Yu et al., 1990), which present 

compensates for the loss of DNA from the end of chromosomes due to incomplete 

replication. In nonnal human somatic cells, because of inherent limitations in the 

mechanics of DNA replication, telomeres are shortening at each cell division. In the 

absence of telomerase, when telomere shortening reaches a critical limit, cells are 

susceptible to ehromosomal aberrations such as end-to-end fusion and aneuploidy. In such 

a situation, the cells cease to divide and reach replicative senescence. Telomere length in a 

given cell thus may serve as a marker of its replicative history and of the residual capacity 

for further cell division. 

Although the telomeric sequence was shown to be highly conserved among eukaryotic 

vertebrates throughout evolution (Meyne et al., 1989), the length of telomeres differs 

between species. In human, telomeres are up to 20 kb in length (Browa, 1 989). In contrast, 

rodent telomeres have been reported to be heterogeneous in length (Zijlmans et al., 1997). 

Mus musculus has been reported to have telomeres up to 150 kb in size (Prowse and 

Greider, 1 995). Mus spretus, however, has telomeres with similar length to humans (up to 
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30 kb in size) (Zijlmans et al., 1997), whereas rat telomere length ranges from 20 to 100 kb 

(Golubovskaya et al., 1999; Jennings et al., 1999). 

In humans, both in vivo and in vitro, telomere shortening appears to be a maj or 

component of cell senescence and aging (Campisi et al., 1996; Harley, 1997). Telomeres 

have been reported to shorten during post-natal development and aging in liver (Aikata et 

al., 2000; Takubo and Kaminishi, 2001), kidney (Melk et al., 2000) and lymphocytes 

(Benetos et al., 2001). However, this is less apparent in mice because of the very long 

telomeres (30-150 kb). Telomere shortening has been extensively studied in mice, 

especially in telomerase-deficient knockout mice (Artandi and DePirlho, 2000; Blasco et 

al., 1999; Herrera et al., 1999). Moreover, it was reported that relationships between kidney 

telomere shortening and longevity in the rat (Jennings et al., 1 999). 

In fish, high telomerase activity has been detected in several normal organs of the 

rainbow trout Oncorhynchus mykiss (Klapper et al., 1998). Telomerase activity of the 

normal organs has been deteeted in both fry and adult fish, being I O-100-fold higher than 

that in the human tumor cell line L-428. In contrast, no telomerase activity has been 

detected in the differentiated organs of mammals, In general, rainbow trout grow 

continuously throughout their life and, therefore, the high telomerase activity detected in 

their normal organs is postulated to lead to cell proliferation and organ growih. In previous 

investigation (Yoda et al., 2002), relative telomerase activity per cell in eyed embryos of 

rainbow trout was 19.3-50.7-fold higher than in Hela cells (a human cervical carcinoma 

cell line), which are well known to express a high level of telomerase activity (Morin, 

1989). Hence, it was assumpted that aging and consequent death of fish need not to 

necessarily reach Hayflick's limit in all tissues ofan organism. 

Ayu have a short life span compared other fish, it therefore seemed important to extend 

these observations to a wider study of telomere length in ayu. Therefore, another aim of 

this chapter was to investigate telomere changes during ayu life span in brain and liver in 

order to reveal whether there is an effect of aging on the rate of telomere shortening. 
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Section 1 

Elevated levels of oxidative DNA damage 

activate p53 and caspases in brain of ayu with aging 
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l. INTRODUCTION 

Aging is characterized by an increased production of reactive oxygen species (ROS) in 

somatic tissues (Beckrnan and Ames, 1 998), and it has been demonstrated that oxidants 

produced endogenously accelerate cell aging and death (Beckman and Ames, 1 998; Tatton 

and Olanow, 1 999) and function as signaling factors resulting in activation of transcription 

factors such as p53 (Ueno et al., 1999). The p53 tumor suppressor protein plays an 

important role in the cellular response to various stresses in mammals (Levine, 1997) and 

also cloned from zebrafish (Cheng et al., 1 997). The p53-deficiency in zebrafish markedly 

decreased DNA damage-induced apoptosis elicited by ultraviolet irradiation or by the 

anti-cancer compound canrptothecin (Langheinrich et al., 2002). Thus, p53 may also play a 

key role in DNA damage-induced apoptosis in fish. Phosphorylation of p53, especially at 

serine 1 5, represents an early cellular response to a variety of genotoxic stresses and 

promotes funetional activation of p53 (Shieh et al., 1997). Several lines of evidence 

suggest that aging is accompanied by alterations in the apoptotie processes and the DNA 

repair systems. Shimohama et al. (1 998, 2001) reported differential expressions of caspase 

family proteins during aging in rat brain. In this section, we surveyd that the oxidative 

DNA damage by measuring 8-0Hd(~ the levels of caspase-9/6 and -3, apoptosis induction 

factors and telomere length in ayu brain. This section also examined the levels of p53 and 

its phosphorylation form in ayu brain, which may play a key role in DNA damage-induced 

apoptosis. 

2. MATERIALS AND METHODS 

2.1. Fish 

About 50 individuals of healthy ayu (Plecoglossus altivelis) were obtained from the 

Tochigi Prefectural Fisheries Experimental Station, JapaJi Fish were stocked in outdoor 

ponds (14.8 m2, 0.9 m in depth), where water was supplied from a natural stream. The fish 

were fed with commercial pellets for ayu (Oriental Yeast Co., Ltd., Tokyo, Japan). From 

July to September, ayu were used for 8-0HdG; p53, caspase and telomere length assays 

without detenuination of sex. We detennined sex of fish and divided fish into two groups 

from October to December for p53 and caspase assays. Whole brain was dissected out and 

used for subsequent assay. 
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2.2. Measurement of 8-0HdG in brain 

DNA samples of brain were obtained using Genelute Marnlnalian Genomic DNA kit 

(SIGMA, USA). After complete digestion of DNA with nuclease P1 (Calbiochem, USA) 

and alkaline phosphatase (Nippon Gene, Japan), 8-0HdG Ievels were determined using a 

competitive ELISA kit (High Sensitive 8-0HdG Check; Japan Institute for the Control of 

Aging, Shizuoka, Japan). 

2.3. p53 and phosphorylated p53 analyses 

For protein analyses, brain homogenates were prepared with phosphate-buffered saline 

(PBS, I O o/o w/v) containing 0.2 o/o (v/v) PMSF. Protein concentration was estimated by 

using BCA Protein Assay Kit (Pierce, USA). Samples were separated on a 10-20 olo 

polyacrylamide gradient gel in the presence of SDS (Laemmli, 1 970). Proteins separated in 

gels were transferred to polyvinylidenedifluoride (PVDF) membrane (Ihunobilon-PSQ 

Transfer Membrane, Millipore, USA) with semi-dry electroblotter. The blots were blocked 

in Tris-buffered saline (TBS) containing 5 o/o skimmed milk (w/v) separately and incubated 

for one hour with mouse anti-p53 antibody (Genzyme Techne, USA) for determination of 

the total p53 Ievel, or alternatively rabbit anti-p53 antibody, phospho-specific (Serl5) 

(Ab-3) (Oncogene, USA) for determination of the phosphorylated form. The region around 

the phosphorylation site of Ser 1 5 is highly conserved from fish to human (Cachot et al., 

1 998). These antibodies successfully recognized one band around 50 k in molecular weight. 

After washing, the membrane was incubated with peroxidase-conjugated goat anti-rabbit 

lgG (H+L) (Pierce, USA) for the total p53, or alternatively peroxidase-conjugated rabbit 

anti-mouse lgG+A+M (H+L) (Zymed Laboratories Inc. USA) for the phosphorylated form. 

Detection with a FAST DAB with metal kit (SIGMA, USA) was performed according to 

the manufacturer 's instructions. The membranes were digitally scauned and the signal 

densities were quantified using ImageJ (National Institutes of Health, USA) . 

2.4. Assayfor caspase activities 

For caspase assay, brain was dissected irnmediately after decapitation, washed once with 

cold PBS (400 x g for 5 min), and frozen at -80 'C. The brains were separately 

homogenized in 50 u1 of chilled Cell Lysis Buffer. After incubation on ice for 10 min, 

samples were centrifuged at 36,000 x g for 10 min at 4 'C. Supernatants were incubated 

with an appropriate caspase substrate at 3 7 'C for I hour in a water bath. Substrates of 

caspase-9/6 and caspase-3 were used LEHD-AMC (250 uM in final concentration) and 

DEVD-AFC (50 uM in final concentration), respectively (BD ApoAlert Caspase 
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Fluorescent Assay kits; BD biosciences, Japan). Fluoreseent intensities were used for 

quantification of protease activities for caspase-9/6 and caspase-3 as the amount of 

liberated AFC /g brain and liberated AMC /g brain, respectively, according to the 

manufacturer's instructions. 

2. 5. DNA isolation and Southern blot analysis 

The DNA samples of whole brain were obtained using Genelute Manunalian Genomic 

DNA kit (SIGMA, USA) . Equal amounts of DNA ( I O ug) were digested by the restriction 

enzyme Hinfl (TOYOBO, Tokyo. Japan). Samples and ~llindIII used as a maker were 

loaded on a 0.8 o/o (w/v) agarose gel. The gels were run by 25 V for 16 hours to separate 

long telomeric DNAS (Kipling and Cooke, 1990; Norwood and Dimitrov, 1998; Kozik et 

al., 1 998). Separated DNA was then transferred to nylon membranes (Hybond +; 

Amersham Biosciences, Tokyo, Japan) by a standard Southern blotting procedure. DNA 

was cross-linked to the membrane with 1 200uJ ofultraviolet light. 

2. 6. Hybridization 

The telomere-specific oligonucleotide (TTAGGG)4 (Invitrogen, Japan) was end-labeled 

37 'C for 1 5 min using terminal deoxynucleotidyl transferase from DIG Oligonucleotide 

3'-End Labeling Kit (Roche, Manuheim, Germany). The blotted nylon membrane were 

prehybridized in 40 ml of DIG Easy Hyb (Roche) for 30 min at 62 'C, and then were 

hybridized in 20 ml of DIG Easy Hyb containing 10 pM of end-1abeled, telomere-specific 

probe for 1 6 hour at 62 'C. Membranes were washed 2 times with 50 ml of 2 x standard 

saline citrate (SSC; SSC: I x SSC: 0.15 M NaCl plus 0.015 M sodium citarate) containing 

0.1 o/o SDS solution for 5 min at 20 'C, and washed 2 times for 1 5 min at 62 'C. 

Chemiluminescence was perfonned using the DIG Luminescent Detection Kit (Roche) and 

used CSPD. The signals exposed to X-ray film (RX-U; Fuji Photo Film. MinamiashigarE~ 

Japan) and the mean terminal restriction fragment (TRF) ' Iength was quantified by using 

Densitograph (ATTO). 

2. 7. Statistical analyses 

Data obtained were analyzed using one-way ANOVA. 
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3. RESULTS 

3.1. Oxidative DNAformations in the brain of ayu 

Oxidative stress was evaluated by the formation of 8-0HdG in the DNA of ayu 

throughout their life span. As shown in Figure 111-1-1, the levels of 8-0HdG increased to 

maximal amount of 53 .6~ I 0.9 ng/ug DNA at October significantly higher than other levels 

(p<0. O I ). 

3.2. Phosphorylation ofp53 in brain ofayu 

Western blots revealed increasing phosphorylation of p53 at Ser 1 5 . Figure 111- I -2 shows 

the phosphorylation ratio in brain of ayu. The ratios were gradually increased for both 

sexes and reached maximal levels in October, 2.6~0.1 for female and 2.6~0.2 for male, 

which were significantly higher than those in July, August and November (p<0.05). No 

significant difference was observed between male and female on each month. 

