TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

カレイ目アキルス科魚類の淡水進出における栄養学 的適応機構の解明:脂肪酸代謝酵素系の多様化によ るDHA合成能獲得への収斂進化

メタデータ	言語: jpn
	出版者:
	公開日: 2021-06-21
	キーワード (Ja):
	キーワード (En):
	作成者: 松下, 芳之
	メールアドレス:
	所属:
URL	https://oacis.repo.nii.ac.jp/records/2104

博士学位論文

カレイ目アキルス科魚類の淡水進出における

栄養学的適応機構の解明: 脂肪酸代謝酵素系の多様化による DHA 合成能獲得への収斂進化

2020年度

(2021年3月)

東京海洋大学大学院 海洋科学技術研究科 応用生命科学専攻

松下 芳之

博士学位論文

カレイ目アキルス科魚類の淡水進出における

栄養学的適応機構の解明: 脂肪酸代謝酵素系の多様化による DHA 合成能獲得への収斂進化

2020年度

(2021年3月)

東京海洋大学大学院 海洋科学技術研究科 応用生命科学専攻

松下 芳之

目次

要旨	1
Abstruct	4
Introduction	5
Results and discussion	11
Methods	20
References	33
Figure legends	44
Figures	59
Tables	100
謝辞	107

要旨

長鎖多価不飽和脂肪酸の一種であるドコサヘキサエン酸(DHA; 22:6n-3)は、細 胞膜の構成成分として脳や網膜をはじめとする神経組織の発達や維持に関わるほ か、神経保護に関与するシグナル分子群であるドコサノイドの前駆体になる等、 種々の代替不可能な生理活性を示す。脊椎動物において、DHA は植物等に由来す る α-リノレン酸 (ALA: 18:3n-3) を起点とし、炭素鎖へ二重結合を導入する不飽和 化反応を触媒する不飽和化酵素と、炭素鎖を延長する鎖長延長反応の律速酵素であ る鎖長延長酵素が関与する DHA 合成経路によって合成される。しかし、多くの海 産魚はこれらの脂肪酸代謝酵素の活性を一部欠損しているため DHA を自ら合成で きず、海洋環境の餌生物中に豊富に含まれる DHA を直接摂取することが不可欠で ある。ところが、このような海産魚のうち一部の系統は、DHA の大量生産者が存 在せず、餌生物に含まれる DHA が非常に乏しい淡水環境へ進出している。海産養 殖魚種における栄養学的研究から、DHA の欠乏は種苗の生残率の低下や発生異常、 成長不全を招くことが明らかになっており、淡水へと進出した海産魚系統は、低張 環境から体液浸透圧の恒常性を守る生理学的適応のほかに、貧 DHA 環境で生存す るための栄養学的適応を果たしているものと予想された。そこで本研究では、南北 アメリカ大陸の東岸を中心に海洋から淡水まで幅広く分布するカレイ目のアキル ス科魚類に注目し、生息環境の異なる4種、すなわち、海産種 Gymnachirus melas、 降河回遊種 Trinectes maculatus、そして淡水産の 2 種 Apionichthys finis と Hypoclinemus mentalis を材料に用いて、本系統がどのように貧 DHA という栄養学 的障壁を克服し、淡水環境に適応したのか明らかにすることを目的とした。

はじめに、降河回遊種 T. maculatus を除く、生態学的情報に乏しいアキルス科 3 種について、彼らが実際に経験してきた生息環境を明らかにするため、耳石中のス

トロンチウム(Sr)濃度分布に基づく回遊履歴の推定を行った。その結果、海産種 G. melas では、耳石の核を含む中心部と外縁部に近い領域で高く、その中間帯では やや低い Sr 濃度を示したことから、本種は他の沿岸性カレイ目魚類と同様、河口 付近を養育場として利用するものの、海に依存した生活史をもつと考えられた。一 方、淡水産の2種 A. finis と H. mentalis では、一貫して低い Sr 濃度を示したことか ら、彼らは淡水で生活史を完結し、海の餌生物に全く依存していないことが強く示 唆された。

次に、アキルス科における淡水進出が系統分化のどの時点で生じたのかについて 明らかにするため、16S rRNA 遺伝子の塩基配列に基づく分子系統解析を行った。 その結果、アキルス科においては海産系統の Gymnachirus 属が最も早く分岐し、次 いで降河回遊種を擁する Trinectes 属、そして淡水系統の Apionichthys 属と Hypoclinemus 属が分岐したことが明らかになり、本科は海に起源をもち、系統の分 化と共に淡水へ進出したこと、そして海産種 G. melas は淡水進出に関わる形質につ いて、祖先的な状態を留めていることが推測された。

続いて、アキルス科 4 種の DHA 合成能を明らかにするため、放射性同位体(RI) で標識された脂肪酸を用いて代謝実験を行った。本実験では、脂肪酸代謝酵素が高 発現する脳や肝臓の分散細胞を調製したのち、RI 標識された ALA またはドコサペ ンタエン酸(DPA; 22:5n-3)の存在下で培養し、各細胞における代謝産物を追跡し た。その結果、海産種 G. melas ではすべての区において DHA は検出されず、本種 は多くの海産魚と同様に DHA 合成能をもたないことが明らかになった。一方、そ の他 3 種では、いずれも ALA および DPA 添加区から DHA が検出された。また、 テトラコサペンタエン酸(TPA; 24:5n-3)やテトラコサヘキサエン酸(THA; 24:6n-3) は降河回遊種 T. maculatus ではほとんど検出されなかったが、淡水産の 2 種、特に A. finis では強く検出される傾向があった。このことから、生活史の一部、あるいは 全部を淡水に依存するこれらの種は、ALA からの DHA 合成能を獲得していること が明らかになり、3種のDHA合成経路には何らかの差異があることが示唆された。

そこで、アキルス科4種のDHA合成経路を詳細に明らかにするため、脳や肝臓 の cDNA から不飽和化酵素遺伝子(fads2)や鎖長延長酵素遺伝子(elovl5)を単離 したのち、酵母発現系による機能解析を行った。その結果、海産種 G. melas は不飽 和化酵素の機能欠損によりDHAを合成できないことが明らかになった。一方、降 河回遊種 T. maculatus はΔ4活性を獲得した不飽和化酵素によりΔ4経路を駆動可能 であり、淡水種 A. finis は炭素数 24 の脂肪酸の代謝能強化により Sprecher 経路を駆 動可能であった。また、淡水種 H. mentalis では遺伝子重複により生じた活性の異な る 2種の不飽和化酵素が不飽和化反応を分担し、Δ4経路と Sprecher 経路の両方を 駆動可能であった。このことから、淡水進出種では脂肪酸代謝酵素の機能が非常に 多様化していながら、いずれの酵素機能の組み合わせもDHA生合成という共通の 結果を導いていることが明らかになり、彼らの間で貧DHA環境への適応を可能に するDHA合成能の獲得という収斂進化が生じていることが強く示唆された。

以上の研究から、アキルス科魚類では DHA の豊富な海に留まる祖先的な種は DHA 合成能をもたず、淡水への進出を果たした分化的な種は様々な形で DHA 合成 能を獲得していることが明らかになり、海産魚が淡水環境に適応するためには、低 張環境における浸透圧調節能に並び、貧 DHA という栄養学的障壁を克服するため の DHA 合成能の獲得が極めて重要な要素になるものと結論付けた。

3

Abstruct

The colonisation of freshwater environments by marine fishes has historically been considered a result of adaptation to low osmolality. However, most marine fishes cannot synthesise the physiologically indispensable fatty acid, docosahexaenoic acid (DHA), due to incomplete DHA biosynthetic pathways, which must be adapted to survive in freshwater environments where DHA is poor relative to marine environments. By analysing DHA biosynthetic pathways of one marine and three freshwater-dependent species from the flatfish family Achiridae, we revealed that functions of fatty-acid metabolising enzymes uniquely independently evolved multi-functionalisation have and by or neofunctionalisation in each freshwater species, such that every functional combination of the enzymes has converged to generate complete and functional DHA biosynthetic pathways. Our results demonstrate the elaborate patchwork of fatty-acid metabolism and the importance of acquiring DHA biosynthetic function in order for fish to cross the nutritional barrier at the mouth of rivers and colonise freshwater environments.

Introduction

Docosahexaenoic acid (DHA; 22:6n-3), an omega-3 long-chain polyunsaturated fatty acid (LC-PUFA), is a crucial fatty acid that supports various functions of the cell membrane as a component of the lipid bilayer, owing to its structural flexibility, and further modulating physiological processes directly or as a precursor of bioactive derivatives^{1,2,3,4}. It is obtained either as preformed DHA or can be synthesised in most vertebrates from α -linolenic acid (ALA; 18:3n–3; Fig. 1), which is a dietary essential fatty acid⁴. The first step in the DHA biosynthetic pathway is $\Delta 6$ desaturation of dietary ALA to 18:4n-3, followed by elongation to 20:4n-3 or, alternatively, elongation of ALA to 20:3n-3, followed by $\Delta 8$ desaturation to 20:4n-3. Then, using 20:4n-3 as a substrate, eicosapentaenoic acid (EPA; 20:5n–3) is produced by $\Delta 5$ desaturation. In teleost fishes that possess the ability to synthesise DHA, the production of DHA from EPA is achieved by two alternative routes, called the "Sprecher pathway" and "∆4 pathway"^{5,6,7}. The former consists of two consecutive elongations to produce 24:5n–3, followed by $\Delta 6$ desaturation to 24:6n–3 and chain shortening to DHA by β -oxidation at the end (Fig. 1). The latter route is initiated by a single elongation to 22:5n–3, followed by the direct conversion to DHA via $\Delta 4$ desaturation. The desaturation and elongation reactions described above are catalysed by fatty acid desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins, respectively. These enzymes have their own substrate specificities to share the pathway and complete DHA biosynthesis by their concerted actions^{5,7}.

Spiny-rayed fishes (superorder Acanthopterygii), the largest and most diverse group of fishes, have a limited repertoire of enzymes for DHA biosynthesis^{7,8,9}. In particular, marine Acanthopterygii possess only two enzymes, namely Fads2, which has $\Delta 6/\Delta 8$ desaturase activity^{5,10}, and Elov15, which shows preferential elongase activity towards C_{18} and C_{20} substrates¹¹. Moreover, it was previously demonstrated by functional characterisation in a heterologous expression system that Fads2 of marine Acanthopterygii have little or no $\Delta 6$ desaturase activity towards 24:5n-3⁶. Therefore, marine Acanthopterygii species strictly require DHA from their diet and develop fatal disorders if they are raised under DHA-deficient conditions^{12,13}. A potential cause for the loss of DHA biosynthesis capability is low selective pressure due to the marine food web already being rich in DHA produced by marine microalgae and microbes^{12,14}. Hence, marine

Acanthopterygii can easily satisfy their DHA requirements by feeding on their natural prey, despite their incomplete DHA biosynthetic pathway¹⁵. In contrast, the availability of DHA in freshwater prey is limited¹⁵, as primary producers in the freshwater food web are characterised by containing substantial levels of ALA, but are generally poor in DHA¹⁶. The fact that freshwater species belonging to Osteoglossomorpha and Otophysi (the oldest living and most diverse freshwater teleost lineages, respectively^{17,18}) possess the capability for DHA biosynthesis^{8,19-22} suggests that dietary DHA obtained in the freshwater environment is not sufficient for normal development and survival. Still, some lineages of marine Acanthopterygii, which originally and exclusively relied on exogenous DHA, have successfully invaded and colonised freshwater environments^{23,24}. Although the marine-to-freshwater transition has hitherto been attributed to substantial adaptation of the osmoregulatory system to overcome the osmotic barrier^{25,26}, there is another potential barrier that had to be conquered by Acanthopterygii species moving into the freshwater environment: the gap between the physiological demand and the dietary supply of DHA.

