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Chapter 1. Introduction 

Recently, the marine environmental factors prediction has drawn considerable 

attention in various ocean-related fields such as global warming, fisheries, and oceanic 

environmental protection. Two types of approaches are used to predict the marine 

environmental factors. The first one is the physics-based numerical model. The second 

one is to discover the marine environmental factors variation through data rather than a 

physical constraint.  

Salinity has been regarded as an important variable of the ocean that influences the 

hydrological cycle, ocean circulation, and climate changes. Variations in sea surface 

salinity (SSS) are key markers of changes in the surface freshwater fluxes, which 

provide useful information for understanding certain aspects of the hydrological cycle, 

including evaporation, precipitation, river runoff, and melting ice (Helber et al.,2010; 

Li et al., 2016; Qin et al., 2015; Rao, 2003; Wang & Zhang, 2012). On the other hand, 

salinity, along with ocean temperature, is required to compute ocean density and plays 

a significant role in modulating the climate (Ballabrera‐Poy et al., 2002; Bao et al., 2018; 

de Boyer Montégut et al., 2007; Zhu et al., 2014). Salinity has also been used to track 

water mass movement and vertical mixing processes between the surface and 

subsurface layers (Durack et al., 2012). Therefore, it is critical to measure and analyze 

salinity variations and understand their potential relationship with the global 

hydrological cycle and the thermohaline circulation. 

Some previous studies used machine learning such as support vector machine (SVM) 

for marine environmental factors prediction; however, deep learning algorithms 

recently are more accurate than the SVM when enough training data are available 

Recurrent Neural Network (RNN) are gradually being used to solve time series 

problems in speech recognition and machine translation. The long and short-term 

memory (LSTM) architecture improved on the RNN to overcome the RNN’s memory 

shortcomings in long-term sequences. Srivastava et al. (2015) proposed an encoder–

decoder LSTM model reconstructed and predicted to support a sequence of video data. 

Zhang et al. (2017) attempted the LSTM models to solve the marine environmental 

factors prediction problems. The existing LSTM models, only consider the time series 

of some isolated points and their spatial linkage was not considered. Lecun et al. (1998) 

officially proposed a convolutional neural network (CNN) architecture. Using the CNN 

algorithm, Krizhevsky et al. (2012) proposed Alex Net in image recognition in 2012. In 
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2015, Daverat et al. (2011) applied the CNN to identify the oceanfront. A CNN can 

extract the local spatial information from the image by sliding the convolution kernels. 

Therefore, it is suitable for extracting the features of spatial variation.  

Based on the previous results, Shi et al. (2015) proposed a convolutional LSTM 

(ConvLSTM) for precipitation prediction. Yang et al. (2018) proposed a convolutional 

FC-LSTM (CFCC-LSTM) for marine environmental factors prediction. These studies 

only predict the temperature of sea surface, but other marine environmental factors are 

also important. Here, in this study proposes a model of multi-layers ConvLSTM (M-

ConvLSTM) to predict Sea surface Temperature (SST) and salinity (SSS), comprising 

CNN, LSTM, and multi-layers stacking to consider the sea surface variations. The 

satellite data are used as label values to evaluate the prediction accuracy. Since the 

satellite time series data used in this study meet the prediction requirements of the time 

series model, multi-layers ConvLSTM model is applicable and is expected to possible 

to discover new variation of marine environmental factors through data rather than a 

physical constraint. 
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Chapter 2. Data 

The NOAA Coral Reef Watch (CRW) global Sea Surface Temperature monthly 

average data set ranging from 2015 to 2019 (60 months) is collected from NOAA Ocean 

Watch Central Pacific Node (https://oceanwatch.pifsc.noaa.gov). In this study, the 

training of the ConvLSTM model, a typical rectangular area (20◦ ×35◦) of (E100◦–120◦, 

S30◦–65◦) in the Antarctic Ocean is selected here. Figure 1 shows the CRW temperature 

of sea surface (SST, in the depth of 0 m) in global and selected areas in January of 2019. 

And this area is the same as the region of the observations taken by T/R V Umitaka-

Maru, as one of the Japanese Antarctic Research Expedition parties between 2011 and 

2020. Figure 2 shows all the stations (bule dot) distribution for “Umitaka-Maru” in 

2020. 