3.3. Caspase-9/6 and -3 activities in brain of ayu 

The activity of every caspase increased in October. Figure 111- I -3 shows the activities of 

caspase-9/6 in brain. There were significant differences between male and female in 

October (p<0.01). The caspase-9/6 activity of female ayu (1.3~0.2 x 10~3 caspase activity; 

relative fluorescence per g brain) and brain male ayu in October (0.9~0.1 x I 0~3 caspase 

activity; relative fluorescence per g brain) was significantly higher than other levels 

(p<0.01). There were significant differences between male and female in October (p<0.01) 

As shown in Figure 111-1 -4, caspase-3 activity of female ayu in October ( I .2~0. I caspase 

activity; ~elative fluorescence per g brain) was significantly higher than other levels 

(p<0.01). In male, caspase-3 activity in October (0.8~0.01 caspase activity; relative 

fluorescence per g brain) was significantly higher than ' that in August, September and 

November (p<0.01). There were significant differences between male and female in 

October (p<0.0 1 ). 

3.4. Telomere length in brain ofayu 

Telomere length changes with age in brain of ayu were analyzed (Figure 111- I -5). The 

terminal restriction fragment (TRF) Iength of DNA from normal somatic cells from young 

adults is typically in the 8-10 kbp range in adults, Generally, 8 or less kbp are called 

telomere shortening (de Lange et al., 1 990; Harley et al., 1990; Hastie et al., 1990; Vaziri et 
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al., 1 993). Although, there were individual differences in TRF Iength, no age-related 

telomere shortening was detected in the brain of ayu. 

4. DISCUSSION 

The results of the present study provide the first detailed description that elevated levels 

of oxidative DNA damage in ayu brain with age. It was also indicated that oxidative 

stresses induce activation p53 through the phosphorylation, and p53 induces apoptosis 

aecompanied with caspase-9/6 and -3 activation. These observations suggest that the 

age-related of apoptosis might be involved in increasing of DNA damage and mutations in 

brain with age, and could partially explain the short life span of ayu. Besides, these 

findings indicate that telomere did not shorten in ayu brain in an age-dependent mauner. 

These data also provide a novel mechanism for the age-related differences in life span and 

suggest a teleost specific regulation oftelomere length during life span. 

DNA damage caunot be tolerated in mammals if left un-repaired. Therefore, cells have 

developed many defense systems to prevent DNA damage. One maj or repair mechanism 

for DNA damage, including 8-0HdG~ is the base excision repair pathway (Frosina, 2000; 

Lindahl and Wood, 1 999). Under normal physiological conditions, the ROS generated by 

the respiratory chain can be scavenged by enzymatic and nonenzymatic antioxidant 

systems to prevent deleterious oxidative damage to the cell. However, as a result of 

aging-associated increase of ROS generation in the respiratory chain, the accompanied 

decreases in the intracellular concentrations of antioxidants and in activities of free radical 

scavenging enzymes, an elevation of ROS and oxidative stress is inevitable and mortal for 

cells (Ames et al., 1993). Increased levels of 8-0HdG in DNA of ayu brain were observed 

with aging in the present study, suggesting that brain DNA damage induced by oxidative 

stress and ROS would increase with ayu aging . The present study also supposes that DNA 

darnage triggered by oxidative stress would be associated with the activation of p53. 

Oxidative stress stimuli and DNA-damaging agents stabilize p53, which promotes 

cell-cycle arrest to enable DNA repair or apoptosis to eliminate defective cells (Levine, 

1997). It has been shown that phosphorylation plays important roles for regulation of 

biological p53 activation (Giaccia and Kastan, 1998; Prives, 1 998). The mechanism for 

p53-induced apoptosis is involved in activation of mitochondrial Apaf-1/caspase-9 

pathway (Soengas et al., 1999), death receptor signaling, (Bennett et al., 1 998; Munsch et 

al., 2000; Mtiller et al., 1997), and cleavage of downstrearn caspases (Li et al., 1999). An 

additional route by which p53 may signal apoptosis is through the production of ROS 

(Johnson et al., 1996; Li et al., 1999). p53 itselfwas also shown to cause caspase activation 

through a mechanism independent on transcription or presence of Bax or cyiochrome c 
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(Ding et al., 1998). Thus, it is likely that p53 can be also a transducer for apoptotic signals 

through modulating p53-dependent caspase in fish. Johnson et al. (1999) reported that p53 

is required for caspase activation in response to some forms of neuronal injury, and 

indicated that caspase activation in response to DNA damage was dependent on the 

presence ofa functional p53 gene. The activation of caspases during neuronal development 

appears to be essential for regulating the number of neurons surviving in the 

postdevelopmental brain. The failure to eliminate dying cells efficiently during 

development has been recently reported for mice deficient in either caspase-3 (Kuida et al., 

1996) or caspase-9 (Hakem et al., 1998; Kuida et al., 1998). Also in fish, activation of 

caspases may have important roles for the apoptosis in a brain. Until recently, cell death 

had been thought to be absent from the brain of fish in stages beyond embryogenesis (de 

Caprona and Fritzsch, 1983; Fine, 1989; Fox and Richardson, 1982; Galeo et al., 1987; 

Waxman and Anderson, 1 985). However, such an interpretation was in conflict with the 

apparent fate of the newbom cells after they have reached the cerebellum of Apteronotus 

leptorhynchus (Zupanc, 1 999). The persistence of mitotic activity of secondary matrix cells 

during adult life has been also suggested in the trout (Pouwels, 1978a, b). The present 

result for ayu would support the previous researches that apoptosis occurred also in adult 

fish of the brain and was used as an efficient mechanism for the removal of cell damaged 

through inj ury in the adult fish brain. 

Indetenninate growih of fish and the very slow occurrence of senescence were 

accompanied by high telomerase activities in all investigated fish tissues (Klapper et al,, 

1 998). It seems possible that prevention of telomere erosion can prevent seneseence not 

only at the cellular level but also in adult animals. However, there was no direct proof that 

avoidance of senescence in fish is caused by switching off the mitotic clock as a 

consequence of the high telomerase activity. Since the mechanism of senescence is not 

kuown, we have to consider the possibility of mechanisms of senescence in fish. Some fish 

species show the parental death shortly after first spawning like ayu, these species may 

represent an accelerated form of aging. Changes in the aging brain observed in the present 

study ean be regarded as an age-related change, seriescence. The mechanisms of 

senescence of fish need further investigation, which will influence on the direction of the 

entire study of senescence in fish. 
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ABSTRACT 

It is well known that ayu (Plecoglossus altivelis) die after spawning and the life span is 

only one year. It is one of the causes that enhanced oxidative stress might induce DNA 

damage and subsequent DNA repair systems as phosphorylated p53 in ayu, this might be 

involved with apoptosis relating to their short life span. Telomeres, the non-coding 

sequences at the ends of chromosomes, shortening of telomeres can induce cell cycle arrest 

and apoptosis. This chapter, then, surveyed the p53 and its phosphorylation, the oxidative 

DNA damage by measuring the levels of 8-0HdG and the induction apoptosis by 

measuring the levels of caspase-9/6, -3 with aging in brain. Besides, it was investigated 

that age related changes in telomere length in the ayu. The findings indicate oxidative 

stress activates caspase-9/6, -3 activation, and activates p53 through the phosphorylation of 

p53 and p53 with aging in ayu brain. There was no significantly change in telomere length 

in brain. It was indicated that telomere did not shorten in ayu brain in an age-dependent 

mauner. This chapter first reported that oxidative stress specifically induces the 

phosphorylation ofp53 (Ser 1 5) with aging in fish brain. 
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Figure 111- I -1 The levels of 8-0HdG in ayu brain. The mean values were represented with 

bars of standard deviations (n=5). The different characters represent 

significant differences (P<0.0 1). 
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Figure 111-1-5. Telomere length changes with age in brain of ayu. The mean values were 

represented with bars of standard deviations (n=3). No age-related telomere 

shortening was detected in the brain of ayu. 
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Section 2 

Enhanced oxidative damages and apoptosis in aging ayu liver 
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1. INTRODUCTION 

Aging is characterized by an increased production of reactive oxygen species (ROS) in 

somatic tissues (Beckrnan and Ames, 1998), and an increase in the production of ROS may 

promote the induction ofapoptosis. Recently, it was found that splenocyies and thymocyies 

undergo apoptosis with aging in rats and the apoptosis was associated with enhanced 

expression of p53, Bax, and caspase-3 (Kapasi and Singhal, 1999). It was also 

demonstrated that aging attenuates apoptosis in the colonic mucosa of Fiseher 344 rats 

(Xiao et al., 2001). However, the biological significance of the alteration of oxidants and 

these enzymes involved in the execution and regulation of apoptosis during aging remains 

to be defined. 

The liver is an important metabolic organ, and is susceptible to a wide variety of 

disorders, possibly because it is constantly exposed to potentially harmful agents. It is 

generally recognized that oxidative end-products accumulate with age and therefore free 

radical-mediated damage to liver cells occurs. Thus, the liver was selected as a model 

organ for this study in recognition of the significant aging. It was shown that the livers of 

old rats are resistant to a moderate dose of genotoxic stress compared with the younger rat 

(Suh et al., 2002). However, no studies have demonstrated that oxidative stress relates to 

apoptosis during aging in ayu liver. In this section, we exanrined the oxidative DNA 

damage in liver of ayu by measuring the levels of 8-hydroxy-2'-deoxyguanosine 

(8-0HdG), the most abundant oxidative products of DNA (Takeuchi et al., 1994). We also 

surveyed the levels of caspase-9/6 and -3, apoptosis induction factors and telomere length 

in liver. 

2. MATERIALAND METHOD 

2.1. Fish 

About I OO individuals of healthy ayu (Plecoglossus altivelis) were obtained from the 

Tochigi Prefectural Fisheries Experimental Station, Japan. Until used in experiments, fish 

were stocked in outdoor ponds (14.8 m2, 0.9 m in depth), where water was supplied from a 

natural stream. The fish were fed with commercial pellets for ayu (Oriental Yeast Co., Ltd., 

Tokyo, Japan) by an automatic feeding machine four times per day. From June to 

September ayu were used for 8-0HdC~ caspase and trlomere length assays without 

determination of sex. We determined sex of fish and divided fish into two groups for the 

following assays from October to December. Whole liver was dissected out and used for 

subsequent assay. 

71 



2.2. Measurement of 8-0HdG in liver 

DNA samples of liver were obtained using Genelute Mammalian Genomic DNA kit 

(SIGMA, USA). Samples were digested to deoxyribonucleotide levels by treatment with 

nuclease P I (Calbiochem, USA) and alkaline phosphatase (Nippon Gene, Japan). After 

appropriate dilution of the DNA, 8-0HdG Ievels were detenuined using a competitive 

ELISA kit (High Sensitive 8-0HdG Check; Japan Institute for the Control of Aging, 

Shizuoka, Japan). 

2.3. Assay for caspase activity 

Caspase activity was measured using fluorescent peptide substrates (BD ApoAlert 

Caspase Fluorescent Assay kits; BD bioseiences, Japan). Briefly, Iiver was dissected 

immediately after decapitation, washed once with cold PBS (400 x g for 5 min), and frozen 

at -80 'C. The livers were separately homogenized in 50 u1 of chilled Cell Lysis Buffer. 