This study focused on flatfishes (Pleuronectiformes: Acanthopterygii) distributed in marine and freshwater environments to examine the nutritional barrier created by DHA-deficient prey in fresh water and the adaptive mechanisms that may allow marine-origin Acanthopterygii to occupy freshwater habitats. Although this taxonomic order principally consists of marine species, many species from several families migrate to estuaries, which function as nursery grounds, and some even move up into rivers^{27,28}. To understand the life histories and optimise the culture conditions of these ecologically and commercially important fishes, their salinity tolerance has been investigated intensively, and many families are categorised as euryhaline²⁹. However, there have been no reports of any flatfish species with a complete DHA biosynthetic pathway from ALA^{5,30}. Dietary DHA deficiency causes poor growth and survival and developmental abnormalities in marine flatfishes³¹ and hence should result in decreased fitness under natural conditions. Indeed, only 10 out of the 772 species (1.3% of the total diversity) in this order are thought to be freshwater residents²⁸. We consequently hypothesised that this nutritional barrier provides evolutionary pressure that obstructs flatfishes with low-salinity tolerance from attempting to colonise freshwater environments.

A family of Pleuronectiformes, Achiridae, commonly called American sole, which has expanded its habitat from the sea to rivers³², is now distributed across the coastal area

of the Americas to the western Amazon. It comprises six genera containing approximately 35 species, from which six are restricted entirely to fresh water^{28,33}, and the different genera show varying tendencies in terms of habitat preference³³. Hence, Achiridae is an interesting example of marine-derived Acanthopterygii that can be used to explore the physiological basis for habitat adaptation.

In this study, four Achiridae species were analysed: Gymnachirus melas (marine; distributed along the east coast of the USA, eastern Gulf of Mexico, and Bahamas³⁴), Trinectes maculatus (catadromous; distributed along the eastern coast of North America from Maine (USA) to Mexico^{35,36}), *Apionichthys finis* (freshwater; distributed through the Essequibo and middle and upper Amazon basins³⁷), and *Hypoclinemus mentalis* (freshwater; distributed through the Amazon, Orinoco, and Essequibo basins³⁸). First, we examined their migratory histories and phylogenetic relationships to illustrate freshwater colonisation of Achiridae. Second, the capabilities for DHA biosynthesis in the four species were investigated using brain and hepatic cells isolated from each species, cultured with radiolabelled fatty-acid substrates. Third, we conducted functional characterisation of fatty-acid metabolising enzymes and revealed their divergent functions, including, to our knowledge, the first discovery of a trifunctional $\Delta 4\Delta 5\Delta 6$ Fads2, giving rise to different, yet fully functional and complete DHA biosynthetic pathways among the three freshwater species.

Results and discussion

Estimating migratory histories and phylogenetic relationships

We used otolith analysis to examine their environmental life histories, and specifically, to determine whether the so-called freshwater species had any previous exposure to marine conditions. Otoliths are biominerals present in the inner ears that are responsible for the sense of balance in teleost fishes. They consist predominantly of calcium carbonate and, for some short-lived teleosts, grow in proportion to somatic growth of the individual. Otoliths incorporate trace elements that reflect ambient environmental conditions, such as salinity³⁹. We analysed the strontium (Sr) concentration, which is positively correlated to the ambient salinity, in transverse sections of the sagittal otoliths (Fig. 2a-c). In the marine species G. melas, the Sr concentration was high in the core and peripheral areas, indicating birth and residence predominantly in sea water (Fig. 2a). However, these otoliths also showed concentric regions with intermediate to low Sr concentration presumed to reflect transient forays into areas of low to moderate salinity, such as an estuary, often used as nursery grounds in this order²⁷. The otoliths of A. finis and H. mentalis showed a low Sr concentration throughout the otolith (Fig. 2b, c), indicating that these fishes were born in and never left the Amazon, where they were captured. Our results are in agreement with previous reports based on capture sites³³ and demonstrate that *A. finis* and *H. mentalis* spend their entire life in fresh water.

Next, we constructed a molecular phylogenetic tree with the closely related ancestral marine family Citharidae⁴⁰ as an outgroup using 16S rRNA genes (Fig. 3) to investigate the evolutionary relationships among the four species of Achiridae. The resultant tree, which is consistent with previous reports^{41,42}, showed *G. melas* as the first species branching from the lineage leading to *A. finis* and *H. mentalis* via the intermediate *T. maculatus*. Our phylogenetic tree suggests that *G. melas*, which relies heavily on marine habitats, maintains some ancestral physiological features associated with freshwater adaptation.

The low osmolality of the freshwater environment is an initial cause of disruption of homeostasis in marine fishes. To gain insight into when the lineage of Achiridae acquired the capability to cope with hypoosmotic stress, we compared the hypoosmotic tolerance of *G. melas* (Fig. 4) to that of the euryhaline *T. maculatus*^{35,36,43} and a stenohaline marine Acanthopterygii, the horse mackerel (*Trachurus japonicus*)⁴⁴. The test was carried out by the gradual replacement of sea water (SW) with fresh water (FW) in a laboratory tank according to a schedule designed so that *T. maculatus* would survive. In this test, *G. melas* showed remarkable tolerance to survive in 10% SW, whereas all horse mackerel used in the study did not. This suggests that a substantial tolerance to low salinity is shared among Achiridae regardless of their natural habitat.

Tracing fatty-acid metabolism in brain and hepatic cells

We then examined the capability of Achiridae to synthesise DHA from ALA to determine whether there are differences that reflect the nutritional environment of each natural habitat (Fig. 5-8). For each of the four sole species we cultured cells from brain and liver, where Fads and Elov1 are highly expressed⁷, with radiolabelled [1-¹⁴C]ALA or [1-¹⁴C]22:5n–3. After 40 h of culture, total lipid was extracted from the cells to prepare fatty acid methyl esters (FAMEs), which were then developed with thin-layer chromatography (TLC). Although incorporation of [1-¹⁴C]ALA and [1-¹⁴C]22:5n–3 into the cells was detected, no radioactive DHA (22:6n–3) was detected in *G. melas* brain or hepatic cells (Fig. 5). However, we clearly found radioactive DHA along with a series of intermediates in the FAMEs derived from the hepatic cells of the other three soles, which spend a substantial portion of their life cycle in the FW environment (Fig. 6-8). It is noteworthy that radioactive 24:5n–3 and 24:6n–3, which are the intermediates in the Sprecher pathway (Fig.

1), were detected in both A. finis and H. mentalis, but especially strong in A. finis (Fig. 7,

8). Moreover, radioactive DHA synthesised in the brain cells was detected only in *H. mentalis* (Fig. 8). Our data demonstrate that the three FW-dependent species possess the capability to synthesise DHA from ALA, whereas the marine species, *G. melas*, likely does not. Furthermore, the DHA biosynthetic pathways of the three FW-dependent species appeared to differ, particularly in the availability and utilisation of the Sprecher pathway.

Functional characterisation of Fads2 and Elov15 enzymes

To investigate the molecular basis causing the above differences in DHA biosynthetic potency, we conducted functional characterisation of the enzymes Fads2 and Elovl5 involved in DHA biosynthesis with a heterologous expression system in yeast (*Saccharomyces cerevisiae*) (Fig. 9-15 and Table 1a-c)⁴⁵. The Fads2 isolated from *G. melas* showed $\Delta 6$ activity towards ALA ($\Delta 6_{18:3n-3}$), low $\Delta 5$, and no $\Delta 4$ desaturase activities (Fig.

13). In addition, its $\Delta 6$ activity towards 24:5n–3 ($\Delta 6_{24:5n-3}$) was the lowest among the four sole species (Fig. 14). The *G. melas* Elov15 exhibited activity towards C₁₈ to C₂₂ substrates (Table 1a) and production of 22:5n–3 and 24:5n–3 from EPA (20:5n–3, Fig. 15). In the DHA biosynthesis assay using *G. melas* cells, we observed only EPA biosynthesis from ALA in the brain cells and 24:5n–3 biosynthesis from 22:5n–3 in both the brain and hepatic cells (Fig. 5). Therefore, taken altogether, we concluded that *G. melas* is incapable of DHA biosynthesis due to insufficient activity of Fads2 to desaturate 22:5n–3 or 24:5n–3 (Fig. 16, red arrows).

In contrast, the Fads2 isolated from *T. maculatus* showed desaturase activity for the $\Delta 6$, $\Delta 5$, and $\Delta 4$ pathways (Fig. 13, 14). This conspicuous trifunctionality has not been reported in any other front-end desaturase known to date^{7,10,46}. The ElovI5 showed elongase activities towards C₁₈ to C₂₂ substrates (Table 1a), although the production of 24:5n–3 from EPA was relatively low (Fig. 15), which is consistent with the weak radioactivity of 24:5n–3 detected in the DHA biosynthesis assay (Fig. 6). We concluded that *T. maculatus* synthesises DHA from ALA via the $\Delta 4$ pathway with the trifunctionalised Fads2 as a key enzyme in this process (Fig. 16, green arrows). The Fads2 isolated from *A. finis* showed $\Delta 6_{18:3n-3}$, $\Delta 5$, and low $\Delta 4$ activities (Fig. 13) and performed $\Delta 6_{24:5n-3}$ desaturation at the highest efficiency among the four species (Fig. 14). The Elov15 showed relatively high production of 24:5n–3 from EPA (Fig. 15), in addition to the conversion of C₁₈ and C₂₀ substrates (Table 1a). The results clearly supported the detection of radioactive C₂₄ fatty acids in the DHA biosynthesis assay (Fig. 7), and we therefore concluded that *A. finis* conducts DHA biosynthesis from ALA with the enzymes reinforced to drive the Sprecher pathway (Fig. 16, blue arrows), which is weak or absent in the marine Acanthopterygii.

In the case of *H. mentalis*, we isolated two *fads2* genes sharing 98% identity at the deduced amino acid level and considered that the gene differentiated into paralogues after speciation because they formed a single branch in the molecular phylogenetic tree of Achiridae Fads2 (Fig. 17). The two Fads2, namely Fads2a and Fads2b, showed distinct activities, catalysing $\Delta 6_{18:3n-3}$ and $\Delta 4$ desaturation, respectively, while also showing $\Delta 5$ and $\Delta 6_{24:5n-3}$ activity (Fig. 13, 14 and Table 1b, c). The Elov15 performed elongations of C₁₈ to C₂₂ substrates (Table 1a) and production of 22:5n–3 and 24:5n–3 from EPA (Fig. 15). These activities did not conflict with the moderate radioactivities of the C₂₄ fatty acids

compared to those of *A. finis* in the DHA biosynthesis assay (Fig. 8). We concluded that *H. mentalis* synthesises DHA from ALA via both the $\Delta 4$ and Sprecher pathways, with the duplicated Fads2 specialised by neofunctionalisation to share the desaturation steps (Fig. 16, navy).

Exploring the molecular basis of Fads2 diversification

To further investigate the origin of the paralogous Fads2 of *H. mentalis*, we conducted PCR with four primers designed to map their genomic loci (Fig. 18a, b). The results demonstrated that they were located tandemly and exhibited conserved exon-intron boundaries (Fig. 18c), suggesting that gene duplication through unequal crossing-over occurred in this lineage⁴⁷. We then analysed the relationship between the remarkable identity and divergent functions of the duplicated Fads2. They showed eight substitutions along their 442 amino acids (Fig. 19), with two of them located in the motif related to substrate preference, as demonstrated in previous studies (Fig. 20)^{6,48}. We substituted each of the eight amino acids of Fads2b with those of Fads2a by site-directed mutagenesis, and, indeed, the mutant Fads2b lost $\Delta 4$ activity by altering Y277, which is well conserved in the

other Δ 4Fads2 found in teleost fishes. On the other hand, the mutant Fads2a with Y277 introduced showed no $\Delta 4$ activity, while that carrying both F277Y and Q280H in the motif acquired a preference for $\Delta 4$ desaturation (Fig. 21 and Table 1d). Our results suggest that a few point mutations arose and directed the gene towards neofunctionalisation. Although duplications and neofunctionalisation of fads2 genes are known in several other Acanthopterygii that are herbivorous, diadromous, or FW species^{5,7}, our finding in H. mentalis provides insight into the evolution of adaptive enzymes generated in the recent past, standing out from the other species in regard to the identity of paralogues. However, the trifunctional Fads2 of T. maculatus strays from the rule of the motif because it showed F280 conserved in the corresponding motif in Δ 6Fads2 (Fig. 20) despite its Δ 4 desaturase activity (Fig. 13). It seems that the unique mutations in other regions are responsible for the exceptional function of the enzyme in this species, while the structural basis is still unknown.