The CTD data of T/R V Umitaka-Maru is verified and calibrated by AUTOSAL for 

the collected seawater, and the salinity is corresponding to WOCE accuracy. For the sea 

level salinity value of CTD, we used the salinity data obtained at sea level when 

recovering the CTD. 

 

 

 

 

 

 

 

 

 

                         (a)                                             (b) 

Figure 1 CRW temperature of sea surface (0 m) in January 2019. (a) Global area. (b) Selected area. 
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Figure 2 Stations distribution for TR/V Umitaka-Maru in 2020 

The CRW operational near-real-time nighttime SST analysis product is a gap-filled, 

twice-weekly composite of global satellite nighttime AVHRR SST fields at 50 km 

resolution. In this study, Nighttime-only satellite SST observations are used to eliminate 

the issue of surface warming during the day and to avoid contamination from solar glare. 

Compared with daytime SST and day-night blended SST, nighttime SST provides more 

conservative and stable estimates in subsurface ocean condition. Nighttime SST also 

compare favorably with in situ SST at one meter depth (Montgomery and Strong, 1995), 

for example at times when corals bleaching occurs. The 50 km resolution data are 

derived by averaging multiple temperature observations (weighted by distance from 

pixel center, conditionally out to a maximum of 150 km), which are based on 4 km 

AVHRR Global Area Coverage (GAC) SST acquired daily (Skirving et al., 2006 b). In 

locations where cloudy conditions remain for extended periods of time, resulting in no 

new temperature observations, the most-recent high-quality SST value persists. 

The BEC L3 products have been obtained from Operational products V2.0, which 

are generated from Level 2 v622 salinity (SMOS‐BEC Team, 2017). The main features 

of SMOS is shown in Table 1. Two products are considered here: the monthly binned 

L3 map (weighted average) and the 9‐day averaging objective analyzed L3 maps. The 
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monthly binned products are averaged at 1° × 1° spatial resolution, and the 9‐day 

running objective analyzed L3 maps are provided daily at 0.25° × 0.25° spatial 

resolution. The time range of these products is January 2011 to recent. 

The SMOS sea surface salinity 3-day data set ranging from 2010 to 2019 (120 

months) is collected (https://oceanwatch.pifsc.noaa.gov/erddap/griddap/smos_3day). 

Training of the ConvLSTM model, a typical rectangular area (20◦ ×35◦) of (E100◦–

120◦, S30◦–65◦) in the Antarctic Ocean is selected here. The figure 3 shows the SMOS 

salinity of sea surface (SSS, in the depth of 0 m) in global and selected areas in January 

of 2019. 

 

Table 1.Main features of SMOS 

 

 

 

  

https://oceanwatch.pifsc.noaa.gov/erddap/griddap/smos_3day


６ 

 

 

 

 

 

 

 

 

  

                   (a)                                  (b) 

Figure 3 SMOS salinity of sea surface (0 m) in January 2019. (a) Global area. (b) Selected area. 

 

We used normalized and standardized data for the neural network algorithm. The 

standardized approach in this letter is as follows: 

 

               x'= (x − μ)/σ              (1)            

 

where the raw data are subtracted from the temperature mean (μ) and then divided by 

the variance (σ ). The temperature values after standardization are normalized between 

– 1 and +1 to facilitate the network training. 
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Chapter 3. Multi-layers ConvLSTM Model 

3.1 M-ConvLSTM Model 

In artificial intelligence deep learning networks, traditional Recurrent Neural 

Network(RNN) and Long and Short-Term Memory(LSTM) are commonly used 

prediction models; however, for data with spatial-temporal variations, it is found that 

traditional prediction models lose spatial variation information. The Convolutional 

LSTM Network (ConvLSTM) model combines the advantages of Convolutional LSTM 

to extract graphic changes and LSTM to predict future data, which not only gives 

consideration to the temporal and spatial variation characteristics of parameters but also 

well predicts future data changes. In this paper, a neural network model was established 

with multi-layers ConvLSTM network as shown in Figure 4. 

 

Figure 4 Schematic of the main process for ConvLSTM model 

In this study, sea surface temperature data were used in the production of training samples. 