After incubation on ice for 10 min, samples were centrifuged at 36,000 x g for 10 min at 4 

'C. Supernatants were incubated with an appropriate caspase substrate at 3 7 'C for I hour 

in a water bath. Substrates of caspase-9/6 and caspase-3 were used LEHD-AMC (250 uM 

in fmal concentration) and DEVD-AFC (50 uM in final concentration), respectively. 

Fluoreseent intensity at 460 um was measured in a spectrofluorophotorneter (Shimadzu 

RF-1500) with 380 nm of excitation for caspase-9/6. The exeitation and emission wave 

lengths of 400 and 505 um, respectively, were used for deternrination of caspase-3 activity. 

Quantification of protease activity for caspase -9/6 and caspase-3 were calculated as the 

amount of liberated AMC/g liver and liberated AFC/g liver, respectively. 

2. 4. Telomere length mesurement 

Southern blotting to measure telomere length was performed for Hinfl-digested genomic 

DNA by using DIG Oligonucleotide 3'-end labeled (TTAGGG)4 probe as described 

previously (Chapter 111, Section I ). 

2. 5. Statistical analyses 

Data obtained were analyzed using one-way ANOVA. 
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3. RESULTS 

3.1. Oxidative DNAformations in the liver of ayu 

Oxidative stress was evaluated by the fonnation of 8-0HdG in the DNA of ayu 

throughout their life span. As shown in Figure 111-2-1, the levels of 8-0HdG gradually 

increased and the levels of September (35.8~0.4 ng/ug DNA) and October (36.6~0.4 nglug 

DNA) were higher than other levels (p<0.0 1 ). 

3.2. Caspase activity in liver 

Figure 111-2-2 shows the activities of caspase-9/6 in liver. The caspase-9/6 activity of 

female ayu (3 1 .0~2. I x I 0~3 caspase activity; relative fluorescence per g liver) and male ayu 

in November (30.9~1.7 x 10~3 caspase activity; relative fluorescence per g liver) was 

significantly higher than other levels (p<0.01). There were no significant differences 

between male and female. 

As shown in Figure 111-2-3, caspase-3 activity of female ayu in November (21.7~0.3 

caspase activity; relative fluorescence per g liver) was significantly higher than other levels 

(p<0.01). In male, caspase-3 activity in October (19.1~0.2 caspase activity; relative 

fluorescence per g liver) was significantly higher than other levels (p<0.01) except female 

in October. There were significant differences between male and female in October and 

November (p<0.0 1 ). 

3.3 Telomere length in liver of ayu 

Telomere length changes with age in liver of ayu were analyzed (Figure 111-2-4). No 

age-related telomere shortening was detected in the liver of ayu. The terminal restriction 

fragment (TRF) Iength of DNA from nonnal somatie cells from young adults is typieally in 

the 8-10 kbp range in adults. Generally, 8 or less kbp are 'called telomere shortening (de 

Lange et al., 1990; Harley et al., 1990; Hastie et al., 1990; Vaziri et al., 1993). Although, 

there are individual differences in TRl~ Iength, no age-related telomere shortening was 

detected in the liver of ayu. 

4. DISCUSSION 

This observation suggested that the age-related of apoptosis might be involved in 

increasing of DNA damage and mutations in liver, and could partially explain the short life 
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span of ayu. Besides, it was indicated that telomere did not shorten in ayu liver in an 

age-dependent manner. These data also provide a novel mechanism for the age-related 

differences in life span and suggest a teleost specific regulation of telomere length during 

life span. 

Present results gave us an opportunity to reveal the correlative change in oxidative stress, 

proliferation, apoptosis, DNA damage and its repair, which occur in the ayu liver during 

their life span. DNA damage cannot be tolerated in mammals if left un-repaired. Therefore, 

cells have developed many defense systems to prevent DNA damage. One maj or repair 

mechanism for DNA damage, including 8-0HdG; is the base excision repair pathway 

(Frosina, 2000; Lindahl and Wood, 1999). Under the nonnal physiological conditions, the 

ROS generated by respiratory chain can be scavenged by enzymatic and non-enzymatic 

antioxidant systems to prevent deleterious oxidative darnage to the cell. However, as a 

result of aging-associated increase of ROS generation in the respiratory chain and decrease 

in the intracellular concentrations of antioxidants and aetivities of free radical scavenging 

enzymes, an elevation of ROS and oxidative stress is inevitable, and oxidative damage and 

apoptosis might just occur in the cell (Ames et al., 1993). ROS appears to react 

preferentially with one of the primary products of its own oxidation with guanine, 8-0HdG. 

Therefore, the increasing 8-0HdG is one of the indices for accumulating ROS as a DNA 

damaging agent. Migliore and Coppede (2002) demonstrated that increases in 

ROS-induced DNA damage were correlated with cell cycle arrest. Cumulative DNA 

damage caused by endogeneous free radicals has been suggested to underline cancer and 

other age-related disorders, including neurodegeneration (Migliore and Coppede, 2002; 

Turker, 2000). Bogdanov et al. ( 1 999) provided further strong evidence that oxidative DNA 

damage accompanies normal aging. Increased levels of 8-0HdG in DNA of ayu liver were 

observed with aging in the present study, suggesting that liver DNA damage induced by 

oxidative stress and ROS would increase with aging of ayu. Recently, the longer 

maintenance of high levels of 8-0HdG in liver DNA is explained by the exhaustion and/or 

disturbance of the DNA repair system by the administration of carcinogens (Nakae et al., 

1997). It is thus conceivable that early increment of 8-0HdG in the liver, induced by 

oxidative stress, might influence the apoptosis potential of initiated cells with already 

disrupted DNA repair producing stronger damage to DNA and promoting apoptosis. 

However, the observation that oxidative DNA damage is mostly observed in the 

apoptotic cells could also mean that the oxidative degradation of DNA is the consequence 

rather the cause of apoptosis. This examination for apoptosis indicated that the induction of 

caspases might be related oxidative DNA damage, which occurred in liver cells with aging 

ayu. However, it remains to be answered as to whether these results are tissue specific and 

characteristic of tissues. Whether the alterations in the sensitivity to pro-apoptotic 

conditions observed during aging are part of the consequences of aging, and whether 
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apoptosis in liver 

investigation. 

of ayu per se participates in the no rmal aging process warrant further 
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ABSTI~ACT 

It is well known that ayu (Plecoglossus altivelis) die after spawning and the life span is 

only one year. It is one of the causes that enhanced oxidative stress might induce DNA 

damage in ayu, this might be involved with apoptosis relating to their short life span. 

Telomeres, the non-coding sequences at the ends of chromosomes, shortening of telomeres 

can induce cell cycle arrest and apoptosis. This section, then, surveyed the oxidative DNA 

damage by measuring the levels of 8-0HdG and the induction apoptosis by measuring the 

levels of easpase-9/6, -3 with aging in liver. Besides, it was investigated that age related 

changes in telomere length in the ayu liver. Our findings indicate oxidative stress activates 

caspase-9/6, -3 activation, and accumulation 8-0HdG in ayu liver with aging. There was 

no significantly change in telomere length in liver. This observation suggested that the 

age-related of apoptosis might be involved in increasing of DNA damage and mutations in 

liver, and could partially explain the short life span of ayu. Moreover, it was indicated that 

telomere did not shorten in ayu liver in an age-dependent manner. The present results gave 

me an opportunity to reveal the correlative change in oxidative stress, proliferation, 

apoptosis, DNA damage and its repair, which occur in the ayu liver during their life span. 
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Figure 111-2-1 The levels of 8-0HdG in ayu liver. The mean values were represented with 

bars of standard deviations (n=5). The different characters represent 

significant differences (P<0.0 1). 
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Figure 111-2-2. The caspase-9/6 activities in liver of ayu. The mean values were represented 

with bars of standard deviations (n=3). The different characters represent 

significant differences (P<0.0 1 ). 
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Figure 111-2-3. The caspase-3 activities in liver ofayu. The mean values were represented 

with bars of standard deviations (n=3). The different characters represent 

significant differences (P<0.0 1 ). 
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Figure 111-2-4. Telomere length changes with age in liver of ayu. The mean values were 

represented with bars of standard deviations (n=3). No age-related telomere 

shortening was detected in the liver of ayu. 
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DISUCUSSION 

In this chapter, it was revealed that the age-related of apoptosis might be involved in 

increasing of DNA damage and mutations in brain and liver, and could partially explain the 

short life span of ayu. It was also indicated that oxidative stresses induce apoptosis 

accompanied with caspase-9/6 and -3 activation in brain and liver. Especially in brain, 

oxidative stresses also induce activation p53 through the phosphorylation, and p53. 

Besides, these findings indicate that telomere did not shorten in ayu brain and liver under 

an age-dependent manner. These data also provide a novel mechanism for the age-related 

differences in life span and suggest a teleost specific regulation of telomere length during 

life span. 

Recently, DNA damage has been shown to influence several genes involved in the 

cell-cycle cheekpoint responses, including p53 (Kastan et al., 1991), p21WAFuCipl (E1-Deiry 

et al., 1994) and ATM (Kastan et al., 1992). In this chapter, it was revealed that caspase and 

p53 were activated during aging. However, in teleost, Iinks among oxidative stress and 

formation of DNA base modifications, cell-cycle regulation and DNA repair are not clearly 

understood. The consequences ofthis damage in relation to aging and longevity should be 

considered within the idea that multiple mechanisms cause aging. 

It has been well documented that the rate of production of superoxide anions and 

hydrogen peroxide in mitochondria is increased with age in animal tissues (Sohal and 

Sohal, 1 991 ; Sohal et al., 1 994; Perez-Campo et al., 1998). It was found that the increase in 

hydrogen peroxide production of D. melanogaster to mtDNA and membrane lipids of 

mitochondria (Sohal and Dubey, 1994). Sohal et al. (1995a) further demonstrated that the 

average life span of dipteran flies is inversely correlated with the rate of production of 

super oxide anions and hydrogen peroxide in mitochondria and with the level of protein 

carbonyls in the tissue cells. Moreover, the age-related increase in the rate of generation of 

hydrogen peroxide in mitochondria was observed to decrease 40 o/o in the fruit flies 

overexpressing Cu/ZnSOD and catalase as compared with the wild-type flies (Sohal et al., 

1 995b). Therefore, the rate and amount of hydrogen peroxide generated by mitochondria is 

an important determinant of the oxidative damage sustained by mitochondria. Richter et al. 

( 1 988) first demonstrated that oxidative damage to mtDNA is much more extensive than 

that to nuclear DNA. The specific content of 8-0HdC~ and index of oxidative damage to 

DNA, of mtDNA was about 1 6 times higher than that of nuclear DNA in the liver of 

3-month-old rats. Furthermore, the 8-0HdG Ievel in liver mtDNA of 24-month-old rat was 

three times higher than that of the 3 -month-old rats. Moreover, the levels of oxidative 

stress and proteins with oxidative modification and lipid peroxides in mitochondria have 

been shown to increase with age (Stadtman, 1992; Sohal et al., 1993). In the manunalian 

cell, the proper assembly and functioning of mitochondria are effected through the 
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coordination between gene products encoded by the nuclear and mitochondrial genomes 

(Poyion and McEwen, 1 996). Communication between the nucleus and mitochondria is 

essential for delicate regulation of synthesis of protein in the cyioplasm and their 

subsequent import into mitochondria. ROS and some metabolites that regulate the 

activation of specific transcription factors, which may exert their functions in the nucleus, 

have been proposed to be among the signals for communication between mitochondria and 

the nucleus (Scarpulla, 1 997). 