Our data reveal that independently accumulated mutations invited divergent functions of Fads2, and every combination, with Elov15 showing different substrate preferences, converged to complement the DHA biosynthetic pathway in each FW-dependent species of the family Achiridae. In other words, the genetic basis of each of these sole species has been utilised for a common outcome, DHA biosynthesis from ALA, and toward this end, every possible means has been implemented during natural selection (Fig. 22). Previously, it was demonstrated that a quantitative increase in the number of copies of fads2 in the genome contributed to FW colonisation of sticklebacks by overcoming the constraint of low levels of dietary DHA⁴⁹. Our work in Achiridae species highlights the FW nutritional barrier in a different light by demonstrating the qualitative alteration of the fatty-acid metabolising enzymes, with or without increases in the copy number of these genes, resulting in a variety of functionally complete DHA biosynthetic pathways. We therefore conclude that acquiring the capability for DHA biosynthesis from ALA, in addition to osmoregulation under low salinity, was a precondition for marine Acanthopterygii leaving the cradle filled with DHA and colonising freshwater environments.

Methods

Fish

Gymnachirus melas (12 individuals, standard length (SL) 90.7 ± 2.0 mm, body weight (BW) 17.7 \pm 1.1 g, Fig. 23) captured in the western Atlantic Ocean were purchased from Quality Marine (Los Angeles, CA). Trachurus japonicus (4 individuals, SL 126.3 ± 3.8 mm, BW 37.0 \pm 4.9 g) were caught in Tateyama Bay, Chiba, Japan. These two species were maintained in recirculating tanks with artificial seawater (33‰, 837 ± 1.2 mOsmol kg⁻¹; TetraMarin Salt Pro, Spectrum Brands Japan, Kanagawa, Japan) at 24°C and fed with the polychaete worm Perinereis aibuhitensis until use. Trinectes maculatus (26 individuals, SL 32.8 \pm 2.1 mm, BW 1.3 \pm 0.3 g, Fig. 24) were purchased from Ishi-to-Izumi (Tokyo, Japan), and Apionichthys finis (13 individuals, SL 52.5 \pm 3.9 mm, BW 2.0 \pm 0.7 g, Fig 25) and Hypoclinemus mentalis (3 individuals, 129.7 ± 2.9 mm, BW 55.7 ± 6.6 g, Fig. 26) were purchased from Ishi-to-Izumi or Kamihata Fish Industry (Hyogo, Japan). These three species were maintained in recirculating tanks with fresh water at 26°C and fed with frozen blood worms (larvae of Chironomidae), live sludge worms (Tubifex tubifex), or medaka (*Oryzias latipes*). Zebrafish (*Danio rerio*) were maintained as described in a previous study⁵⁰. All experiments were performed in accordance with the guidelines for the care and use of laboratory animals of the Tokyo University of Marine Science and Technology.

Phylogenetic analysis based on the 16S rRNA gene

Genomic DNA was extracted from the caudal fins of the four sole species using the Gentra Puregene Tissue Kit (QIAGEN, Venlo, Netherlands). The partial fragments of the 16S rRNA gene were PCR amplified using primers designed based on the orthologues in Achiridae collected from the GenBank database to anneal to conserved regions (Table 2, 3) with PrimeSTAR Max DNA polymerase (Takara Bio, Shiga, Japan). All PCR conditions in this research are summarised in Table 4. The PCR products were purified with the FastGene Gel/PCR Extraction Kit (Nippon Genetics, Tokyo, Japan) and cloned into the pGEM T-Easy Vector (Promega, Madison, WI) after adding 3' adenosine overhangs with TaKaRa Taq (Takara Bio). The cloned PCR fragments were extracted using the FastGene Plasmid Mini Kit (Nippon Genetics) and sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit and ABI PRISM 3100-Avant Genetic Analyzer (Thermo Fisher

Scientific, Waltham, MA). The resulting sequences were assembled using CLC Main Workbench ver 6.7.1 (QIAGEN; Fig. 27-30 and Table 2) and aligned with the genes from Citharoides macrolepidotus (AP014588) and Lepidoblepharon ophthalmolepis (KJ433560), which belong to Citharidae, an ancestral family of Pleuronectiformes, using MAFFT v7.222 with the L-INS-i method^{51,52}. After trimming gaps automatically using trimAl⁵³, a phylogenetic tree was constructed from the alignment made up of 960 columns by the maximum likelihood method using PhyML ver 3.0 server⁵⁴ with Smart Model Selection resulting in GTR+G+I, and the number of bootstrap replicates was set to 1000. The resulting tree visualised in FigTree ver 1.4.3. available at was http://tree.bio.ed.ac.uk/software/figtree/.

Estimating migratory history using otoliths

The strontium profiles in sagittal otoliths were analysed by electron probe microanalysis (EPMA) to obtain information on the environmental (salinity) history of the fishes. Otoliths were extracted from each individual, cleaned, dried, and embedded in UV-cured resin (Tama-koubou, Kanagawa, Japan)⁵⁵. Each otolith was then ground transversally from

the postrostrum side using a series of 120-4000 grid abrasive paper on a grinder/polisher (Doctor-Lap ML-182; Maruto Instruments, Tokyo, Japan) to obtain a transversal section showing all preformed layers including the core region formed at birth. After course grinding, otoliths were further polished to a mirror-finish with 1 µm diamond paste on a polisher (Labopol-4; Struers, Ballerup, Denmark), cleaned and rinsed with deionised water prior, and dried. For EPMA, specimens were platinum/palladium-coated with an ion-sputter (E-1030; Hitachi High-Technologies Corporation, Tokyo, Japan) and analysed with an electron probe microanalyser (JXA-8230; JEOL, Tokyo, Japan) using strontium titanate (SrTiO3) as a reference standard. Maps of strontium concentration were generated with a focused beam set to 15 kV of accelerating voltage and 500 nA of beam current, with a pixel size of $2 \mu m$ and a dwell time of 40 ms.

Molecular cloning of fads2, elov15, and elov12 genes

Total RNA was isolated from the brains and livers using ISOGEN reagent (Nippon Gene, Tokyo, Japan). After trace genomic DNA was eliminated with RQ1 RNase-Free DNase (Promega), the first-strand complementary DNA (cDNA) was synthesised using

Ready-To-Go You-Prime First-Strand Beads (GE Healthcare, Chicago, IL) with the oligo (dT) primer (Table 3) following the manufacturer's recommendations. The first fragment amplifications of fads2- and elov15-like cDNA from H. mentalis and T. maculatus were carried out using the degenerate primers shown in Table 3, which were designed based on highly conserved regions of fads2 and elov15 orthologues from several species of Pleuronectiformes (Table 2, 3) with TaKaRa Ex Taq polymerase (Takara Bio). To amplify the 5' and 3' ends of the cDNA, the rapid amplification of the cDNA ends (RACE) of both fads2 and elov15-like cDNA from the two species was performed using the GeneRacer Kit (Thermo Fisher Scientific) and the DNA polymerases, PrimeSTAR HS DNA polymerase and Tks Gflex DNA polymerase (Takara Bio). The gene-specific primers for 5' and 3'RACE are shown in Table 3. The purification, subcloning and sequencing of each PCR product was performed as described above without an A-tailing reaction. The resultant sequences were assembled to produce the full open reading frame (ORF) and amino acid sequeces were deduced using CLC Main Workbench ver 6.7.1 (QIAGEN; Fig. 31-40). The cDNA, including full ORFs, was PCR amplified using gene-specific primers that were annealed to the 5' and 3' untranslated regions (UTR) with PrimeSTAR Max DNA polymerase. The *fads2-* and *elovl5-*like cDNAs from *G. melas* and *A. finis* were isolated using primers designed to anneal to the conserved regions in the 5' or 3' UTR of the two genes from the above two species (Table 3). The alignment of the deduced amino acid sequences of *fads2-* and *elovl5-*like cDNA, with several orthologues from the GenBank database, was conducted by MAFFT ver 7.222 with the L-INS-i method. After trimming gaps automatically using trimAl, a phylogenetic tree was constructed from the alignment made up of 445 columns by the maximum likelihood method using the PhyML ver 3.0 server with Smart Model Selection, resulting in LG+G+I, and the number of bootstrap replicates was set to 1000. The resulting tree was visualised in FigTree and rooted with Chondrichthyes Fads1 sequences.

Functional characterisation of Fads2 and Elovl5

The cDNAs corresponding to the *fads2* and *elovl5* ORFs of the four sole species and *fads2* and *elovl2* of zebrafish were PCR amplified using primers containing restriction enzyme sites of *Hin*dIII and *Xba*I for *fads2* and *elovl5* or *Hin*dIII and *Kpn*I for *elovl2* with PrimeSTAR Max DNA polymerase (Table 3). After gel purification following the method

described above, the PCR products were then digested by the corresponding restriction enzymes (HindIII, XbaI, and KpnI; Takara Bio) and cloned into the yeast expression vector pYES2 (Thermo Fisher Scientific) digested by HindIII and XbaI for fads2 and elov15 or pAUR123 (Takara Bio) digested by HindIII and KpnI for elovl2. The mutations in fads2a and fads2b of H. mentalis in pYES2 were introduced by inverse PCR using the PrimeSTAR Mutagenesis Basal Kit (Takara Bio) and primers carrying each substitution shown in Table 3. Transformation with pYES2 vectors and the culture condition of INVSc1 yeast (Saccharomyces cerevisiae; Thermo Fisher Scientific) were described in a previous study⁴⁵. The following fatty acids (Larodan Fine Chemicals, Stockholm, Sweden) were used as substrates: 18:3n-3, 20:4n-3 and 22:5n-3 for the yeast transformed with fads2 and 18:4n-3, 20:5n-3 and 22:5n-3 for elov15. After 48 h of culture at 30°C in the presence of each substrate fatty acid, the yeast cells were collected, washed twice with ice-cold HBSS and lyophilised using a freeze dryer (FDU-1200; Tokyo Rikakikai, Tokyo, Japan). FAMEs were prepared from the pellets of yeast and analysed using a gas chromatograph (GC-2025; Shimadzu, Kyoto, Japan) equipped with a flame ionisation detector and a silica capillary column (L \times I.D. 30 m \times 0.32 mm, df 0.25 μ m; SUPELCOWAX 10; Merck,

Darmstadt, Germany) as previously described⁵⁶. Enzymatic activities were calculated as the proportion of fatty acid substrate converted to desaturated or elongated products with the following formula: [product area / (product area + substrate area)] \times 100 (%).