Data need to be normalized before input model is trained. We used the SST data from 2015 to 2019 

as the training set and test set (60 batches of data in total), and the data from June to November 2019 

as the verification set (6 batches of data). We input the superposition data of 6 months as the sample, 

and the SST of the next month as the sample label. Since the T/R V Umitaka-Maru observation were 

made at area as shown in Figure 2, the study area is mainly in the range of (30-65°S, 100-120°E), 

so we took this area as the study area. 
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3.2 ConvLSTM Layer 

In this paper, the long-term time series data of marine environmental factors are used 

to predict the future situation. Since the objective laws of marine environmental factors 

in the past, present and future of selected sea areas remain basically unchanged, the 

interpretation of historical data can continue to the future. And the marine environment 

changes also meet the gradual change pattern. To sum up, the satellite time series data 

used in this paper meet the prediction requirements of the time series model. 

The classical time series prediction models are RNN and LSTM. Long and short time 

memory network was proposed in 1997, which added two structures: cell state and gate 

structure on the basis of RNN. The cell state is used to record the time series 

characteristics, and the gate structure is used to control the information retention of the 

previous moment. The structure overcomes the difficulties of RNN training and 

gradient disappearance. Figure 5 show network structure. 

Figure 5 Schematic of the cell of LSTM 

 

The main parameter formula of LSTM is as follows (“∘” representing Hadamard 

product) 
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𝑖𝑡 = 𝜎(𝑊𝑤𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖 ∘ 𝑐𝑡−1 + 𝑏𝑖)                    (2) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓 ∘ 𝑐𝑡−1 + 𝑏𝑓)                   (3) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)               (4) 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜 ∘ 𝑐𝑡 + 𝑏𝑜)                     (5) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡)                                         (6) 

 

Among them, i, f and o represent input gate, forget gate and output gate 

respectively; x represents network input; W represents network parameter, b represents 

offset; h represents hidden state.  𝜎 represents the sigmoid function. 

Later, ConvLSTM added a convolution operation on the basis of the LSTM 

network, which can use convolution calculation to extract spatial features, and finally 

can extract and predict temporal and spatial features of time series. 

ConvLSTM also uses a gate structure similar to LSTM to control the flow of 

information. The expressions of input gate, cell state, forget gate, and output gate are 

similar. Difference between LSTM and ConvLSTM is that the information input in each 

gate structure is replaced by a dot product with a convolution operation, and the cell 

state update still keeps the dot product unchanged. The weight part is put into the 

convolution kernel, and part is put into the loop kernel of the loop layer. The 

convolution kernel, Wi ,  Wf  and Wo  , is sliding the window in the spatial two-

dimensional matrix, the convolution result obtained, according to the gate structure for 

input, update the cell state, forget, and output respectively. 

 

𝑖𝑡 = 𝜎(𝑊𝑤𝑖 ∗ 𝑥𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑊𝑐𝑖 ∘ 𝑐𝑡−1 + 𝑏𝑖)                 (7) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑊𝑐𝑓 ∘ 𝑐𝑡−1 + 𝑏𝑓)                (8) 

𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑥𝑡 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)             (9) 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑊𝑐𝑜 ∘ 𝑐𝑡 + 𝑏𝑜)                 (10) 

ℎ𝑡 = 𝑜𝑡. tanh (𝑐𝑡)                                          (11) 

 

Among them, 𝑖𝑡 is the input gate, 𝑐𝑡 is the cell state, 𝑓𝑡 is the forget gate, 𝑜𝑡 is 

the output gate, ℎ𝑡 is the hidden layer output, and σ is the sigmoid function. 

The experiments show that the ConvLSTM network can better capture the spatio-

temporal correlation, and it is always better than the traditional fully connected LSTM 

network.  
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3.3 Model structure 

The figure 6 shows a flow chart of a ConvLSTM and Convolutional Neural Network 

(CNN) combined network model for forecasting Marine surface environmental factors. 

With the output of three ConvLSTM and two CNN layers, the model has a very good 

performance in the prediction of large-scale seawater temperature. 