It has been appreciated only very recently that mitochondria are not only the major 

metabolic energy supplier, but are also the main intracellular source and target of ROS and 

free radicals generated by the respiratory chain. The age-related decrease in the transcripts 

of mtDNA may result from a decline in the efficiency of mitochondrial transcription or 

reduction in the copy number of mtDNA in tissue cells. In this chapter, it was not surveyed 

the 8-0HdG Ievel in mtDNA, however, it was suggested that age-dependent mtDNA 

mutations were more accumulation than nuclear DNA mutations resulting from damage by 

ROS. Therefore, it may be functional decline of mitochondria in aging ayu. Some 

experimental data have provided ample evidence to support the notion that mutation and 

oxidative damage to mtDNA and mitochondrial respiratory fimction decline in tissue cells 

are important contributors to human aging (Wei, 1998; Lee and Wei, 2001). In teleost, it 

was also guessed that oxidative damage to nuclear and mitochondrial DNA was important 

response and mechanisms during aging process. 

Although a causal relationship between mutation of DNA and aging has emerged, the 

detailed mechanisms by which these molecular and biochemical events cause teleost aging 

are not clear. Understanding of the age-related changes in the structure and function of 

nuclear and mitochondria DNA in the aging process is critical for the elucidation of the 

molecular basis of aging and for the better management of aging and age-related diseases. 

Further studies on the interaction of signal pathways may change the scientific direction of 

the study of aging in teleost. 
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CHAPTER　IV

EFFECTS　OF　CALORIC　RESTR亙CTION

ON　POST・SPAWNING　DEATH　OFAYU
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1. INTRODUCTION 

The aging process causes a multitude of detrimental changes in the organism at all levels 

of biological organization, especially limiting maximum functional capacities, decreasing 

homeostasis and inereasing the probability of death. All those changes are thought to 

originate from a smaller number of causes continuously operated throughout life. The life 

span for most species is genetically regulated during the aging process within the limit of 

maximum length. 

Aging refers to a set of processes that lead over time to a gradual increase in 

vulnerability to be damaged and the probability of death. One of the maj or theories 

regarding a molecular mechanism goveming these processes is the free radical theory 

(Harman, 1 956). This theory postulates that overproduction of reactive oxygen species 

(ROS) during normal metabolic processes, or a loss of protective systems that reduce the 

ability of the organism to withstand oxidative challenge, is intricately connected to aging 

and lifespan (Finkel and Holbrook, 2000), 

Genetic studies have establishes that aging is, at least in invertebrates, regulated by 

specific genes, whose mutations allow different organisms to extend life span (Guarente 

and Kenyon, 2000). Some ofthese genes provide an enhanced resistance to oxidative stress 

and may be among the causes of increased longevity in these lower organisms (Larsen, 

1993; Melov et al., 2000; Migliaecio et al,, 1999). 

Only caloric restriction (CR) is the established intervention that extends life span in 

mammals. It reduces the incidence and delays the onset of age-related pathologies, and 

retards numerous age-related biological processes, resulting in maintenance of cellular 

function. The mechanisrns underlying the robust protective effects of CR remain to be 

identified. One ofthe hypotheses suggested that most ofthe effects of CR on aging may be 

due to reduced oxidative stress at the cellular level. CR has been shown to suppress 

age-related oxidative damages in lipids. DNA and proteins, and also to increase the 

resistance of cells to oxidative stress (Guo et al., 2001 ; Leon et al., 2001 ; Li et al., 1998b; 

Zainal et al., 2000). CR is also known to alter fundamental mitochondrial bioenergetics, 

thus acting to reduce proton leaks, electron transport and free radical production and 

thereby protecting against free radical-induced macromolecular damage (Barja, 2002). 

Previous study indicated that ayu (Plecoglossus altivelis) produced ROS higher than 

other species (Moritomo et al., 2003). Moreover, the life span of ayu is only one year. It 

seems likely that high levels of ROS relate to their short life span. The present chapter 

attempts to quantify age-associated changes of the degree of attenuation on oxidative 

damage and hormonal homeostasis in CR. Among the oxidative damages, base 

modifications, such as oxidation of deoxyguanosine to 8-hydroxy-2'-deoxy-guanosine 

(8-0HdG) have received increasing attention in recent years. 8-0HdG is one of the most 
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abundant oxidative products of DNA (Takeuchi et al., 1 994). The effect of this mutation on 

aging was exanrined. The levels of caspase-9/6 and -3, apoptosis induction factors, and 

major sexual honnone change by CR were also surveyed in order to reveal the relation 

between CR and life span of ayu. 

2. MATERIAL AND METHOD 

2.1. Fish 

Healthy ayu were obtained from the Tochigi Prefectural Fisheries Experimental Station, 

Japan. Until used in experiments, fish were stocked in outdoor ponds (14.8 m2, 0.9 m in 

depth) water was supplied from a natural stream through an inlet mouth. The fish a were 

fed commercial pellets for ayu (Oriental Yeast Co.. Ltd.. Tokyo. Japan) by autofeeder four 

times per day. The fish were divided into two groups: the first group (control) and the other 

group (CR), fish of sanrple group were fed 70 o/o dietary compared with control. Total 

length, body weight, weight of brain and liver and gonadal organ of the fish were 

calculated in every month from July to November. From June to September ayu were used 

for following assays without determination of sex. We determined sex of frsh and divided 

fish into two groups for the following assays except 8-0HdG assay from October to 

December. Whole brain and liver were dissected out and used for subsequent assay. 

2.2. Measurement of 8-0HdG in brain and liver 

DNA of liver and brain were obtained using Genelute Manunalian Genomic DNA kit 

(SIGMA, USA). 8-0HdG measurement was carried out as described in Section I of 

Chapter 111. 

2.3. Assay for caspase activity 

Caspase activities in brain and liver were measured as described in Section I of Chapter 

III, using fluorescent peptide substrates (BD ApoAlert Caspase Fluorescent Assay kits; BD 

biosciences, Japan). Quantification of protease activity for caspase -9/6 and caspase-3 were 

calculated as the amount of liberated AMC/g each organ, and liberated AFC/g each organ, 

respectively. 

85 



2.4. Plasma progesterone, testosterone andl 7 ~estradiol measurement 

Ayu for each group were separately used for measurements of plasma progesterone, 

testosterone and 1 7 p-estradiol. The progesterone EIA Kit (Cayman Chemical Company~ 

USA) was used to evaluate progesterone concentrations. The plasma testosterone 

concentrations were detennined with the Testosterone EIA Kit (Cayman Chemical 

Company, USA). The Estradiol EIA Kit (Cayman Chemical Company, USA) was used to 

evaluate 1 7 P-estradiol concentrations. 

2.5. Statistical analyses 

Data obtained were analyzed using one-way ANOVA. 

3. RESULTS 

3.1. Rearingfish andfish body condition 

Water temperature throughout rearing is shown in Figure IV- I . Total length and body 

weight of eontrol and CR ayu were shown in Figures IV-2 and IV-3, respectively. Total 

length and body weight were gradually increased from July to October. Total length and 

body weight of ayu in CR were lower than control levels. In total length, there were 

significant differences between control and CR in August (P<0.05), September, and 

November for both sexes (P<0.01). Body weight of CR ayu were significantly different 

from that of control fish in August (P<0.05). September (P<0.01), female in October 

(P<0.05), male in October (P<0.01), and both sexes in November (P<0.0 1). 

There were significant differences in brain weight of ayu except August (P<0.01) 

between control and CR (Figure IV-4). In liver weight, significant differences were 

observed only in July and male of November (P<0.05) '(Figure IV-5). Brain weight per 

body weight and liver weight per body weight are shown in Figures IV-6 and IV-7, 

respectively. In relative brain weight, there were significant differences in August, male of 

October and both sexes in November (P<0.01). No significant difference was observed in 

relative liver weight except for male in November (P<0.05). The relative brain and liver 

weights of CR ayu tended to surpass those of control ayu. 

Gonadal weight from August to November was measured (Figure IV-8). There were 

significant differences in September, female in October and male in November (P<0.01) 

between control and CR ayu. There were significant differences in gonadal weight per 

body weight for female in October (P<0.05) and both sexes in November (P<0.01) (Figure 
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IV-9). Gonadal weights were relatively low in CR ayu, compared with control ayu. 

3.2. Oxidative DNAformations in the brain and liver of ayu 

Oxidative stress for DNA was evaluated by the formation of 8-0HdG throughout their 

life span. As shown in Figure IV-10, the levels of 8-0HdG in brain increased to the 

maximal at October for both control and CR ayu. There were significant differences in July 

(P<0.01) between control and CR groups. The levels of 8-0HdG in liver gradually 

increased from August in both groups, and significant differences were observed in July, 

November (P<0.01) and September (P<0.05) between control and CR ayu (Figure IV-1 1). 

3.2. Caspase activity in brain and liver 

Figure IV- 1 2 shows the activities of caspase-9/6 in brain. The caspase-9/6 activities in 

brain of CR ayu were lower than those of eontrol ayu until October. The levels in female of 

October (P<0.05), male of October and male of November (P<0.01) of CR ayu were 

significantly different from those of control ayu. 

As shown in Figure IV- 1 3 , caspase-3 in brain activity of female ayu between CR and 

control showed significant differences in October and November (P<0.01). The level of 

control male in October was significantly higher than that of CR male (P<0.05). 

Figure IV- 1 4 shows the activities of caspase-9/6 in liver. The caspase-9/6 activities in 

liver of CR ayu were almost low compared with control ayu. There were significant 

differences in the levels in female of October (P<0.05), male of October and male of 

November (P<0.01) between control and CR. 

As shown in Figure IV- 1 5 , caspase-3 activity in liver of CR female ayu in October and 

November were significantly different (P<0.01) from CR female ayu. The level of control 

male in October was significantly higher than CR male (P<0.05). 

3.3. Sex hormone concentration 

Figure IV- 1 6 shows progesterone levels in control and CR ayu. Progesterone 

eoncentration in control ayu of June and August were significantly higher than CR ayu 

(P<0.01). However, control ayu in July, both sexes of October and female of November 

were significantly lower than CR ayu (P<0.01). 

Plasma testosterone levels in control ayu were higher than CR except for June, July and 

female of November (Figure IV- 1 7). There were significant differences between control 

and CR in July, August, female in October and male in November (P<0.01), and in June, 

September and male in October (P<0.05). 
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As shown in Figure IV- 1 8, there were significant differences in plasma 1 7P-estradiol 

level in July between control and CR ayu (P<0.05). In other month, there was no difference 

between two divisions. 

3.4. Transition ofthe number ofsurvival 

No significant difference was shown in number of survival as Figure IV- 1 9, suggesting 

that caloric restriction would not affect life span of ayu. 

4. DISCUSSION 

The results of this chapter show that caloric restriction decreased caspase activities in 

brain and liver, and affected hormonal homeostasis in ayu. However, it was indicated that 

caloric restriction did not extend ayu life span. 

A comnron methodology frequently employed to produce long-lived CR rodents is to 

feed the same diet as consumed by the control animals, but restricted in quantity. Hence, 

CR model system in this chapter also belongs to the general dietary restriction. Although, 

fish body size of CR was significant smaller than control, the levels of important organs 

weight (e.g. brain, Iiver and gonadal organ) per body weight of CR ayu were relatively 

high throughout ayu life span. It was suggested that essential nutrients were supplied in 

this study. 