To analyse the $\Delta 6$ activity towards 24:5n-3, we constructed co-expression vectors of Achiridae Fads2 and zebrafish Elovl2 using an In-Fusion HD Cloning Kit (Takara Bio). Isolation of the *elovl2* with PADH1 and TADH1 regions from the above pAUR123 vector as an insert and linearisation of the pYES2 vectors carrying each fads2 were carried out by the primers designed as described in the manual and PrimeSTAR Max DNA polymerase. The recombinant yeast transformed by the resultant vectors were selected and cultured with 22:5n-3 as described above for 24 h, but without induction of the fads2 connected to PGAL1 by galactose, to allow the elongation of 22:5n-3 to 24:5n-3 by the elovl2 connected to PADH1, which is constitutively expressed. Then, 2% galactose was added to the yeast cultures for the induction of fads2 to allow the desaturation of 24:5n-3 to 24:6n-3, and the cultures were further incubated for 48 h until collection. To standardise and compare the $\Delta 6$ activity towards 24:5n-3 in Achiridae Fads2, the yeast were cultured in the presence of 18:3n–3 as control according to the above process. The $\Delta 6$ activity towards 24:5n-3 was calculated as described above, considering the areas of 24:5n-3 produced by Elov12 as the substrate, then divided by the $\Delta 6$ activity in the control cultures for standardisation.

Analysis of the genomic loci of Hmfads2a and Hmfads2b

Two primer pairs were designed that anneal as described in Fig. 18a, but do not extend across the putative exon-intron junctions predicted from the genomic *fads2* structure of *Cynoglossus semilaevis* (Gene ID: 103380276). Genomic DNA fragments were amplified by PCR using combinations of primers (Table 3) with TaKaRa LA Taq and PrimeSTAR GXL DNA polymerase (Takara Bio). The products of TaKaRa LA Taq were used to determine the draft sequences. The resultant sequences were combined and annotated according to the CDS and untranslated regions based on the cDNA sequences and those of *C. semilaevis*.

Tracing fatty acid metabolism in cell culture

The capacity for endogenous PUFA biosynthesis in each species was examined using

radiolabelled fatty acid substrates. Brain and hepatic cells were collected from *G. melas*, *T. maculatus*, *A. finis*, and *H. mentalis*. The fishes were anaesthetised with 0.02% (v/v) 2-phenoxyethanol, and their bulbus arteriosus was incised to remove the blood with 10 U/ml heparin sodium in Hanks' balanced salt solution (HBSS) to prevent the contamination of red blood cells following culture. The isolated livers were minced and incubated with 2 mg/ml collagenase IV (C5138; Sigma-Aldrich, St. louis, MO) and 150 U/ml DNase I (D5025; Sigma-Aldrich) in HBSS for 4 h at 20°C. After incubation, the resultant hepatic cell suspensions were filtered and rinsed as described in a previous study⁵⁷. The isolated brains were minced and filtered as described in a previous study⁵⁸.

For the LC-PUFA biosynthesis assays, all cell pellets were resuspended in L-15 medium (ThermoFisher Scientific) containing 50 µg/ml ampicillin sodium (FUJIFILM Wako Pure Chemical Corporation, Tokyo, Japan), 50 µg/ml streptomycin sulfate (FUJIFILM Wako) and 50 U/ml benzylpenicillin potassium (FUJIFILM Wako). For brain cultures, fetal bovine serum (ThermoFisher Scientific) was added to the medium at a 10% concentration. The 2 ml cell suspensions were dispensed into 6-well plates (*T. maculatus*: 1.2×10^7 hepatic and 7.0×10^6 brain cells, *A. finis*: 1.2×10^7 and 6.2×10^5 cells), or 5 ml

was dispensed into 25 cm² tissue culture flasks (G. melas: 2.1×10^7 and 1.8×10^7 cells, H. *mentalis*: 2.1×10^7 and 1.8×10^7 cells). The radiolabelled [1-¹⁴C] 18:3n-3 or [1-¹⁴C] 22:5n-3 (American Radiolabeled Chemicals, St. louis, MO) was conjugated with bovine serum albumin (BSA, fatty acid free, A8806; Sigma-Aldrich) as described in a previous study⁵⁷. The cells were cultured with 3.7 kBq (2 nmol)/ml of the PUFA/BSA complexes at 20°C for 40 h. The cells were then harvested and centrifuged at 400 \times g for 2 min to discard the supernatant and rinsed with 5 ml of HBSS containing 1% BSA. Total lipids were extracted from the cell pellets using chloroform/methanol (2:1, v/v) as described in previous studies^{59,60}. Fatty acid methyl esters (FAMEs) were prepared from evaporated total lipids using a Fatty Acid Methylation Kit (Nacalai Tesque, Kyoto, Japan) and purified using a Fatty Acid Methyl Ester Purification Kit (Nacalai Tesque) following the manufacturer's instructions. FAMEs were concentrated in 1 ml of hexane, and 400 µl was applied as 1 cm streaks to thin layer chromatography (TLC, 20 cm \times 20 cm; Merck) plates, which were pre-immersed in 0.1 mg/ml silver nitrate in acetonitrile for 10 min and activated at 110°C for 30 min. The plates were developed in toluene/acetonitrile (95:5, v/v) and subjected to autoradiography using imaging plates with an image analyser (FLA-9000; Fujifilm, Tokyo, Japan).

The radiolabelled [1-¹⁴C] fatty acids for the standard mixture were purchased from American Radiolabeled Chemicals (18:3n–3, 20:3n–3, 20:5n–3, and 22:5n–3) or Moravek (22:5n-3 and 22:6n-3; Brea, CA). These were mixed to 370 Bg each and methyl-esterified as described above to create 1 ml of standard solution (except 20:4n-3) in hexane. The other standards for intermediate metabolites in the DHA biosynthetic pathway, 20:4n-3 and 24:6n-3, were biosynthesised from 18:4n-3 and 24:5n-3 (American Radiolabeled Chemicals) by the yeast transformed with pYES2 carrying *elov15* from *Nibea mitsukurii*⁵⁶ and fads2 from D. rerio, respectively, following the above method. The yeast were cultured with 3.7 kBq of the fatty acids and lysed by incubation with 50 µl of 30 mg/ml zymolyase (Nacalai Tesque) at 37°C for 30 min. The total lipids of these lysates were extracted, methylated, and purified as described above to create 1 ml of metabolite solutions in hexane. The final standard mixture was prepared by mixing 100 µl each of the standard solutions (except 20:4n-3) and the metabolite solution of 18:4n-3. The positions where 24:5n-3 and 24:6n-3 appeared on the TLC plates were confirmed using the metabolite solution of 24:5n-3 (Fig. 41).
Acclimation test for hypoosmolality

To examine survival of *G. melas*, *Trinectes maculatus*, and *Trachurus japonicus* in hypoosomotic condition, individuals of these species were exposed to hypoosmolality by discarding half a tank of water and refilling the tank gradually with fresh water or diluted seawater (SW) using siphon effect for around 12 h according to the following schedule over 12 days: 50%, 40%, 30%, 20%, and 10% SW for 2 days each. After acclimation to 10% SW, the tank water was further diluted to 5% and 2.5% for 1 day each.

Statistics and Reproducibility

The otolith data were obtained from six, four, and six individuals of *Gymnachirus melas*, *Apionichthys finis*, and *Hypoclinemus mentalis*, respectively, and representative data were shown. Bootstrap values are shown next to each branch point of the phylogenetic trees. The Fads2 and Elov15 enzymes were functionally characterised using the coding sequence of each encoding gene isolated from one representative individual of each species. The PCR amplifications of genomic *fads2* were performed with template DNA purified from three individuals of *H. mentalis* and all of them showed identical amplification patterns.

Data Availability

All datasets generated during and/or analysed during the current study are available from the corresponding author by reasonable request. The accession numbers of all sequence data determined in this study are listed in Table 2.

References

- 1. Spector, A. A. Essentiality of fatty acids. *Lipids* **34**, S1–S3 (1999).
- Tocher, D. R. Metabolism and functions of lipids and fatty acids in teleost fish. *Rev. Fish. Sci.* 11, 107–184 (2003).
- Wassall, S. R. & Stillwell, W. Docosahexaenoic acid domains: the ultimate non-raft membrane domain. *Chem. Phys. Lipids* 153, 57–63 (2008).
- Horrocks, L. A. & Farooqui, A. A. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. *Prostaglandins Leukot*. *Essent. Fat. Acids* 70, 361–372 (2004).
- Castro, L. F. C., Tocher, D. R. & Monroig, Ó. Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. *Prog. Lipid Res.* 62, 25–40 (2016).
- Oboh, A. *et al.* Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. *Sci. Rep.* 7, 1–10 (2017).
- 7. Monroig, Ó., Tocher, D. R. & Castro, L. F. C. Polyunsaturated fatty acid

biosynthesis and metabolism in fish. in *Polyunsaturated Fatty Acid Metabolism* (ed. Burdge, G. C.) 31–60 (Elsevier, 2018).

8. Lopes-Marques, M. *et al.* Retention of fatty acyl desaturase 1 (*fads1*) in

Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. *BMC Evol. Biol.* **18**, 1–9 (2018).

- Machado, A. M. *et al.* "Out of the can": a draft genome assembly, liver transcriptome, and nutrigenomics of the european sardine, *sardina pilchardus*. *Genes (Basel).* 9, 1–13 (2018).
- Kabeya, N., Yoshizaki, G., Tocher, D. R. & Monroig, Ó. Diversification of Fads2 in finfish species: implications for aquaculture. in *Investigación y desarrollo en nutrición acuícola* (eds. Cruz-Suárez, L. E. *et al.*) 338–362 (Universidad Autónoma de Nuevo León, 2017).
- Monroig, Ó. *et al.* Evolutionary functional elaboration of the *Elovl2/5* gene family in chordates. *Sci. Rep.* 6, 1–10 (2016).
- 12. Tocher, D. R. Fatty acid requirements in ontogeny of marine and freshwater fish.

Aquac. Res. 41, 717–732 (2010).

- Mesa-Rodriguez, A. *et al.* Effect of increasing docosahexaenoic acid content in weaning diets on survival, growth and skeletal anomalies of longfin yellowtail (*Seriola rivoliana*, Valenciennes 1833). *Aquac. Res.* 49, 1200–1209 (2018).
- Gladyshev, M. I., Sushchik, N. N. & Makhutova, O. N. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. *Prostaglandins Other Lipid Mediat.* 107, 117–126 (2013).
- Bell, M. V. & Tocher, D. R. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: general pathways and new directions. in *Lipids in Aquatic Ecosystems* (eds. Arts, T. M., Brett, M. T. & Kainz, J. M.) 211–236 (Springer, 2009).
- Twining, C. W., Brenna, J. T., Hairston, N. G. & Flecker, A. S. Highly unsaturated fatty acids in nature: what we know and what we need to learn. *Oikos* 125, 749–760 (2016).
- Hilton, E. J. & Lavoué, S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei). *Neotrop. Ichthyol.* 16, e180031 (2018).

- Chen, W. J., Lavoué, S. & Mayden, R. L. Evolutionary origin and early biogeography of Otophysian fishes (Ostariophysi: Telostei). *Evolution* 67, 2218–2239 (2013).
- Monroig, Ó., Rotllant, J., Sánchez, E., Cerdá-Reverter, J. M. & Tocher, D. R.
 Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish *Danio rerio* early embryogenesis. *Biochim. Biophys. Acta - Mol. Cell Biol. Lipids* 1791, 1093–1101 (2009).
- Oboh, A., Betancor, M. B., Tocher, D. R. & Monroig, Ó. Biosynthesis of long-chain polyunsaturated fatty acids in the African catfish *Clarias gariepinus*: molecular cloning and functional characterisation of fatty acyl desaturase (*fads2*) and elongase (*elovl2*) cDNAs. *Aquaculture* 462, 70–79 (2016).
- 21. Janaranjani, M. *et al.* Capacity for eicosapentaenoic acid and arachidonic acid biosynthesis in silver barb (*Barbonymus gonionotus*): functional characterisation of a Δ6/Δ8/Δ5 Fads2 desaturase and Elov15 elongase. *Aquaculture* 497, 469–486 (2018).
- 22. Ferraz, R. B. et al. A complete enzymatic capacity for long-chain polyunsaturated

fatty acid biosynthesis is present in the Amazonian teleost tambaqui, *Colossoma* macropomum. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. **227**, 90–97 (2019).