 

Figure 6 ConvLSTM model flow chart 
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3.4 Loss function 

In this paper, MSE loss function is used to test the accuracy of prediction. In 

addition, in order to judge the performance of the neural network model, we added that 

mean absolute error (MAE) and Dice coefficient were used as parameters to evaluate 

the performance of the model, and the formula was as follows: 

 

 =
−=

n

t tt YX
n

MAE
1

1
                          (12)             

               ( )
2

1

1
 =

−=
n

t tt YX
n

MSE                           (13) 

 

Where: 𝑋𝑡is the predicted value; 𝑌𝑡 is the true value. The smaller MEA is, the 

more accurate model prediction is. The smaller the RMSE means the more stable the 

model prediction performance. The Dice coefficient, named after Lee Raymond Dice, 

is a set similarity measurement function. It is usually used to calculate the similarity 

between two samples (values in the range of [0, 1]). The definition of Dice coefficient, 

Dice_coef, is as follows: 

 

𝐷𝑖𝑐𝑒_𝑐𝑜𝑒𝑓 =  
2|𝑥∩𝑦|

|𝑥|+|𝑦|
=

2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
                       (14) 

 

Where x is the input sample and y is the output sample. And loss of Dice coefficient, 

Dice_coef_loss, is as follows: 

 

 

𝐷𝑖𝑐𝑒_𝑐𝑜𝑒𝑓_𝑙𝑜𝑠𝑠 =  1 − 𝐷𝑖𝑐𝑒_𝑐𝑜𝑒𝑓_𝑙𝑜𝑠𝑠                   (15) 
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Chapter 4. SST Predicted Results and Analysis 

4.1 Predicted Results 

Figure 7 and the Figure 8 are the comparison charts of SST forecast in the second 

half of 2019. Figure 7 is the real SST label data, and Figure 8 is the prediction result 

corresponding to the model. The Softmax function is used in the forecast result output, 

so the output result is a probability value (between [0,1]). We can find from the figure 

that the prediction results of the model are looks consistent with the actual verification. 

The basic characteristics of the water temperature distribution are well reflected in 

the predicted values, but there is a tendency for the north-south temperature gradient to 

appear more strongly. Also, although the front area can be seen to undulate, the small 

vortex structure seems to be smoothed out considerably. 

 

 

Figure 7 Real SST label data. 
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Figure 8 Prediction result of SST. 
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4.2 Evaluation of models 

Sea surface temperature data were used in the production of training samples. Data 

need to be normalized before input model is trained. We used the SST data from 2015 

to 2019 as the training set and test set (60 batches of data in total), and the data from 

June to November 2019 as the verification set (6 batches of data). We input the 

superposition data of 6 months as the sample, and the SST of the next month as the 

sample label. The study area is mainly in the range of (30-65°S, 100-120°E), so we take 

this area as the test area. The input sample is the tensor of (2,6,60,60,5), where 2 is 

Batch_Size,6 is the time mark of the input month, (60,60) is the spatial resolution of 

0.5°×0.5°, and the height and width of the study area. Enter the SST data as the sample 

label. The experimental results obtained by the network model are shown in the table 2. 

 

Table.2 Model parameters and error comparison 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows the change of the MSE loss function corresponding to the training 

data and the value data during the SST model training process. MSE represents the 

accuracy of training in the model. The accuracy of this model on the training data for 

the first 5 rounds of training increased rapidly, and there was no major fluctuation in 

the next 40 rounds of training. After 50 rounds of training, the MSE kept stable. The 

accuracy of the training data increasing steadily with the increase of the training 

numbers, and the MSE of this model approaches 0. 
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Figure 9 Accuracy of SST model training  
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Chapter 5. Application to SSS Prediction 

 Predicted results and evaluation of model：Figure 10 shows the SSS prediction results 

in 2020. The value of salinity anomaly is high near the northern boundary and low at 

the southern boundary, but is almost constant elsewhere. Figure 11 shows the change 

of the MSE loss function corresponding to the training data and the value data during 

the SSS model training process. MSE represents the accuracy of training in the model.  

It shows the initial stage of training. The accuracy of the training results was not 

improved. And the accuracy of the validation set fluctuates repeatedly. Eventually, the 

time gradient of salinity became extremely large, and as a result, the predicted value of 

salinity seemed to be almost constant.  

As for the salinity obtained by satellite, as shown in Fig. 3 (b), the high salinity is 

seen as a patch, or is missing in a wide area. Area of such missing data changes from 

month to month, resulting in a large time gradient of salinity. Since it is necessary to 

filter error data and missing data from salinity data and utilize them, the method will be 

discussed later. It is difficult to predict because of the excessive noise of data in this 

area, which leads to the disappearance of gradient.  