One mechanism responsible for life span extension by CR would be involved in the 

reduction of ROS production. CR has been shown to inhibit or delay age-related increases 

in oxidatively damaged proteins (Sohal et al., 1994). DNA (Kaneko et al., 1997), and lipids 

(Lass et al., 1998). The cellular changes were responsible for these decreases in oxidative 

damage and ROS. In the present chapter, oxidative damages to nuclear DNA were 

measured. DNA damage in brain and liver were elevated with aging, but the value of 

8-0HdG did not decrease by CR against the previous repoits. This discrepancy is probably 

because of the markedly high levels of ROS production in ayu. The produced ROS Ievels 

of ayu were about 3-7 times higher than that of trout and carp. (Moritomo et al., 2003). On 

the other hand, every caspase activity of CR ayu was relatively low compared with control 

ayu. It is suggested that eellular caspase-induced apoptosis might be controllable by CR. 

In the male primate, fasting or caloric restriction significantly decrease serunl 

testosterone concentrations (Veldhuis et al., 1993). As shown in Figure IV-17, plasma 

testosterone level of CR ayu also decreased. It is putatively due to the secondary 

hypogonadotrophism by CR. It has been reported that in women, visceral obesity is 

associated with elevated levels oftotal testosterone and free testosterone (Glass, 1989). 
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Progesterone and 17p-estradiol levels of CR ayu were relatively high cornpared with 

control ayu. It was reported that the plasma and tissue levels ofestrogens and progesterone 

seemed to be related to low body fat accumulation (Kirschner et al., 1 990). In adult men, 

plasma levels of estrone and estradiol are not correlated with the levels of testosterone, and 

dihydrotestosterone are negatively correlated with body total body fat (Bouchard et al., 

1991). Thus, Iow energy availability is associated with both decrease in body weight and 

changes in the activity of the reproductive axis. In this study; it was thought that CR ayu 

had lower body fat than control ayu, resulting in higher progesterone and 1 7p-estradiol 

levels of CR ayu compared with control ayu. 

The results were almost similar to the previous CR studies except for oxidative DNA 

damage accumulation. However, Iife span of ayu was not prolonged by CR. Therefore, 

there are something determination factors governing life span of ayu, however, are still 

open to speculation. 
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ABSTRACT 

Caloric restriction is the only established intervention that extends life span in mamnrals, 

insects and nematodes. One of the hypotheses suggested that most of the effects of CR on 

aging may be due to reduced oxidative stress at the cellular level. It was known that ayu 

(Plecoglossus altivelis) produced ROS higher than other fish and that the life span of ayu is 

only one year. The present chapter attempts to quantify age-associated changes of the 

degree of attenuation on oxidative damage and hormonal homeostasis in CR. The oxidative 

DNA damage by measuring the levels of 8-0HdG and the induction of apoptosis by 

measuring the levels of caspase-9/6, -3 with aging in brain and liver were surveyed. 

Changes in maj or sexual honnones were also investigated. Caspase activities in brain and 

liver were reduced by CR, although CR was no influence to DNA damage level. Plasma 

testosterone levels of CR ayu were significantly higher and progesterone and 1 7p-estradiol 

levels were lower than the control ayu. However, Iife span of ayu was not prolonged by CR. 

These results suggested that there would be factors detennining life span of ayu other than 

CR and apoptosis. 
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Figure IV- I . Water temperature throughout rearing ayu. 

91 



25 

20 

e 15 
o ~ i: 
~ o) 
~2 

7~ 10 
~o 

H 

5 

C 
female ma[e female male 

June July August September October Novembe.r 

Figure IV-2. Total length of control and CR ayu. The mean values were representd with 

standard deviation (n=20). The asterisk denotes that there are significant 

differences (**P<0.01 , *P<0.05) between the control (black column) and the 

CR (grey colunm). 
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Figure IV-3. Total body weight of control and CR ayu. The mean values were represented 

with standard deviation (n=20). The asterisk denotes that there are significant 

differences (**P<0.01, *P<0.05) between the control (black column) and the 

CR (grey column). 

93 



~ O) 

~ ~ L: 
O 
G) 
~~ 

C 
~; 

~ 

o.14 

o.12 

o.i o 

0.08 

o,06 

o , 04 

0,02 

0.00 
female male femaie male 

June July August Se ptember October November 

Figure IV-4. The brain weight of control and CR ayu. The mean values were represented 

with standard deviation (n=20). The asterisk denotes that there are significant 

differences (**P<0.01) between the control (black column) and the CR (grey 

column). 
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Figure IV-5. The liver weight of control and CR ayu. The mean values were represented 

with standard deviation (n=20). The asterisk denotes that there are significant 

differences (*P<0.05) between the control (black column) and the CR (grey 

column) . 
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Figure IV-6. Brain weight per body weight of control and CR ayu. The mean values were 

represented with standard deviation (n=20). The asterisk denotes that there are 

significant differences (* *P<0.0 1) between the control (black column) and the 

CR (grey column). 
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Figure IV-7. Liver weight per body weight of control and CR ayu. The mean values were 

represented with standard deviation (n=20). The asterisk denotes that there are 

significant differences (*P<0.05) between the control (black colunm) and the 

CR (grey eolumn). 
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Figure IV-8. The gonadal weight of control and CR ayu. The mean values were represented 

with standard deviation (n=20). The asterisk denotes that there are significant 

differences (**P<0.01) between the control (black column) and the CR (grey 

column) . 
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F i gure IV-9. Gonadal weight per body weight of control and CR ayu. The mean values 

were represented with standard deviation (n=20). The asterisk denotes that 

there are significant differences (**P<0.01, *P<0.05) between the control 

(black column) and the CR (grey column). 
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Figure IV-1 O. The levels of 8-0HdG in ayu brain. The mean values were represented with 

standard deviation (n=5). The asterisk denotes that there are significant 

differences (**P<0 .O1) between the control (black column) and the CR (grey 

colunm) . 
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Figure IV- 1 1 . The levels of 8-0HdG in ayu liver. The mean values were represented with 

standard deviation (n=5). The asterisk denotes that there are significant 

differences (**P<0.01, *P<0,05) between the control (black column) and the 

CR (grey column). 
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Figure IV- 1 2. The caspase-9/6 activities in brain ofayu. The mean values were represented 
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Figure IV- 1 3 . The caspase-3 activities in brain of ayu. The mean values were represented 

with standard deviation (n=3). The asterisk denotes that there are significant 

differenees (**P<0.01, *P<0.05) between the control (black column) and 

the CR (grey colunm). 
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Figure IV-14. The caspase-9/6 activities in liver of ayu. The mean values were represented 

with standard deviation (n=3). The asterisk denotes that there are significant 

differences (**P<0.0 1 , *P<0,05) between the control (black column) and the 

CR (grey colunm). 
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Figure IV-1 5. The caspase-3 activities in liver of ayu. The mean values were represented 

with standard deviation (n=3). The asterisk denotes that there are significant 

differences (**P<0.01, *P<0.05) between the control (black colunm) and 

the CR (grey colunm). 
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Figure IV- 1 6. Plasma progesterone levels in control and CR ayu. The mean values were 

represented with standard deviation (n=3). The asterisk denotes that there 

are significant differences (**P<0.01) between the control (black columu) 

and the CR (grey colunm). 
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Figure IV- 1 7. Plasma testosterone levels in control and CR ayu. The mean values were 

represented with standard deviation (n=3). The asterisk denotes that there 

are significant differenees (**P<0.01 

column) and the CR (grey eolumn). 
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Figure IV-1 8. Plasma 1 7~-estradiol levels in control and CR ayu. The mean values were 

represented with standard deviation (n=3). The asterisk denotes that there 

are significant differences (*P<0,05) between the control (black column) 

and the CR (grey colunm). 
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1. INTRODUCTION 

In general fish have 5-7 years of life span, while the life span of some salmonids fish is 

only one year as well as ayu (Plecoglossus altivelis) a comnron freshwater fish in East Asia. 

The deternrinants for such a short life span are still ambiguous but probably involved in 

spawning and some accompanied changes in hormonal homeostasis. It is one of the 

accompanied changes that feeding activity of the ayu decreases during spawning and after 

spawning. The mechanisms for the decrease in appetite are also unclear and the decrease 

might be in part responsible for such a short life span of ayu. 

Leptin is a hounone, the Lep"b gene product, which is involved in the regulation of food 

intake and body weight homeostasis (Zhang et al., 1 994) but also in very different function 

such as reproduction, inunune response, and haematopoiesis (Cioffi et al., 1996; Loffreda 

et al., 1998). Leptin also plays important roles in neuroendocrine signaling and 

reproduction (Auwerx and Staels, 1 998). Although leptin or leptin receptor has not been 

yet characterized in fish, heterologous Southern blotting (Zhang et al., 1 994) and 

immunological screenings (Johnson et al., 2000; Yaghoubian et al., 2001) suggested fish 

would also express leptin-1ike proteins. Although some investigators, however, stated that 

manunalian leptin had no marked effect in immature coho salmon (Baker et al., 2000) or 

catfish (Silverstein and Plisetskaya, 2000), some leptin-administration studies suggest that 

leptin is able to modulate the fish food intake activity and other physiological responses. 

Carrillo and his colleagues demonstrated that leptin stimulated luteinizing hormone (Peyon 

et al., 2001) and somatolactin releases (Peyon et al., 2003) in European sea bass. Weil et al. 

(2003) have recently revealed that the high concentration of human leptin at the pituitary 

level directly stimulated FSH and LH releases in female rainbow trout. Volkoff et al. 

(2003) have recently demonstrated that murine leptin inj ection reduced food intake activity 

of goldfish and that the leptin function was antagonized by orexin A, a food intake 

enhancing hormone. It is, therefore, supposed that fish also have a functional leptin system 

for modulating food intake activity and some physiological signalings. Investigations in 

rodents indicate that sex horrnones may be important in determining plasma leptin. 

Frederich et al. (1995) found that at any given body fat content, female rats had higher 

leptin levels compared to male rats. In woman of reproductive age, Ieptin and estradiol 

showed similar profiles throughout the menstrual cycle (Cella et al., 2000; Mannucci et al., 

1998). The primary ovarian signal responsible for regulating body weight and adiposity has 

been suggested to be 17 P-estradiol (Czaja et al., 1983; Wade, 1975) and it has been shown 

that ovaries expressed leptin reeeptor messenger RNA (mRNA) (Cioffi et al., 1996; 

Karlsson et al., 1997). The administration of leptin also antagonized ovarian honnone 

secretion (Zachow et al., 1 999). In manunals, 1 7 P-estradiol regulated leptin secretion 

(Kikuchi, et al., 2001). However, studies on the relationships between leptin and 17 
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P-estradiol are limited in fish. 

Prolactin (PRL) is considered as a primary an osmoregulatory hormone in fish (Manzon, 

2002). Some studies also suggest that PRL may be associated with production of steroid 

hormones in the gonads, the onset of gonadal development, and reproductive behavior (De 

Ruiter et al., 1 986). The result that PRL stimulated leptin secretion in manunalian (Gualillo 

et al., 1999) bethinks us of a possible role for PRL in the regulation of food intake. On the 

other hand, 1 7 ~-estradiol enhances PRL production by directly stimulating PRL gene 

transcription, Ieading to increased synthesis of PRL mRNA and PRL (Maurer, 1 982). In 

teleosts, it is also suggested that 17 P-estradiol is involved in expression of PRL and PRL 

receptor mRNA of the gilthead seabream (Cavaco et al., 2003). It is, therefore, possible 

that PRL and 1 7 ~-estradiol would also affect leptin regulation in ayu. 