- 23. Berra, T. M. Freshwater Fish Distribution. (University of Chicago Press, 2007).
- 24. Carrete Vega, G. & Wiens, J. J. Why are there so few fish in the sea? *Proc. R. Soc. B Biol. Sci.* 279, 2323–2329 (2012).
- 25. Lee, C. E. & Bell, M. A. Causes and consequences of recent freshwater invasions by saltwater animals. *Trends Ecol. Evol.* **14**, 284–288 (1999).
- 26. Yamanoue, Y. *et al.* Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): A mitogenomic perspective. *PLoS One* 6, (2011).
- Able, K. W. & Fodrie, F. J. Distribution and dynamics of habitat use by juvenile and adult flatfishes. in *Flatfish: Biology and Exploitation, Second Edition* (eds. Gibson, R. N., Nash, R. D. M., Geffen, A. J. & van der Veer, H. W.) 242–282 (John Wiley & Sons, Ltd, 2014).
- Nelson, J. S., Grande, T. C. & Wilson, M. V. H. Fishes of the World, Fifth Edition.
 (John Wiley & Sons, Inc, 2016).

- 29. Ruiz-Jarabo, I. *et al.* Environmental salinity and osmoregulatory processes in cultured flatfish. *Aquac. Res.* **46**, 10–29 (2015).
- Kabeya, N., Chiba, M., Haga, Y., Satoh, S. & Yoshizaki, G. Cloning and functional characterization of *fads2* desaturase and *elovl5* elongase from Japanese flounder *Paralichthys olivaceus. Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol.* 214, 36–46 (2017).
- 31. Bell, J. G., McEvoy, L. A., Estevez, A., Shields, R. J. & Sargent, J. R. Optimising lipid nutrition in first-feeding flatfish larvae. *Aquaculture* **227**, 211–220 (2003).
- Munroe, T. A. Distributions and biogeography. in *Flatfish: Biology and Exploitation, Second Edition* (eds. Gibson, R. N., Nash, R. D. M., Geffen, A. J. & van der Veer, H.
 W.) 52–82 (John Wiley & Sons, Ltd, 2014).
- 33. Fricke, R., Eschmeyer, W. N. & Van der Laan, R. Eschmeyer's Catalog of Fishes: Genera, Species, References.

http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).

34. Dawson, C. E. A revision of the western Atlantic flatfish genus Gymnachirus (the

naked soles). Copeia 4, 646-665 (1964).

- Dovel, W. L., Mihursky, J. A. & McErlean, A. J. Life history aspects of the hogchoker, *Trinectes maculatus*, in the Patuxent River Estuary, Maryland. *Chesap. Sci.* 10, 104–119 (1969).
- Peterson, T. L. Seasonal migration in the southern hogchoker, *Trinectes maculatus fasciatus* (Achiridae). *Gulf Res. Rep.* 9, 169–176 (1996).
- 37. Ramos R. T. C. Systematic review of *Apionichthys* (Pleuronectiformes: Achiridae), with description of four new species. *Ichthyol. Explor. Freshwaters* 14, 97–126 (2003).
- 38. Reis, R. R., Kullander, S. O., Ferraris, C. J. *Checklist of the Freshwater Fishes of South and Central America*. (Edipucrs, 1996).
- 39. Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. *Mar. Ecol. Prog. Ser.* **188**, 263–297 (1999).
- 40. Betancur, R. R. *et al.* Phylogenetic classification of bony fishes. *BMC Evol. Biol.* **17**, 1–40 (2017).
- 41. Betancur, R., Li, C., Munroe, T. A., Ballesteros, J. A. & Ortí, G. Addressing gene

tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). *Syst. Biol.* **62**, 763–785 (2013).

- 42. Betancur-R, R. & Ortí, G. Molecular evidence for the monophyly of flatfishes (Carangimorpharia: Pleuronectiformes). *Mol. Phylogenet. Evol.* **73**, 18–22 (2014).
- 43. Peterson-Curtis, T. L. Effects of salinity on survival, growth, metabolism, and behavior in juvenile hogchokers, *Trinectes maculatus fasciatus* (Achiridae). *Environ. Biol. Fishes* 49, 323–331 (1997).
- 44. Akamoto, T. S. Hormonal regulation of body fluid in teleost fishes. *Bull. Soc. Sea Water Sci. Japan* **69**, 244–246 (2015).
- 45. Li, Y. *et al.* Vertebrate fatty acyl desaturase with ∆4 activity. *Proc. Natl. Acad. Sci.* **107**, 16840–16845 (2010).
- 46. Monroig, Ó. & Kabeya, N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a comprehensive review. *Fish. Sci.*84, 911–928 (2018).
- 47. Zhang, J. Evolution by gene duplication: an update. *Trends Ecol. Evol.* **18**, 292–298 (2003).

- 48. Lim, Z. L., Senger, T. & Vrinten, P. Four amino acid residues influence the substrate chain-length and regioselectivity of *Siganus canaliculatus* $\Delta 4$ and $\Delta 5/6$ desaturases. *Lipids* **49**, 357–367 (2014).
- 49. Ishikawa, A. *et al.* A key metabolic gene for recurrent freshwater colonizatioin and radiation in fishes. *Science* **364**, 886–889 (2019).
- 50. Li, Q., Fujii, W., Naito, K. & Yoshizaki, G. Application of *dead end*-knockout zebrafish as recipients of germ cell transplantation. *Mol. Reprod. Dev.* **84**, 1100–1111 (2017).
- 51. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 30, 3059–3066 (2002).
- 52. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version
 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 (2013).
- Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25, 1972–1973 (2009).

- 54. Guindon, S. *et al.* New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* 59, 307–321 (2010).
- 55. Strüssmann, C. A., Miyoshi, K. & Mitsui, S. Application of UV-cured resin as embedding/mounting media for practical, time-saving otolith specimen preparation. *bioRxiv* 474643 (2018). doi:10.1101/474643
- 56. Kabeya, N. *et al.* Polyunsaturated fatty acid metabolism in a marine teleost, Nibe croaker *Nibea mitsukurii*: functional characterization of Fads2 desaturase and Elovl5 and Elovl4 elongases. *Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.* 188, 37–45 (2015).
- Bell, J. G. *et al.* The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (*Salmo salar*) undergoing parr-smolt transformation. *Lipids* 32, 515–525 (1997).
- 58. Tocher, D. R. & Sargent, J. R. Incorporation into phospholipid classes and metabolism via desaturation and elongation of various 14C-labelled (n-3) and (n-6) polyunsaturated fatty acids in trout astrocytes in primary culture. *J. Neurochem.* 54,

2118-2124 (1990).

- 59. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. *J. Biol. Chem.* **226**, 497–509 (1957).
- 60. Tocher, D. R., Sargen, J. R. & Frerichs, G. N. The fatty acid compositions of

established fish cell lines after long-term culture in mammalian sera. Fish Physiol.

Biochem. 5, 219–227 (1988).

Figure Legends

Fig. 1

Fatty acids are represented by the n–x system of nomenclature. Desaturation and elongation steps are indicated by white arrows with the position of the double bond to be introduced and black arrows with carbon chain length, respectively. The two alternative pathways used to synthesise DHA from 22:5n–3 are coloured with orange and blue for the Sprecher pathway and $\Delta 4$ pathway, respectively.

Fig. 2

Representative maps of strontium (Sr) concentration in cross sections of otoliths from three Achiridae species including a marine species (**a**, *G. melas* [n = 6]) and two freshwater species (**b**, *A. finis* [n = 4] and **c**, *H. mentalis* [n = 6]). Scale bar = 500 µm.

Fig. 3

Phylogenetic tree of Achiridae and Citharidae (as an outgroup) based on the 16S rRNA

gene (partial sequence, 958 bp) shown along with their habitats.

Fig. 4

The dilution level of seawater (SW, %) and survival rate (%) of each species examined are represented by the blue line and the color of each bar, respectively. Gm: *Gymnachirus melas* (pink), Tm: *Trinectes maculatus* (green), Tj: *Trachurus japonicus* (purple).

Fig. 5

Autoradiography of TLC plate-developed radiolabelled fatty acid methyl esters (FAMEs) prepared from brain and hepatic cells of *Gymnachirus melas* cultured with radiolabelled α -linolenic acid (ALA, 18:3n-3) or 22:5n-3. 24:5n-3 and 24:6n-3 are indicated by asterisks and daggers, respectively. S, Standard mixtures of FAME.

Fig. 6

Autoradiography of TLC plate-developed radiolabelled FAMEs prepared from brain and hepatic cells of *Trinectes maculatus* cultured with radiolabelled 18:3n–3 or 22:5n–3.

24:5n-3 and 24:6n-3 are indicated by asterisks and daggers, respectively. S, Standard mixtures of FAME.

Fig. 7

Autoradiography of TLC plate-developed radiolabelled FAMEs prepared from brain and hepatic cells of *Apionichthys finis* cultured with radiolabelled 18:3n–3 or 22:5n–3. 24:5n–3 and 24:6n–3 are indicated by asterisks and daggers, respectively. S, Standard mixtures of FAME.

Fig. 8

Autoradiography of TLC plate-developed radiolabelled FAMEs prepared from brain and hepatic cells of *Hypoclinemus mentalis* cultured with radiolabelled 18:3n–3 or 22:5n–3. 24:5n–3 and 24:6n–3 are indicated by asterisks and daggers, respectively. S, Standard mixtures of FAME.

Gas chromatograms of fatty acid methyl esters (FAMEs) isolated from recombinant yeast expressing *G. melas* Fads2 (**a-c**), *G. melas* Elov15 (**d-f**), or *Danio rerio* Elov12 and *G. melas* Fads2 (**g**, **h**). The yeast were grown with the exogenously added fatty acid substrate indicated by an asterisk: 18:3n–3 (**a**, **g**), 20:4n–3 (**b**), 22:5n–3 (**c**, **f**, **h**), 18:4n–3 (**d**), and 20:5n–3 (**e**). The inset in **h** shows a magnification of the time when 24:5n–3 and 24:6n–3 appeared.

Fig. 10

Gas chromatograms of fatty acid methyl esters (FAMEs) isolated from recombinant yeast expressing *T. maculatus* Fads2 (**a-c**), *T. maculatus* Elov15 (**d-f**), or *D. rerio* Elov12 and *T. maculatus* Fads2 (**g**, **h**). The yeast were grown with the exogenously added fatty acid substrate indicated by an asterisk: 18:3n–3 (**a**, **g**), 20:4n–3 (**b**), 22:5n–3 (**c**, **f**, **h**), 18:4n–3 (**d**), and 20:5n–3 (**e**). The inset in **h** shows a magnification of the time when 24:5n–3 and 24:6n–3 appeared.

Gas chromatograms of fatty acid methyl esters (FAMEs) isolated from recombinant yeast expressing *A. finis* Fads2 (**a-c**), *A. finis* Elov15 (**d-f**), or *D. rerio* Elov12 and *A. finis* Fads2 (**g, h**). The yeast were grown with the exogenously added fatty acid substrate indicated by an asterisk: 18:3n–3 (**a**, **g**), 20:4n–3 (**b**), 22:5n–3 (**c**, **f**, **h**), 18:4n–3 (**d**), and 20:5n–3 (**e**). The inset in **h** shows a magnification of the time when 24:5n–3 and 24:6n–3 appeared.