Figure 10 Prediction result of SSS 
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Figure 11 Accuracy of SST model training  
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Chapter 6. Discussion  

In this study, we have applied the M-ConvLSTM model to satellite data of water 

temperature and salinity and tried to estimate the predicted values. As a result, very 

good prediction results were obtained for the water temperature data set, but didn’t for 

the salinity. Salinity value did not converge, so correct results were not obtained. To 

clarify the difference of model application for SST and SSS in this area, water property 

obtained from the satellite data and in-situ CTD data were compared and analyzed. 

 Firstly, the data of these two were matched, and then the least square linear 

regression method was used to analyze their correlation (Figure 12). The in-situ CTD 

data came from hydrological observations taken by T/R V Umitaka-Maru between 2011 

and 2020. 

The square of correlation coefficient, R2, of SST between CRW satellite and CTD 

data was 0.81 (Figure 13). Accuracy of SST obtained by satellite showed good quality. 

On the other hand, square of correlation coefficient, R2, between SSS from SMOS 

satellite and CTD data was 0.23. Variance of SSS from SMOS is larger in low salinity 

range of CTD data. Thus, one of the reasons why the SST data was well predicted by 

M-ConvLSTM is high accuracy for the satellite SST data itself.  

Next, we have compared satellite data and CTD data from the TS relation. Figure 15 

is SST and SSS diagram. The red dot shows the data from CTD and the blue dot shows 

CRW and SMOS data.  

It can be seen that the TS of the CTD changes relatively monotonously, while the 

satellite data scattered widely especially in the low temperature range. This indicates 

that satellite salinity data is not accurate at low temperature range. Thus, the second 

reason is that the satellite data varies too much in the low temperature range. Another 

cause is that SSS obtained by satellite has more missing data as mentioned above than 

SST. 

It is good not to use data that includes error data, but randomly appearance of missing 

data may give a lot of damage to the M-ConvLSTM calculation. Therefore, as a 

proposal in this study, we firstly conduct a water mass test and determine TS range for 

interested area by using CTD data, use satellite data within the TS range, and omit other 

data. Secondly, the salinity at the missing value is interpolated from the salinity 

estimated from the water temperature using the TS relationship. Finally, the salinity 

data is smoothed using a box filter. 
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Figure 12 Satellite and CTD data comparison flow chart 

 

 

Figure 13 SST satellite and CTD comparison  

 

y = 0.7971x + 0.0166
R² = 0.8117

-6

-4

-2

0

2

4

6

8

10

12

14

16

-2 0 2 4 6 8 10 12 14 16 18

C
R

W
 S

ST

CTD SST

CRW-CTD SST 2015-2019



２０ 

 

 

 

Figure 14 SSS satellite and CTD comparison 

 

 

Figure 15 SST and SSS diagram  
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Chapter 7. Conclusion  

In this study, the M-ConvLSTM model that combines CNN and LSTM with layer 

stacking is proposed to predict the marine surface environmental factors. It can learn 

the variation of temperature and salinity at the surface ocean. The experimental results 

show that the M-ConvLSTM offers good prediction accuracy. For several moments of 

prediction, the SST offer good accuracy as the time step increases. Possibly because the 

variations of SST are smaller than that of the SSS. For future work, the M-ConvLSTM 

should be able to improve accuracy in the marine surface environmental factors. 

  The results showed that the ConvLSTM offers good prediction accuracy for SST. It 

was considered that the method used here has some usage such as optimal interpolation 

of missing data. However, in order to further develop such a method and make it 

practical as like a weather forecast, it is necessary to combine it with the prediction 

linked to the laws of physics. 

Satellite ocean temperature data has already been successfully commercialized. This 

kind of data changes regularly and with high accuracy. However, L-band is less 

sensitive to salinity. The result of remote sensing SSS data itself is not good, and the 

data can not meet the requirements of the prediction model. The artificial intelligence 

technology used in this study is a data-driven algorithm. It can be seen from the salinity 

data that the accuracy is low and the change is not regular, which leads to the failure to 

obtain the rule in machine learning. In the future, if the data accuracy is improved, it 

will be helpful to predict SSS. 
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