The actions of leptin are antagonized by another recently discovered peptide ghrelin 

(Shintani et al., 2001) secreted in the stomach and the hypothalamus of mammals (Date et 

al., 2000; Kojima et al., 1999). Ghrelin mRNA expression has been detected mainly in the 

stomach and shows low levels in the hypothalamus, pituitary, kidney, and placenta (Cowley, 

et al., 2003; Horvath et al., 2001; Kojima et al., 1999, 2001). Evidence in marnmals 

suggests that, in addition to regulating growih hormone (GH) release, ghrelin produced in 

the stornach has a variety of regulatory actions in the brain and the periphery, which 

include energy balance (Cowley, et al., 2003; Horvath et al., 2001), regulation of 

gastrointestinal motility (Date et al., 2001), and feeding behavior (Nakazato et al,, 2001; 

Unuiappan et al., 2002; Wren et al., 2000). Only recently ghrelin has been identified in the 

bullfrog, chicken, and goldfish (Kaiya et al., 2001, 2002; Unuiappan et al., 2002), hence, 

little is known about its role and regulatory mechanism in teleost. 

The present study was carried out in order to reveal the relationships among leptin, 

ghrelin and appetite of ayu and to investigate whether plasma leptin was related to 1 7 

P-estradiol and PRL. It was also investigated whether plasma ghrelin stimulated GH 

secretron m ayu. 

2. MATERIALS AND METHODS 

2.1. Fish 

About I OO individuals of healthy ayu (Plecoglossus altivelis) were reared from hatch to 

death in the Tochigi Prefectural Fisheries Experimental Station, Japan. Until used in 

experiments, fish were stocked in outdoor ponds (14.8 m2, 0.9 m in depth), where water 

was supplied from a natural stream. The fish were fed with commercial pellets for ayu 

(Oriental Yeast Co., Ltd., Tokyo. Japan) by an automatic feeding machine four times per 
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day. From our preliminary study, the hormones concerned in the present study, 1 7 

P-estradiol, PRL and leptin, showed no significant change until July. Fish were, then, 

sacrificed before spawning in August (BS group), during spawning in October (DS group), 

and after spawning in November (AS group). In October to November, we determined sex 

of fish and fuuher divided fish into two groups for each sex. The ovaries were excised out 

and the gonadosomatic index (GSI, gonadal weight/body weight x I OO) of the fish were 

calculated. 

2.2. Sampling 

Blood was collected from caudal vessels of ayu with plastic syringes containing EDTA 

2Na (50 mg/ml). Blood was centrifuged at 700 g for 5 min 4 'C to separate plasma from 

red blood cells. Plasma was frozen for subsequent assays of leptin and other hormone 

concentration. 

2.3. Plasma leptin measurement 

Leptin protein concentration in ayu plasma was measured by ELISA in 96-well 

microtiter plates (Costar, Corning, NY). After incubation for one hour at room temperature, 

wells were blocked with 1 50 u1 of 5 o/o skimmed milk at room temperature for one hour. 

After washing the plate four times with Tris-buffered saline containing 0.5 olo 

polyoxyethylene (20) sorbitan monolaurate, I OO u1 rabbit anti-mouse leptin polyclonal 

antibody ( I : 500 dilution of stock, Chemicon international) was added to the wells and 

incubated for one hour. Afier washing, the wells were incubated with I OO ul 

peroxidase-conjugated goat anti-rabbit lgG (H+L) (Pierce, USA) at room temperature for 

one hour, followed by washing and development with 100 u1 SIGMA FAST 

o-phenylenediamine dihydrochloride tablet sets (SIGMA, Japan). The reaction was stopped 

by adding 50 u1 of 2 N H2S04 and the absorbance at 490 um was measured by a microplate 

reader. The rabbit anti-mouse leptin polyclonal antibody used in the present study 

successfully and dose-dependently detected the protein of about 1 5 k in molecular weight 

corresponding to the mouse leptin of 1 6 k in SDS-PAGE and subsequent Western blotting 

analysis as described by Johnson et al. (2000) (data not shown). 

2.4. Plasma 1 7 ~estradiol and PRL measurement 

Nine individuals of ayu for each group were separately used for measurements of 

plasma 17 P-estradiol and PRL. The Estradiol EIA Kit (Cayman Chemical Company~ 

USA) was used to evaluate 17 ~-estradiol concentrations. The plasma prolactin 
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eoncentrations were determined with the prolactin eazyme inununoassay kit (SPI-BIO, 

France) . 

2.5. Plasma ghrelin and GH measurement 

Plasma sample for ghrelin assay earned from ayu immediately treated with I / I O volume 

of I mol/L HCL. Samples were kept -80 'C until used. The Active Ghrelin ELISA Kit 

(Mitsubishi Kagaku Medical, Ine., Japan) was used to evaluate active ghrelin 

concentrations. The plasma GH concentrations were determined with the growih hormone 

enzyme immunoassay kit (SPI-BIO, France). 

2. 6. Statistical analyses 

Data obtained were analyzed using one-way ANOVA. 

3. RESULTS 

3.1. Fish growth 

Total length and body weight of the ayu, reared in the Tochigi Prefectural Fisheries 

Experimental Station, is shown in Table V- I . Fish were imnrature on the before-spawning 

stage and their mean GSI (Figure V-1) was low, 0.4 ~ 0.2 o/o. In during spawning stages, 

the mean GSI increased and the value of female and male ayu reached the maximal level of 

18.6 ~ 3.3 "/o, 9.2 ~ 1.5 o/o (P<0.01), respectively. In November, the body weight and 

gonadal weight slightly decreased and all individuals died off., Some female individuals 

died, though they still held eggs. There were significant differences between male and 

female in during- and after-spawning stages (P<0.01). 

3.2. Plasma leptin levels at different sexual stages of ayu 

Ayu plasma leptin levels in three different stages were shown in Figure V-2. There were 

significant differences between male and female in during- and after-spawning stages 

(P<0.01). In the DS and AS groups, Ieptin concentrations of female ayu were 1 1 .8~4.2 

ng/ml and 13.4~8.9 ng/ml, respectively. These levels were significantly higher (P<0.01) 

than that of the BS group. The leptin concentration in male of the DS group was 2.4~1.4 

ng/ml, significantly higher than that of the BS group, 0.5~0.5 (P<0.05). In the AS group, 

the leptin level in male slightly decreased into I .6~1.0 ng/ml, but significantly higher than 
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that ofthe BS group (P<0.01). 

3.3. 1 7 p-Estradiol and prolactin in different stages 

Figure V-3 shows 1 7 P-estradiol levels in three different stages of ayu. 1 7 P-estradiol 

concentrations in the DS and AS groups for female ayu were 320.8~94.6 pg/ml and 

3 05.8~4.6 pg/ml, respectively. These levels were significantly higher compared with other 

groups (P<0.01). There were significant differences between male and female in both the 

DS and AS groups (P<0.01). 

Plasma PRL Ievels were at the maximal level during spawning season (Figure V-4). In 

the DS groups, the level for female and male ayu were 9.7~2.3 ng/ml and 6.6~0.1 ng/ml, 

respectively. They were significantly higher (P<0.01) in the BS and AS groups. No 

significant difference was observed between male and female on eaeh month. 

3.4. Plasma ghrelin levels and GH concentrations at different sexual stages of ayu 

Ayu plasma ghrelin levels in three different stages were shown in Figure V-5. There 

were significant differences between male and female in during-spawning stages (P<0.01). 

In the AS groups, ghrelin eoncentrations of two sexes of ayu were 2.7~0.1 fmol/ml and 

2.8~0.1 fmol/ml, respectively. These levels were significantly lower (P<0.01) than that of 

the BS and female of DS group. The ghrelin concentration in female of the DS group was 

3.8~0.2 fmol/ml, significantly higher than that of the BS group, 3.4~0. I (P<0.05), and that 

ofmale of DS and AS group (P<0.01). 

Figure V-6 shows plasma GH Ievels in three different stages of ayu. In the male of AS 

group, the level was I .7~1.4 ng/ml. It was significantly lower (P<0.05) in the BS and 

female of DS. Significant difference (P<0.05) was observed between male and female on 

AS group. 

4. DISCUSSION 

The results of the present study provided the first description of the profiles of plasma 

leptin concentrations around spawning period of ayu and its relation to spontaneous 

seasonal changes in 1 7 P-estradiol and PRL. 

Although reproductive processes of organisms are among the most energetically 

expensive, the feeding activity of ayu decreases during spawning. As shown in the Result 

section, the leptin levels of ayu were significantly high during and after spawning. If leptin 

has functions in fish similar to those in manunals, ayu would not recover the appetite for 
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maintaining their biological activities after spawning. Mustonen et al. (2002) reported that 

relatively long-life fish such as burbot had not increasing leptin levels in during spawning 

season of male. However, in the present study, Ieptin levels of male ayu increased 

significantly during spawning. Female burbot showed comparatively low leptin levels 

before and during spawning and increased significantly after the spawning period 

(approximately 3 .O ng/ml). On the other hand, comparing leptin levels between before- and 

after- spawning stages, the AS/BS Ieptin ratio was 24.4 for female ayu and 3 .O for male ayu, 

respeetively. These values were much higher than I . 6 for burbot (calculated fiom the data 

of Mustonen et al., 2002). Thus, it is quite likely that both sexes of ayu are exposed to 

drastie increases in leptin levels around spawning period. Food intake in rats decreased 

with increasing leptin concentration, more than 3 .5 ng/ml (Koopmans et al., 1 998), while 

food intake of woodchucks decreased with increase in leptin more than 0.4 ng/ml 

(Concannon et al., 2001). Although the relationship between fish food intake and leptin is 

not well understood, Ieptin-induced reduetion of appetite in these seasons might be one of 

reasons why almost ayu dye after the first spawning. An additional adnrinistration 

experiment with leptin for ayu will conflrm this hypothesis in future. 

It is well established that leptin is a hormone involved not only in regulation of body 

weight and metabolism, but in reproductive function as well in mammals. The mutant 

Lep"b/Lep"b female mouse, which does not produce an active form of leptin, has been 

shown to be aeyclic and sterile (Chehab et al., 1 996). Administration of recombinant leptin 

to these animals fully restores their fertility, indicating that leptin may be involved in 

regulating reproductive function, During the process of spermatogenesis and ovogenesis, 

human leptin stimulated FSH and LH release of rainbow trout pituitary cells (Weil et al., 

2003). On the other hand, it has been suggested that 17 P-estradiol is the primary ovarian 

signal responsible for regulating body weight and adiposity in mammals (Pelleymounter et 

al., 1999; Schwarz et al., 1981). In this study, 17 ~-estradiol showed profiles similar to 

leptin and significantly higher levels during spawning season as shown in Figure V-3 . 

There were remarkable sexual differenees in circulating leptin levels in accordance with 1 7 

P-estradiol concentrations. Our data probably addresses that 17 p-estradiol could directly 

and/or indirectly affect leptin secretion also in ayu. 

Okuzawa et al. (2003) reported that the 17 P-estradiol levels of female red seabream 

increased duirng vitellogenesis period, followed by rapid decrease after spawning. The 

plasma 1 7 P-estradiol levels of Lusitanian toadfish increased with gonadal growih, reached 

a maximum level a month before the start of spawning and then declined quickly (Modesto 

and Can~rio, 2003). On the other hand, as shown in this study, 1 7 ~-estradiol in ayu was 

maintained at a high level in the after-spawrling stage. This tonic phase in 1 7 P-estradiol 

level after spawning differentiates ayu from above other species able to spawn several 

times. The fish ayu would fail to recover appetite after spawning by force of the high leptin 
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secretion induced by the high level of 1 7 p-estradiol. 

Despite the well-known roles of PRJL in the reproductive physiology of higher 

vertebrates, most of the identified honnonal functions in fish are around the hydromineral 

homeostasis (Manzon, 2002). In female rats, it was reported that PRL boosted white 

adipose tissue leptin mRNA and plasma leptin levels in vivo (Guallilo et al., 1 999). In the 

present study, plasma PRL Ievels increased at the maximal level during spawning season in 

both sexes ayu (shown in Figure V-4), and leptin levels also increased during spawning 

season. It is likely that PRL would also induce leptin secretion in fish. 