Fig. 12

Gas chromatograms of fatty acid methyl esters (FAMEs) isolated from recombinant yeast expressing *H. mentalis* Fads2a (**a-c**), *H. mentalis* Fads2b (**d-f**), *H. mentalis* Elov15 (**g-i**), *D. rerio* Elov12 and *H. mentalis* Fads2a (**j, k**), or *D. rerio* Elov12 and *H. mentalis* Fads2b (**l**, **m**). The yeast were grown with the exogenously added fatty acid substrate indicated by an asterisk: 18:3n–3 (**a**, **d**, **j**, **l**), 20:4n–3 (**b**, **e**), 22:5n–3 (**c**, **f**, **i**, **k**, **m**), 18:4n–3 (**g**), and 20:5n–3 (**h**). The insets in **k** and **m** show a magnification of the times when 24:5n–3 and 24:6n–3 appeared.

The ratio among three desaturase activities of fatty acid desaturase 2 (Fads2) isolated from each Achiridae species when the total conversion rates are 100%, characterised by the yeast expression system. Relative conversion rates of $\Delta 6$ towards 18:3n–3 ($\Delta 6_{18}$), $\Delta 5$ and $\Delta 4$ desaturation are shown as dark blue, blue and light blue bars, respectively. Gm: *Gymnachirus melas*, Tm: *Trinectes maculatus*, Af: *Apionichthys finis*, Hm: *Hypoclinemus mentalis*.

Fig. 14

Relative $\Delta 6$ activities towards 24:5n-3 of the Achiridae Fads2 normalised by those of 18:3n-3 when expressed with the zebrafish Elovl2 in yeast to produce 24:5n-3 from 22:5n-3.

Fig. 15

The ratio of eicosapentaenoic acid (EPA, 20:5n–3, dark orange), 22:5n–3 (orange) and 24:5n–3 (light orange) extracted from yeast cultured with EPA as the substrate and expressed elongation of very long chain fatty acid 5 (Elov15) isolated from each Achiridae

species.

Fig. 16

The DHA biosynthetic pathway from 18:3n–3 with enzymatic activities of Fads2 and Elov15 isolated from each Achiridae species estimated by the radiolabelled metabolites in the cell culture and fatty acid profiles of the yeast expressing recombinant enzymes. Each colour of arrow shows the activity of enzymes isolated from different species (red: *Gymnachirus melas*, green: *Trinectes maculatus*, blue: *Apionichthys finis*, navy: *Hypoclinemus mentalis*). Bold and narrow lines indicate high and low activities, respectively.

Fig. 17

Maximum likelihood phylogeny of Fads2 is shown. Achiridae Fads2 is highlighted with a blue background. The bootstrap values are shown at the nodes. The functionally characterised Fads2 were shown with their substrate specificities.

a, Four primers (5'F, 5'R, 3'F and 3'R) were designed to anneal to conserved regions near both ends of the coding sequences (CDS) of the two *fads2* genes to analyse their genomic loci. **b**, Representative electrophoretic image of genomic PCR products from three individuals using the four primers independently or in pairs. Major bands were amplified by the four combinations of the primers ($5F \times 5R$, $5F \times 3R$, $5R \times 3F$, and $3F \times 3R$). **c**, Genomic loci of the two *fads2* genes were predicted by the distribution of the primers and sequencing analysis of the PCR products derived from one representative individual. Regions of the genes, exons and CDS were annotated by blue, green and yellow arrows, respectively.

Fig. 19

Alignment of deduced amino acid sequences of two *H. mentalis* Fads2 proteins is shown. Identical residues are indicated with dots and shaded in black. The heme-binding motif (HPGG) and three histidine boxes (HXXXH, HXXHH, and QXXHH) are conserved in the Fads family. The motif related to substrate specificity, or regioselectivity (Regio), is also indicated.

Fig. 20

The amino acid sequence alignment of the key residues (indicated by asterisks) for determining the regioselectivity of Fads2 isolated from Achiridae and several teleosts shown with their corresponding desaturase activity characterised in this study (Achiridae species) or reviewed previously (other species)¹⁵. Sc: *Siganus canaliculatus*, Ce: *Chirostoma estor*, Cs: *Channa striata*, On: *Oreochromis niloticus*, Po: *Paralichthys olivaceus*, Sm: *Scophthalmus maximus*, Ss: *Solea senegalensis*.

Fig. 21

The ratio of $\Delta 4$ activity to $\Delta 6$ activity towards 18:3n–3 of Fads2a, Fads2b and ten mutant Fads2 carrying substituted residue(s) that differed between the two Fads2 of *H. mentalis*.

The marine species *G. melas* is unable to synthesise DHA due to the absence or inefficiency of Fads2 activities to desaturate at the $\Delta 4$ position or $\Delta 6$ position of 24:5n–3. The catadromous species *T. maculatus* has a multi-functionalised Fads2, which alone can catalyse $\Delta 6$, $\Delta 5$ and $\Delta 4$ desaturations to drive the $\Delta 4$ pathway. *A. finis* has reinforced Fads2 and Elov15, which can catalyse C24 fatty acids more efficiently to drive the Sprecher pathway. *H. mentalis* possesses an additional highly homologous Fads2 (Fads2b) that performs $\Delta 4$ desaturation, which occurred via neofunctionalisation following gene duplication.

Fig. 23

The pictures of representative individuals of Gymnachirus melas are shown.

Fig. 24

The pictures of representative individuals of Trinectes maculatus melas are shown.

The pictures of representative individuals of Apionichthy finis are shown.

Fig. 26

The pictures of representative individuals of Hypoclinemus mentalis are shown.

Fig. 27

The partial sequence of 16S rRNA gene isolated from Gymnachirus melas is shown.

Fig. 28

The partial sequence of 16S rRNA gene isolated from Trinectes maculatus is shown.

Fig. 29

The partial sequence of 16S rRNA gene isolated from Apionichthys finis is shown.

Fig. 30

The partial sequence of 16S rRNA gene isolated from Hypoclinemus mentalis is shown.

The partial sequence of *fads2* mRNA isolated from *Gymnachirus melas* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

Fig. 32

The complete sequence of *fads2* mRNA isolated from *Trinectes maculatus* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

Fig. 33

The partial sequence of *fads2* mRNA isolated from *Apionichthys finis* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

The coding sequence of *fads2a* mRNA isolated from *Hypoclinemus mentalis* and deduced amino acid sequence of its translated protein are shown.

Fig. 35

The coding sequence of *fads2b* mRNA isolated from *Hypoclinemus mentalis* and deduced amino acid sequence of its translated protein are shown.

Fig. 36

The complete 5' and 3' untranslated region (UTR) sequence of *fads2a* and/or *fads2b* mRNA isolated from *Hypoclinemus mentalis* are shown. It was not precisely determined whether these UTR were shared by two transcripts because of their remarkable homology in coding sequences where primers used for RACE were designed.

Fig. 37

The partial sequence of *elov15* mRNA isolated from *Gymnachirus melas* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated

protein are shown.

Fig. 38

The complete sequence of *elov15* mRNA isolated from *Trinectes maculatus* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

Fig. 39

The partial sequence of *elov15* mRNA isolated from *Apionichthys finis* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

Fig. 40

The complete sequence of *elov15* mRNA isolated from *Hypoclinemus mentalis* annotated its coding sequence with yellow arrow and deduced amino acid sequence of its translated protein are shown.

Autoradiography of TLC plate-developed radiolabelled fatty acid methyl esters (FAMEs) is shown to indicate positions of 24:5n–3 and 24:6n–3. Standards for 20:4n–3 and 24:6n–3 were biosynthesised from 18:4n–3 and 24:5n–3 by the yeast transformed with pYES2 carrying *elov15* from *Nibea mitsukurii* and *fads2* from *D. rerio*, respectively, and confirmed their positions by developing along with the other FAME standards.

G. melas

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 14

Fig. 15

Fig. 18

Fig. 20

**** Sc A6A5 ····· PVFFHYQLLK····· Ce A6A5 ·····PIFFNIQLLK····· Cs A6A5 ·····PIFFHFQIIK····· On A6A5 ····· PVFFNIHVMQ····· Po A6 ····· PVYEHIQQIR····· Sm A6 ····· PVY FQMQLMN····· Gm A6 ·····PIFEHIQIMH····· Af A6A5 ·····PIFFHIQIMQ····· Hm A6A5 ·····PIFFHIQIMH····· Tm \[\] \[\] \[\] \] \[\] \] \[\] Tm \[\] \[\] \[\] \[\] \] \[Sc $\triangle 4$ **PVFYNYNIMM**..... Ce $\triangle 4$ **PVFYNFNIMK**..... Cs A4 PVFYHFQIIK..... On A4 PIFYNFNIMH..... Ss A4 PVFYNFNIMY..... Hm Δ4Δ5 ····· PIFYHIHIMH·····

Fig. 21

Scale bars = 1 cm

Scale bars = 1 cm

Scale bars = 1 cm

Gymnachirus melas 16S rRNA gene, partial sequence

20 I	40 	60 80 I I
GGGAAGAGCCTCGAGTAGAGGTGACAGACCTACCGAG	CTCGGCCATAGCTGGTTGTCT	GGGAACTGAATAGAAGTTCAGC
100	120	140 160 I
CTCCCGGCTTCTTCCCTCACCCGTATGAATATTTCTA	TGGACCCAAAGAAGACCGAGA	GAGTTAGTCAAAAGGGGTACAG
180	200	220 240
CCCTTTTGACACAAGATACAACTTCTCCAGGAGGGGTA	CCGATCATAACTAATCAAGGG	AAAATAACCCAAGTGGGCCTAA
260 I	280 1	300 320 I
AAGCAGCCACCTTAATAGAAAGCGTCCAAGCTCAAGC	ACCTCTCCACCCCTCAAATTC	CGAAAACCAACTCAAAACCCCC
340	360	380 400
TAAAAATACCAGACCCCTTCGTGCCCACACGAAGAAG	ACTATGCTACTACGAGTAATA	AGAGAATACCCCTCTCTCCTGA
420	440	460 480
CACATGTGTAAATCGGATTGGACCCTCCACCGAAACT	TAACGGCCCCCAAACGAAGAGG	GGAAAAAGAAAACACCAGAAAA
500	520	540 560
CTAGAAAACCACTTTCAACCCACCGTTAACCCTACAC	TGGTGTGTTCTCAAGGAAAGA	CTAAAAGAAAGAGAAGGAACTC
580 I	600 I	620 640 I
GGCAAACAAAAGCCTCGCCTGTTTACCAAAAACATCG	CCTCTTGCAAAACCAAAGAAT	AAGAGGTCCCGCCTGCCCACTG
660	680 I	700 720 I
ATATTAATTCAACGGCCGCGGTATTTTGACCGTGCTA	AGGTAGCGTAATCACTTGTCT	TTTAAATGAAGACCCGTATGAA
740	760	780 800
AGGCATAACGAGGGCTCAACTGTCTCCTCTTTCCAGT	CAATGAAACTGATCTCCCCGT	GCAGACGCGGGGGATAATACCAT
820	840	860 880 I
AAGACGAGAAGACCCTATGGAGCTTCAGACATAAAGT	AGACTATTTCAAACACCCCTC	AACAAGGATTGAATCTAATAGA
900 I	920	940 960
AACCTACCCCTGTCTTAGGTTGGGGCGACCCTGGGGA.	AACACAAAACCCCCATGTGGA	TAGGGAGAACATACTTACATCC
980	1,000	1,020 1,040
CCCTAAAAACCCGAGATACAACTCTAATTAACAGAAT	CTCTGACCAAAATTGATCCGG	ACAAACCCGATTAACGGAACAA
1,060 I	1,080	1,100 I
GTTACCCTAGGGATAACAGCGCTATCCCCTTTTAAAG	ICCATATAGACAAGGGGGTTT	ACGACCTCG