A ghrelin-1ike ligand was detectable in the blood of a teleost as predicted by Shepherd et 

al. (2000). The concentrations of ghrelin in ayu plasma were quite low after spawning. The 

function of the ghrelin in the physiology of ayu remains an enigma. In rodents, exogenous 

ghrelin stimulates appetite and GH excretion (Kojima et al., 1 999; Tsch6p et al., 2000). A 

ghrelin-induced stimulation of GH secretion has also been observed in immature chicks 

(Aluned and Harvey, 2002) and bullfrogs (Kaiya et al., 2001). In this study, GH 

concentration showed profiles similar to ghrelin and significantly lower levels after 

spawning season as shown in Figure V-6. If ghrelin is also able to increase appetite of 

teleost, ayu cannot increase the appetite after spawning, because of low quantities of 

gherlin levels at postspawing. Mustonen et al. (2002) reported that relatively long-1ife fish 

such as burbot had increasing ghrelin levels in after spawning season and the burbot 

consume great quantities of food after spawning (McCrimmon and Devitt, 1 954). The high 

ghrelin levels could also function to increase the appetite of the spawned animals, a 

possible participation of ghrelin in teleost reproduction cannot be excluded. Therefore, it 

also considered that ayu would fail to recover appetite after spawning by low ghrelin 

secretion. 

The present study suggests that the rising 1 7 P-estradiol levels and the increasing in PRL 

secretion with maturity would induce plasma leptin secretion in ayu. Moreover, it supposed 

that lower ghrelin levels at after spawning season decrease appetite of ayu. The inability to 

reduce the leptin level and to increase ghrelin level into the basal and to recover appetite 

after spawtring would be in part responsible for a short life ~pan ofayu. 

This study attempted to disclose hematologically the relationships among the life span, 

appetite, Ieptin, 1 7 P-estradiol and PRL, ghrelin and GH homeostases in ayu and now 

investigate the 1 7 P-estradiol modulation mauners of leptin secretion using estrogen 

receptor antagonists such as tamoxifen, in future revealing the governing mechanisms of 

life span in ayu. 
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ABSTRACT 

It is well known that ayu (Plecoglossus altivelis) dye after spawning and the life span is 

only one year. The determinants for such a short life span are probably involved in 

spawning and some accompanied changes in hormonal homeostases. It is one of the 

accompanied changes that feeding activity of ayu decreases during spawning and after 

spawning. Then, it was investigated the relationships among leptin and ghrelin, they are 

regulators for food intake, and other major hormones, 1 7 P-estradiol and prolactin. Leptin 

levels were significantly higher during spawDing, associated with decrease in appetite. 

Leptin levels were also synchronized with levels of 1 7 ~-estradiol and prolactin. Ghrelin 

levels were no significant difference. Therefore, one possible explanation for decrease in 

appetite during ayu spawning is that the alteration of 1 7 p-estradiol homeostasis induced 

the secretion of leptin. The inability to recover the leptin level into the basal after spawning 

would be in part responsible for a short life span of ayu. 
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Figure V-1. Gonadosomatic index (GSI) in three maturation stages of ayu. The mean 

values were represented with standard deviation (n=20). The different 

characters represent significant differences (P<0.0 1 ). 
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Figure V-2. Plasma leptin levels in three maturation stages of ayu. The mean values were 

represented with standard deviation (n=7). The different characters represent 

significant differences (P<0.01) except for the BS and DS male groups 

(*, P<0.05). 
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Figure V-4. Plasma prolactin levels in three maturation stages of ayu. The mean values 

were represented with standard deviation (n=9). The different characters 

represent significant differences (P<0.0 1 ). 
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Figure V-5. Plasma ghrelin levels in three maturation stages of ayu. The mean values were 

represented with standard deviation (n=5). The different characters represent 

significant differences (P<0.01) except for the BS and DS female groups (a to 

b, P<0.05). 
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Figure V-6. Plasma growih hormone levels in three maturation stages of ayu. The mean 

values were represented with standard deviation (n=4). The different 

characters represent significant differences (P<0.05). 
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Ayu (Plecoglossus altivelis) is the most popular freshwater fish in Japan. The life span 

of ayu is only one year. They spawn in a river from late September to early November and 

die after spawning. Hatched larvae go down to the sea (catadromous migration) and winter 

there. The anadrornous run of wild ayu j uveniles begins from coast around early April and 

is over by early July. Soon after, they mature, spawn and then die after spawning (Figure I ). 
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Figure I . Life cycle of ayu 

In recent decades, the study of aging has expanded rapidly both in depth and in breadth. 

Biological, epidemiologic, and demographic data have generated a number of theories that 

attempt to identify a cause or process to explain aging and its inevitable consequence, 

death. However, in recent years, the search for a single cause of aging, such as a single 

gene or the decline of key body system, has been replaced by the view of aging as an 

extremely complex, multifactorial processes (Kowald and Kirkwood, 1 996). Several 

processes may interact simultaneously and may be operated at many levels of functional 

organization (Franceschi et al., 2000). Similarly, different theories of aging are not 

mutually exclusive and may adequately describe some or all features of the normal aging 

process alone or in combination with other theories. The definition of aging itself is open 

to various interpretations (Sacher, 1 982). Aging is presented as an ontogenetic issue; the 

process of growing old and/or the sum of all changes, such as physiological, genetic, and 

molecular changes, that occur with the passage of tirne from fertilization to death. Because 

of aging is characterized by the declining ability to respond to stress and by increasing 

homeostatic imbalance through an incidenee of pathology, death remains the ultimate 

consequence of aging. Theories to explain aging processes have been grouped into several 

categories, and some of the most widely used are the progranuned and error theories of 

aging. According to the "progranuned" theories, aging depends on biological clocks 

regulating the timetable of the life span through the stages of growth, development, 

maturity, and old age: this regulation would depend on genes sequentially switching on and 
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off signals to the nervous, endocrine, and immune systems responsible for maintenance of 

homeostasis and for activation of defense responses. The "error" theories is identified as 

enviroumental insults to living organisms that induce progressive damage at various levels 

(e.g., mitochondrial DNA damage, oxygen radicals accumulation, cross-1inking). 

On the other hand, the telomerase activities of cells of fish are very high, and it is hard to 

explain in a programmed theory for fish aging. Aging is an inevitable biological process 

and characterized by a general decline in physiological function. Aging may be defined as 

the increased probability of death with the accumulation of diverse adverse changes with 

aging, which belongs to the "error" theory group (Harman, 1998). This is counterbalanced 

by repair and maintenance factors that contribute to the longevity of the organism. 

Oxidative stress is associated with a disturbance in the balance between pro-oxidants 

(ROS) and antioxidants, in favor of the pro-oxidant (Sies, 1 991). Oxidative damage to 

DNA, proteins, and lipids accumulates with age and contributes to degenerative diseases 

and the aging phenomenon by disrupting cellular homeostasis (Adelman et al., 1 988; Ames 

and Shigenaga, 1992; Ames et al., 1993; Yu and Yang, 1996). It was, indeed, found that 

oxidative damage to DNA and lipids aecumulates with age of fish as shown in Chapter II 

and 111. 

A salient question then is why these two modes of expenditure might exert "radically" 

different effects on life span. There is a considerable weight of evidence that this increased 

oxygen consumption leads to elevated rates of oxidative stress and stress-induced damage 

to both protein and DNA (McArdle and Jackson, 2000; McArdle et al., 2001). This effect 

is consistent with a negative effect of the elevations of such activity on life span. In 

contrast, the function of energy demands at rest remains obseure. It is, however, widely 

agreed that three components eontribute mostly to the resting metabolic rate (RMR) : the 

proton leak in mitochondria (Brand, 1990, 2000; Couture and Hulbert, 1995; Poehlman et 

al., 1993; Porter and Brand, 1 993; Rolfe and Brand, 1996, 1997), the costs of sustaining 

ion gradients by sodium potassium pumping (Couture and Hulbert, 1995; Poehlman et al., 

1 993) and protein synthesis. Within this framework there are at least two mechanisms by 

whieh elevations in RMR might be associated with decreases in oxidative damage. 

Animals can reduce the levels of proton motive force by increasing the extent of 

uncoupling in their mitochondria. Continuous generation of ATP requires elevated oxygen 

consumption, although the net production of fiee-radical species is diminished. The 

animals uncouple respiration to increase their survival (Brand, 2000). This effect is 

diametrically opposed to the prevailing notion that increasing uncoupling should lead to an 

increase in free-radical production because of the elevated oxygen consumption (Ramsey 

et al., 2000). Another link between oxidative stress and aging has focused on mitochondria, 

which consume - 85 "/o of the oxygen used by the cell in vivo and are the greatest source of 

oxidants. Mitochondria supply most of the ATP necessary for cell function and contain the 
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only DNA outside the nucleus in mammalian cells. If the permeability of ATP accumulates 

in mitochondria of fish with aging like eryihrocyie as shown in Chapter II, cell function 

may be destroyed. 

Peroxidized membranes and lipid oxidation products make threat to aerobic cells. It is 

now widely held that cells have also developed a variety of mechanisms for maintaining 

membrane integrity and homeostasis by repairing oxidatively damaged components in 

addition to preventing initiation of peroxidation (with compounds like vitamin E). Under 

normal conditions, the amounts of oxy-repair mechanism in older organisms would 

probably be sufficient to cope with the amounts of damage produced. However, under 

situations of oxidative stress, there may be some portions which cannot be restored, and if 

such things spill over, they may not be able to induce the oxy-repair mechanism necessary 

to maintain homeostasis. Chapter 11 presents the hypothesis that the pile of these small 

damages may contribute to the gradual accumulation of the oxidative damages with aging. 

Furthermore, the ability to mount an effective response to oxidative stress may decline 

with aging, thus predisposing older cells and organisms to death as shown typically in 

Chapter 111. 

It was reported that oxygen consumption of ayu was 325.99 ml/kg/hr, ranging from 

208.76 to 390.12 ml/kg/hr (Aliah et al., 1991). Brain tissue represents 0.1 - I o/* of the 

body weight of vertebrates (excluding primates) but is responsible for I .5 - 8.5 o/o of the 

total body energy consumption in endothermic vertebrates and a comparable range (2.7 -

3.4 o/o) are found for ectothermic vertebrates (Van Ginneken et al., 1996). Since fish is 

ectothermic animal, ayu brain requires 5.64 - 13.26 ml/kg/hr. Mass-specific energy 

expenditures of the brain of ectothermic vertebrates are similar to that of endothermic 

vertebrates, suggesting that heat production plays a minor role in the brain's energy 

expenditure. However, neural proeessing is metabolically expensive. These metabolic 

demands could be large enough to influence the design, function and evolution of brains 

and behavior. Most of the brain energy consunrption is used to maintain ionic gradients 

across plasma membranes and to restore these gradients after depolarization. In fact, 

approximately 5 O - 60 o/o of the ATP consumed by the brain is devoted to its electrical 

activity (Hylland et al., 1997; Purdon and Rapoport, 1998). The metabolic processes 

involved in ATP production are the sarne in the nervous system as in the rest of body. Only 

approximately 2 "/o of brain glucose flux or small amounts of blood-borne precursors such 

as ketone bodies have been estimate to support lipid synthesis in mammalian brain (Purdon 

and Rapoport, 1998). However, in terms of energy, Iipid synthesis and phospholipids 

asymmetry across brain membranes may consume a significant part of the ATP used by 

brain cells. Therefore, in Chapter II, Iipid membrane abnonnalities induce exhaustion of 

ATP with aging, which must give damage to brain. 