Trinectes maculatus 16S rRNA gene, partial sequence

20 I	40 I	60 I	80
GGGAAGAGCCTCGAGTAGAGGTGACAGACCTAC	CGAGCCCGGCCAT	AGCTGGTTGCCTGGGAATTGAATAAAA	JTTCAGC
100 I	120 	140	160
CTCCCGGTTTCTTTCCTCACCACCACTTCAACA	CACCCCACAGACC	CCAAGAAACCCGAGAGAGTTAGTCAAAC	GGGGGA
180 I	200 	220 I	240
TAGCCCCTTTGACACAAGATACAACTTTTCCAG	GAGGGTACTGATC	ATAACCCATCAAGGAATAATTACCCAAC	TGGGCC
260 I	280 	300 I	320
CAAAAGCAGCCACCTCAACAGAAAGCGTCCAAG	CTCAAGCACTAAT	AGACTCCTTAAATTCCGACAACCCACTC	CACAACC
340 I	360 	380 I	400
CCCTAAAACTACCAGGCCCCTTCGTGCCCCCAC	GAAAGAGACCATG	CTACCACGAGTAATAAGAGAACACCCT	CTCTCC
420 I	440 	460 I	480
CAGCACACGTGTACACCGGATTGGACCCCCCAC	CGAAACTTAACGG	CCCCAAACAAAGAGGGAAATAAACAAA	ACACCTA
500 I	520 I	540 I	560
AAAACTAGAAAACCACTTAATACCCCACCGTTG	ACCCTACACCGGC	GTGCCTTCAAGGAAAGACTAAAAGAAA	JAAAAGG
580 I	eoo I	620 I	640 I
AACTCGGCAAACAAAAGCCTCGCCTGTTTACCA	AAAACATCGCCTC	TTGCAAAACTAAAGAATAAGAGGTCCCC	CCTGCC
660 I	680 I	700 I	720
CACTGATATTATATTCAACGGCCGCGGTATTTT	GACCGTGCTAAGG	TAGCGTAATCACTTGTCTTTTAAATGA	AGACCCG
740 I	760 	780 I	800
TATGAAAGGCTTGACGAAGGCTTAACTGTCTCC	TCTTTCCAGTCAA	TGAAACTGATCTCCCCGTGCAGACGCGC	GGATAA
820 I	840 I	860 I	880
AAACATAAGACGAGAAGACCCTATGGAGCTTTA	GACACAAAGACAG	ACTATTTTAAACACCCCTAAACAAGCAC	CTAAATC
000 I	920 	940 I	960
CAGTAAGAACCTGTCCCCGTCTTAGGTTGGGGC	GACCCTGGGGAAA	TACAAAACCCCCATGTGGAGGGAGGAC	TACCAC
980 I	1,000 	1,020	1,040
TTAGACCCTCTTAAAAACCCGAAACACAATTCT	AATTAACAGAACC	TCTGACCAAATTGATCCGGCCAAAGCCC	JATTAAC
1,060 I	1,080 	1,100 I	
GAAACAAGTTACCCTAGGGATAACAGCGCTATC	CCCTTTTAAAGTC	CATATAGACAAGGGGGTTTACGACCTC	3

Apionichthys finis 16S rRNA gene, partial sequence

20 I	40 I	60 I	80 I
GGGAAGAGCCTCGAGTAGAGGTGACAGA	CCTACCGAGCCCGGCCATAGCI	IGGTTGCCTGAGAACTGGATA	AAAGTTCAGC
100	120	140	160
CTCCCAAATTCTTCCCTCATACACATCT	CATATATACACAGACCAAAAGA	AACTCAGAGAGAGTTAGTCAA	AAGGGGGACA
180	200	220	240
GCCCTTTTGACATAAGACACAACTTTTC	CAGGTGGGTACTGATCACAATI	ICACCAAGGGATAGTAACCCA	AGTGGGCCTA
260	280	300	320
AAAGCAGCCATCTAAATAGAAAGCGTCC.	AAGCTCAATTACATCCCAAACC	CCTCAAATCCCGATAACCCCT	CACAGCCCCC
340	360 I	380 I	400
TAAAAGTACCAGGCCCTCTTGTGCCCCC.	ACAAGAGAGACCATGCTACCAC	CGAGTAATAAGAGAAAAATAC	TTCTCTCCTG
420 I	440 I	460	480
ACACAAGTGTAAATCGGATCGGACCCCC	CACCGAAACCCAATCGGCCCCA	AAACAAAGAGGGCAATAAAAA	ATACCCACTA
500 I	520	540	560
AACTAGAAAACCAATTAAAAACCAACCG	TTAACCCCACACTGGTGTGTCC	CCCAAGGAAAGACTAAAAGAA	AGAAAAGGAA
580 I	eoo I	620 I	640 I
CTCGGCAAACCAAAGCCTCGCCTGTTTA	CCAAAAACATCGCCTCTTGCAA	AGAATAAAAAATAAGAGGTCC	CGCCTGCCCA
660	680 I	700 I	720
CTGACCAAAATTCAACGGCCGCGGTATT	TTGACCGTGCTAAGGTAGCGT#	AATCACTTGTCTTTTAAATGA	AGACCCGTAT
740 I	760 I	780 I	800
GAAAGGCTTAACGAGGGCTTAACTGTCT	CCTCTTTCAGGTCAATGAAACT	IGATTTCCCCGTGCAGAAGCG	GGGATATAAA
820 I	840 I	860 I	880
CATAAGACGAGAAGACCCTATGGAGCTT	TAGACACTGAAGCAGACTATTI	TTAAACAAACCTAAACAAGCA	CTAAATCTAC
900 I	920	940 I	960
TAGACATCTGCTCCAGTCTTAGGTTGGG	GCGACCTTGGGGAAACAAAAA	ACCCCCACGTGGAGGGGGAAC	CTATTAGACC
980 I	1,000	1,020	1,040
ACACTCCCCCAAAAACCCGAAACACAA	TTCTAATTAACAGAACCTCTGA	ACCAATTGACCCGGCCTTTTA	AGGCCGATTA
1,060	1,080 J	1,100	
ACGAAACAAGTTACCCTAGGGATAACAG	CGCTATCCCCTTTTAAAGTCCA	ATATAGACAAGGGGGCTTACG	ACCTCG

Hypoclinemus mentalis 16S rRNA gene, partial sequence

20 I	40 I	60 I	80 I
GGGAAGAGCCTCGAGTAGAGGTGACAGACCTACCGA	AGCTCGGCCA	ATAGCTGGTTGCCTGAGAACTGGATAGAAGTTC:	AGC
100	120	140	160
CTCCCGAATTCTCCCCTCACGTTCATCTAATTTAT	AATTAAAGAC	CCCCAAGAAATCCGAGAGAGTTAGTCAAAAGGG	GGA
180	200	220	240
CAGCCCTTTTGACATAAGATACAACTTTACTAGGT	GGGTATTGAT		GCC
260	280	300 I	320
TAAAAGCAGCCACCTCTATAGAAAGCGTCCAAGCT	CAAACACTT	TTCAAACCCTTAAATCCCGATAACCCTTCACAG	ccc
340	360	380	400
CCTAAAAATATCAGGCCCTTTCGTGCCCCCACGAA	AGAGACTATO	JCTACTACGAGTAATAAGAGAATAACCTTCTCT	ccc
420	440	460	480
		 	l TTD
500	520	540	560
Ĩ	Ĩ	Ĩ	I
ATAAACCAGAAAACCACTTACAACCCCACCGTTAA	CCCCACACTO	GGAGTGCCCCCAAGGAAAGACTACAAGAAAGAA	AAG
580	600 I	620 I	640
GAACTCGGCAAACTAAAGCCTCGCCTGTTTACCAAA	AAACATCGCC	CTCTTGCAAAACCAAAGAATAAGAGGTCCCGCC	TGC
660	680	700	720
CCACTGATCCAAGATTCAACGGCCGCGGTATTTTG	ACCGTGCTA	AGGTAGCGTAATCACTTGTCTTTTAAATGAAGA	ccc
740	760	780	800
GTATGAAAGGCTTAACGAGGGCTTAACTGTCTCTT	CTTTCTAGTO	CAATGAAACTGATCTCCCCGTGCAGATGCGGGGG	ATA
820	840	860	880
			1
900	920	940	960
Ĩ	ĩ	Ĩ	Ĩ
CTAATAAAAACCTGCTACTGTCTTAGGTTGGGGGCG	ACCCTGGGG	AAACACAAAACCCCCATGTGGAAGGGGGAACCT	ACT
980 I	1,000	1,020	1,040
CTTCTACCCCTAAAAACCCGAAATACAATTCTAAT	TAACAGAATA	ATCTGACCAACTGATCCGGCCTTGGGCCGATTA:	ACG
1,060	1,080	1,100	
AAACAAGTTACCCTAGGGATAACAGCGCTATCCCC	TTTTAAAGTO	CCATATAGACAAGGGGGGCTTACGACCTCG	

Gymnachirus melas fads2 mRNA, partial sequence

	20	40	50	80	100 120
CAGGGACAGCGGACGGGCG	I AGGATGGGAGGTGGAGGCC	AGCGGTCGGAGCCAGGAGACC	CGGGCGGCGGGGGAAAAGC	TGGAGGTGTTTACACCTGGGA	GGAGGTGCAGAGCCATGACAG
CDS					
	140	360	390	200	220 240
CAGGAACGACCAGTGGCTG	GTTGTTGATCGAAAAGTGT	ACAACATCACCCAGTGGGCCA	GGAGACACCCGGGAGGGTT	CCGTGTCATCAGCCACTATGC	TGGACAGGATGCCACAGAGGC
CDS					
	260	280	300	120	140 160
GTTTACTGCTTTTCATCCT	GATCAGGCCTTTGTGCAGA	AGTTTCTGAAGCCCCTGCTGA	TTGGAGAACTTGCAGCGTC	CGAGCCCAGCCAGGACCGAAA	CAAAAATGCTGCGATTATACA
ICDS					
	380	400	420	440	460 480
GGATTTCCACACTCTACGC	ACGCAGGCGGAGCGCAAAG	GTCTGTTTCGAGCTCGGCCTI	TGTTTTTCTGCCTCCACCT	CGGTCACATCGTGCTGCTGGA	GGCCGTCGCCTGGCTGATGAT
CDS					
	500	520	540	560	500 600
ATGGCTTTGGGGGGACGAAC	TGGATACTGACGCTCCTCT	STGTGGTCATGCTGACAGTGT	CTCAGTCGCAGGCCGGGTG	GCTGCAGCATGACTTTGGCCA	CTTGTCTGTTTTCAAGAAGTC
CDS					
	£20	640	880	680	700 720
CCGCTGGAATCACTTGATG	CACAAGTTTATTATCGGCC	ACATAAAGGGAGCCTCTGCCA	ACTGGTGGAATCATCGCCA	TTTCCAGCATCACGCTAAACC	CAACATCTTCAGAAAGGACCC
CDS					
	240	260	780	800	820 840
GGATGTCAACATGCTGAGC	ATCTTCGTAGTTGGCGAAA	CTCAACCCGTGGAGTATGGCA	TCAAAAGATCAAAAACAT	GCCCTACAATCACCAACACCA	GTACTACTTTCTCGTGGGACC
CDS					
	820	**^	900	920	940 960
TCCTCTGCTTATTCCAATT	TTCTTCCACATTCAGATAA	IGCACACCATGATCTCTCGCC	GCGACTGGGTGGATCTGGT	TTGGTCCATGTCATATTATCI	TCGTTACTTCGGCTGTTACAT
CDS					
	980	800	020	1.040 1	060 1.080
CCCCCTCTATGGCCTGTTT	GGCTCGGTGGCTCTCATCA	GCTTTGTCAGGTTTCTGGAGA	GTCACTGGTTTGTGTGGGT	GACTCAGATGAATCATCTGCC	AATGGATATTGACTATGAGAA
CDS					
,	-300	1 120 1	-140	1.160	.180 1.200
GCACCAAGACTGGTTAACA	ATGCAGCTGCAAGCCACCT	JTAACGTTGAACAGTCCGCCT	TCAACGACTGGTTCAGTGG	ACACCTCAACTTTCAGATCGA	GCATCATCTGTTTCCTACAAT
CDS					
	220	1 240	260	1 280 1	300 1 320
GCCACGCCACAACTACCAC	CTGGTGGCGCCACAGGTCC	JTACGCTCTGTGCAAAATATG	GTATTCCTTACCAGGTAAA	GACTTTGTGGCGAGGCCTCGC	TGATATTGTCAGGTCACTGAA
CDS					
· · · · · · · · · · · · · · · · · · ·	-340	1	, 380 I		
AAACTCAGGAGACCTCTGG	CTCGATGCATATTTACATA	A A T G A G A A C T G T A A T T C C T G A	CGGTGCACAGATTGG		