Life requires membranes. Their universal occurrence in living organisms suggests that 
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the earliest life-forms on the planet also possessed them. Indeed, just as DNA is described 

as an eternal molecule, membranes might be called eternal structures, since in modern 

organisms new membranes arise from pre-existing membranes. Biological membranes 

generally consist of bilayers of amphipathic molecules held together by non-eovalent 

bonds. In enkaryotic cells, phospholipids are the predominant membrane lipids and consist 

of a hydrophilic head group to which are attached hydrophobic acyl chains. These acyl 

chains are either saturated, monounsaturated or polyunsaturated hydrocarbon chains that 

normally vary 1 2 to 22 carbons in length. Among cellular molecules, polyunsaturated fatty 

acids (PUFAS) exhibit the highest sensitivity to oxidative damage. It is generally accepted 

that their sensitivity increases as a power function of the number of double bonds per fatty 

acid molecule. As both oxygen consumption and oxygen free radical production occur in 

mitochondrial membranes, a low degree of fatty acid unsaturation in these membranes 

would be advantageous, because it would reduce the sensitivity to lipid peroxidation. This 

would also protect other molecules against lipid peroxidation-derived damage. The 

influenee of fatty acid unsaturation on the transition temperature and hence on membrane 

fluidity have been extensively studied (Brenuer, 1 984). Whereas strong increases in lipid 

fluidity are observed after introduction of the first double bonds to a saturated fatty acid, 

progressively smaller effects are observed after the introduction of additional double bonds 

(Brenner, 1 984). In Chapter II, it was revealed that membrane fluidity was decreased 

accompanied with decrease PUFA composition. This is because when a double bond is 

added near the center of the fatty aeid chain (first double bond added) the impact on 

fluidity through the kink (or coiling) of the fatty acyl chain is much larger than when it is 

added nearer to its extremes (subsequent double bonds added). Many studies have shown 

that free radical damage and lipid peroxidation increases as a function of the degree of 

unsaturation of the fatty acid substrate present in the tissues in vivo (Bondy and Marwah, 

1995; North et al., 1994). A modification of fatty acid unsaturation and oxidative damage 

in membrane occurs during aging can be prevented by food restriction (Laganiere and Yu, 

1987, 1989a, 1993; Yu et al., 1992). Physiological treatments that extend lifespan can also 

give insight into the mechanisms underlying aging. Calorie restriction is the only 

physiological treatment known to extend life span in a wide range of animals (Sohal and 

Weindruch, 1 996). During caloric restriction, metabolic rate is not reduced but there is a 

substantial decrease in lipid peroxidation in rats. This is not attributable to changes in 

membrane vitamin E content but is associated with changes in membrane acyl composition 

of both mitochondria and microsomes, resulting in a decreased susceptibility of these 

membrane bilayers to lipid peroxidation (Langaniere and Yu, 1 987). Caloric restriction 

also modifies acyl cornposition of muscle membrane (Cefalu et al., 2000), as well as both 

phosphatidylcholine and phosphatidylethanolamine in liver (Leon et al., 2001), thus 

decreasing their ability to undergo lipid peroxidation. Although this thesis includes no 
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research for membrane in CR study, it is likely that there are something changes in 

membrane lipid enviroument by CR. Further studies along these lines are required. 

One mechanism responsible for life span extension with caloric restriction (CR) would 

involve reduction in reactive oxygen species (ROS) production. CR has been shown to 

inhibit or delay age-related increases in oxidatively damaged proteins (Sohal et al., 1 994), 

DNA (Kaneko et al., 1997), and lipids (Lass et al., 1998). The cellular changes were 

responses for this decrease in oxidative damages. In the present study, oxidative damage to 

nuclear DNA was investigated. In Chapter IV, DNA damage in brain and liver were 

elevated with ayu aging, but the value of 8-0HdG did not decrease by caloric restriction, 

inconsistent with the previous reports for mammals and insects. Since ayu are inherently 

exposed to the high level of endogenous ROS (Moritomo et al., 2003), even CR could not 

afford to reduce the DNA damage. Calorie-restricted feeding induces a change in the 

composition of the polyunsaturated fatty acid composition of mitochondrial and cellular 

membranes (Laganiere and Yu, 1987). Other reports may also explain the enhanced 

resistance to peroxidation damage with time (Laganiere and Yu, 1 989a, b; 1 993. Laganiere 

and Fernandes, 1991). It was also proposed that the changes in membrane structure were 

accompanied with decreased plasma concentrations of T3 and insulin induced by a 

homeostatic response to a low energy diet (Herlihy et al., 1990; Wang et al., 1997). These 

two hormones are recognized to exert the expression of a nuniber of lipid desaturase 

enzymes (Brenner, 1990; Wagner et al., 1994; Hulbert, 2000) and probably alter the 

physico-chemical properties of membrane. Chapter IV showed that CR reduced the 

testosterone level, which is well-consistent with the observation by Klibanski et al. ( 1 981) 

that fasting decreased testosterone concentration in human. However, such changes in 

plasma hormone concentrations associated with CR in ayu would not affect the standard 

metabolic rate in ayu and endogenous ROS production and ROS accumlation. 

Progesterone and 17~-estradiol levels in CR ayu were relatively higher compared to the 

control ayu as shown in Chapter IV. Estrogens have been shown to be powerful 

antioxidants, effectively preventing lipid peroxidation (Ayres et al., 1996; Maziere et al., 

1991; Subbiah et al., 1993). Ayres et al. (1998) suggested that 17P-estradiol might prevent 

the oxidative DNA damage to some extent by inhibiting the fonuation of superoxides. The 

in vivo significance of this finding deserves some discussion in view of a previous report 

stating that 1 7P-estradiol decreases apoptosis of endothelial cells (Alvarez et al., 1997). In 

cellular apoptosis, the Bcl-2 gene plays a central role, and a variety of stimuli such as 

oxidants, toxins, oncogenes, and some growih factors can modulate expression of this gene 

(Thompson, 1995). 17P-Estradiol is known to modulate the transcription of a number of 

genes through their binding to cyiosolic estrogen receptors, which translocate to nucleus. 

The receptor/estrogen complex binds to specific palidromin DNA targets (Braun et al., 

1995). It is possible that, in this way, 17P-estradiol can directly or indirectly modulate 
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Bcl-2 expression. In amyotrophic lateral sclerosis, cell death is considered to be due to a 

mutation in SOD, causing inability to handle oxygen radicals (Rosen et al., 1993). In vitro 

superoxide-related cell death can be corrected by antioxidants (Vaca et al., 1 988). 

Therefore, it is possible that the ability of estrogens to decrease might have some in vivo 

significance in teun of apoptosis. In Chapter IV, every caspase activity of CR ayu was 

relatively low compared with control ayu. It is suggested that cellular caspase-induced 

apoptosis might be controllable by high secretion of 1 7p-estradiol by CR. As shown in 

Chapter V, ayu would, however, fail to recover appetite after spawning by force of the high 

leptin secretion induced by the high level of 1 7p-estradiol. Therefore, 1 7P-estradiol 

induced physical anorexia in ayu would offset the longevity by CR, although CR causes 

10ngevity in mammals. Leptin would appear to play a rple in relaying metabolic 

information to the reproductive axis, but the mechanisms by which this is accomplished 

remains unknown. 

Physical activity in general deelines through the life span and the decline is associated 

with a physiological anorexia. There are, however, minimal changes in extraction of energy 

from food with aging. After maturation, ingested resources are diverted from somatic 

growih to gonadal growih, resulting that growih increments are reduced after maturation. 

The author would like, if you allow me, to assume that fish lose weight, but never lose 

length and that fish with 20 o/o decrease of its maximum weight starve to death on the basis 

of a very conservative condition for starvation proposed by Mangel and Abrahams (2001). 

In November, control female ayu lost 5 o/o of their maximum weight, while control male, 

CR femail and mail ayu lost 1 8, 24, 36 o/o of their maximum weight, respectively as 

described in Chapter IV. Physiological anorexia in ayu after spawning may outstrip the 

reduction of physical activity, Ieading to weight loss and to death. Although data are 

limited, there are clear-cut directions in which future studies should be directed, studies of 

the role of reproductive hormones ( 1 7 P-estradiol, testosterone and progesterone) on energy 

intake and metabolism with aging. 

Leptin has been proposed as a physiological link between nutritional status and 

reproductive maturation and function and may be potentially served as a trigger or 

metabolic gate for sexual development (Campfield et al., 1995; Cunningham et al., 1999; 

Foster and Nagatani, 1999). It is well recognized that obesity in humans in associated with 

high blood pressure (Landsberg, 1986). It was reported that at least two pathways were 

involved in cardiovascular effects of caloric restriction: one dependent on leptin signaling 

and the other independent on the leptin axis (Swoap, 2001). In addition to its well-studied 

role in maintenance of body and fat mass, Ieptin may be important for the regulation of 

blood pressure via altering sympathetic nervous system (SNS) outflow. Fasting reduces the 

plasma leptin concentration and concomitantly suppresses gonadal, somatotropic, and 

thyroid honuones; however, fasting also increases plasma glucocorticoid levels. 
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Administration of exogenous leptin in fasting rats and mice reverses the fasting-induced 

honnonal state (Ahima et al., 1 996). In rodents, secretion ofleptin from adipocyies appears 

to be dually regulated (Schwartz et al., 2000). Leptin secretion is primarily related to body 

adipose levels; Ieptin gene expression and fasting plasma concentrations are positively 

correlated with the percentage of body fat. Although it was not measured leptin levels in 

Chapter IV, 1 7p-estradiol levels were relatively high in CR ayu. Therefore, Ieptin levels of 

during and after spawning ayu might be similar to those of ayu in Chapter V. This leads to 

one hypothesis that CR-induced increase in circulating leptin does not cause higher SNS 

outflow, then higher blood pressure in teleost, unlike mammals and that during and after 

spawning ayu RBC might hardly go through microcirculation and to perform satisfactory 

oxygen supply as partially oxidized RBC in Chapter II. 

It is generally accepted that longevity can evolve only in situations in which background 

mortality rates are sufficiently low so that individuals can live to long ages without high 

probability of accidental death. Clearly, if the mortality rates are too high, then individuals 

simply do not have the opportunity to develop mechanisms for longevity. On the other 

hand, if the rate are too low, and competitors thus sufficiency abundant, individuals will 

lack the opportunity to grow into size large enough to aging. In the case of ayu the 

situation is more complicated than such a case. A window of background mortality rates 

exists and, even then, the ecological enviroument plays an important role. I would, thus, 

like to hypothesize that the ecological mechanisms described here provide the milieu in 

which a biological adaptation for short life occurred. Ayu can be understood by neither 

ecology/evolution alone nor cell biology alone. The interaction between the two leagues is 

essential to understand ayu. However, the result that a life was not prolonged even if 

calorie restrictions, it turns out that short-1ived ayu might be important for an aquatic 

ecosystem. The switch to generations allows new individuals to take advantage of a new 

niche that is more energetically rewarding because ofnot continuing the niche occupied by 

parents. By focusing on the adult ayu, it is suggested that a significant cost is associated 

with this switch. Of partieular interest is the cost associated with this switch. I proposed 

that reproduction is the beginning of death because maturity is often viewed as the onset of 

senescence. Of course, relatively short life means that even if ayu survive within a river, 

and they will be present for a relatively short time and therefore not obtain suffircient food. 
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