Gymnachirus melas Fads2 amino acid sequence

20	. 4	0 60 I I	80 I	100 I				
MGGGGQRSEPGDPGGGGKAG	GVYTWEEVQSHDSRNDQWL	VVDRKVYNI TQWARRH PGGFR	VISHYAGQDATEAFTAFHPD	QAFVQKFLKPLLIGELAASE				
120 	0 1-	40 16 I I	0 180 I	200 I				
PSQDRNKNAAIIQDFHTLRT	QAERKGLFRARPLFFCLHL	GHIVLLEAVAWLMIWLWGTNW	ILTLLCVVMLTVSQSQAGWL	QHDFGHLSVFKKSRWNHLMH				
220 I	0 2	40 26 I I	0 280 I	300 I				
KFIIGHIKGASANWWNHRHF	QHHAKPNIFRKDPDVNMLS:	IFVVGETQPVEYGIKKIKNMP	YNHQHQYYFLVGPPLLIPIF	FHIQIMHTMISRRDWVDLVW				
32	0 3	40 36 I I	0 380 I	400 I				
SMSYYLRYFGCYIPLYGLFG	SVALISFVRFLESHWFVWV	TQMNHLPMDIDYEKHQDWLTM	QLQATCNVEQSAFNDWFSGH	LNFQIEHHLFPTMPRHNYHL				
42) I	0 4	40 I						
VAPQVRTLCAKYGIPYQVKT	YAPQVRTLCAKYGIPYQVKTLWRGLADIVRSLKNSGDLWLDAYLHK							

Trinectes maculatus fads2 mRNA, complete sequence

	20	40	60	80	100 120
AAAACAAAGTCATCTCG	CGTGTTGTTGTGGATGAGAGC	TGGAGGAGAGCAGCCCGGAA	TCTGGTGATCTTCTGCTCGG	TGAAGGGAGGGCAAGAGAGC	AACAGGGTAAAAAACCACCACT
	140	160	180	200	220 240
GTGACTGTCTGTCTGTC	AGACTGGTGTTGAACACGCCA	TCTCCTTCCCACGTCCAGAC	TCTGTGGCTTAGCGGCTCCT	CAGTGTGCAGGTGGATTAAG	GCCAGGGACAGCAGTCAGGTGA
CDS					
	260	280	300	320	340 360
GGATGGGAGGTGGAGGC	CAGTTGACGGAGTCAGGAAAG	CCAGGCGGCGGGAGATCTGC	AGGCGTGTACACCTGGGATG	AGGTGCAGAGCCATGACAGC	AAGACCGACCAGTGGGTGGTCA
CDS					
	380	400	420	440	460 480
TTGATCGAAAAGTCTAC.	AACACCACCGAGTGGGCTAAA	AGACACCCGGGAGGCTTCCG	TGTCATCGCCCACTATGCTG	GACAGGATGCCACAGAGGTG	TTTTCTGCTTTTCATCCGGATC
CDS					
	600	\$20	540	660	
CAGCCTTTGTGCAGAAG	TTTCTGAAGCCCCTGCTGATT	GGAGAACTCGCAGCATCTGA	GCCGAGCCAGGACCGAAACA	AAAACGCTGCGATCATACAG	GATTTCCACACACTACGCACGC
CDS					
	620	£40		680	768 728
AGGCAGAGCGCAAAGGT	CTGTTCAGAGCTCGGCCTTTG	TTCTTCTGCCTCCACCTGGG	TCACATTGTGCTGCTGGAGG	CCCTCGCCTGGCTGATGATA	TGGCGTTGGGGAACGAACTGGA
CDS					
	220	780	200	803	
TACTGACGCTCCTCTGT	GCGGTCATGCTGACAGTTTCT	CAGTCGCAGGCTGGGTGGCT	GCAACATGACTTTGGCCACC	TGTCTGTGTTCAAGAAGTCC	CGCTGGAATCACTTATTGCACA
CDS					
	SED.	8.801	Shin	920	
AGTTTATCATCGGCCAT	TTAAAGGGAGCTTCTGCCAAC	TGGTGGAATCATCGCCATTT	CCAGCATCACGCTAAACCCA	ACGTCATCAGAAAGGACCCT	GACATCAACATGCTGAACATCT
cbs	507/1	3 8/10			1.000
CDE	CAACCTGTGGAGTATGGCATA	AAAAAGATCAAACACATGCC	CTACAATCACCAACACCAGT	ACTTCTTTCTTGTGGCTCCT	CCTCTGCTGATTCCAATTTTCT
CDS	1 100	1 120	3 140	1.160	1 160 1 200
TUCAUTTTUARATAATG.	AAGACCATGGTCTCTCGCCAC	TACTOGOTOGATCTGGTTTG	GTCCATGACTTACTATCTTC	GUTACITCAGUTGITACATA	CCCCTCTACGGTGTGTGTTTGGCT
CDS	1 220	3 240	1 240	3 280	1 100 1 120
	******		****	*****************************	
CDS		CRC1001110101000010RC			
	1 340	1.360	1, 280	1.400	1 420 1 440
AGATGCAGTCCACCTGT	AACGTCGAGCAGTCCGCTTTC	ALGACTGGTTCAGTGGACA	COTCANCETTCAGATOGAGO	ATCATCTGTTTCCTACCATG	CCACGCCACAACTACTATCTGG
CDS		ARCONCIOUI CROI CONTR		AT CATCOLOTION TO COMPOSE	CONCOURSE AND THE THE TO TO T
	1,460	1.480	1,500	1,520	1.540 1.560
TGGCTCCGGAAGTCCGT	GCGCTCTGTGCAAAATATGGT	ATTCCTTACCAGGTGAAGAC	TTTGTGGCAAGGCTTTGCTG	ATATTGTCAGGTCACTGAAA	AGCTCAGGCGACCTCTGGCTTG
CDS					
	1 500	1,600	1,620	1,640	1,660 1,680
ATGCGTATCTACATAAA	TGAGAACTGCAATTCCTGACA	 GTGTACAGATTGTTTTTCCT	I TCCTGCATCATRAATTAATT	CTATCTCTCCAGTTTTATGA	I I TTCAGTGACATGTGAGCATGAW
	1,700	1,720	1,740	1,760	1,700 1,000
CTTAACTGATGTGATGT.	I AAAATCTTCTTCTTCGCAGGA	I TTTGATTTAATGTTCAGATT	I GTTTTCATATTACCTACCGT	ATTTTCCGGATTATAAATCG	I I I I I I I I I I I I I I I I I I I
	1,820				
GCCATAAAATGCATAAW					

Trinectes maculatus Fads2 amino acid sequence

20 I	40 I	60 I	80 I	100 I
MGGGGQLTESGKPGGGRSAG	VYTWDEVQSHDSKTDQWVVI 140 140	DRKVYNTTEWAKRHPGGFRV 160 I	IAHYAGQDATEVFSAFHPDP. 180 180	200 I
SQDRNKNAAIIQDFHTLRTQ	AERKGLFRARPLFFCLHLGH	IVLLEALAWLMIWRWGTNWI	LTLLCAVMLTVSQSQAGWLQ	HDFGHLSVFKKSRWNHLLHK
) 240) 280 I	300 I
PIIGHLKGASANWWNHKHPQ 320	340	VLGETQPVEIGIKKIKHMPI 360	NHQHQIFFLVAPPLLIPIFF.	400
MTYYLRYFSCYIPLYGVFGS	LALISFVRFLESHWFVWVTQ	 MNHLPMDIDYEKHQDWLTMQ	MQSTCNVEQSAFNDWFSGHL	 NFQIEHHLFPTMPRHNYYLV
420 	9 440 I			
APEVRALCAKYGIPYQVKTL	WQGFADIVRSLKSSGDLWLD	AYLHK		

Apionichthys finis fads2 mRNA, partial sequence

CTCTGGCTTGATGCCTATCTACATAAATGAT

Apionichthys finis Fads2 amino acid sequence

20 	1 4	io 60	3 80 I	100				
MGGGGQLTESGKPSGGKSGG	VYTWEEVQSHDSKNDQWLV	IDRKVYNTTQWARRHPGGFRV	ISHYAGQDATEAFTAFHPDP	A F V Q K F L K P L L I G E L A A S E P				
124 	0 1-	40 16 I I	0 180 I	200 I				
SQDRNKNAAIIQDFHTLRMQ	AEHKGLFRARPLFFCLHLA	HIVLLEALAWLMIWLWGTNWI	LTLLCAVMLTVSQSQAGWLQ	HDFGHLSVFKKSRWNHLLHK				
22	0 2	40 26 I I	0 280 I	300 I				
FIIGHLKGASANWWNHRHFQ	HHAKPNIFRKDPDVNMLNI	FVLGETQPLEYGIKKIKHMPY	NHQHQYFFLVGPPLLIPIFF	HIQIMQTMISRRDWVDLVWS				
32	0 3	40 36 I I	0 380 I	400 I				
MSYYLRYFTCYIPLYGLFGS	LALISFVRFLESHWFVWVT	QMNHLPMDIDYEKHHDWLTMQ	LQATCNVEQSTFNDWFSGHL	NFQIEHHLFPTMPRHNYHLV				
424 I	0 4	40 I						
APQVRELCVKYGIPYQVKTL	A PQVRELCVKYGI PYQVKTLWRALADI VRSLKTSGDLWLDAYLHK							

Hypoclinemus mentalis fads2a mRNA, complete CDS

ana					
cbs	20	49	60	*0	100
ATGGGAGGTGGAGGCC	AGCTGACCGAGTCAGGAAAGC	AGAGATCTGGAGGCGTGTACA	CCTGGGAGGAGGTGCAGAGC	CACGACAGCAAGAACGACC.	AGTGGCTGGTGGTCGATCGAA
CDS					
	340	360	180	200	220
GTGTACAACATCACCC	AGTGGGCCAGAAGACACCCGG	JAGGGTTTCGTGTCATCAGCC	ACTATGCTGGACAGGATGCC	CACAGAGGCGTTCAGTGCGT	ITCATCCGGATCCAGCCTTTG
CDS					
	260	280	300	320	340
CAGAAGTTCCTGAAGC	CCCTGCTGATTGGAGAACTGG	CAGCATCTGAGCCGAGCCAGG	ACCGAAACAAGAACGCTGCG	GATCATACAGGATTTCCACA	CTTTACGCACGCAGGCGGAGC
CDS					
	380	400	420	440	460
AAAGGTCTGTTTCGCG	CTCGGCCTTTGTTCTTCTGCC	FCCACCTGGCTCACATCGTGC	TGCTGGAGGCCCTCGCCTGG	GCTGATGATCTGGCTTTGGG	GAACAAACTGGATGTTGACGC
CDS					
	500	520	540	560	580
CTCTGTGCAGTCATGC	IGACCATTTCTCAGTCGCAGG	CTGGGTGGCTGCAACATGACT	TTGGCCACCTGTCTGTGTT	CAAGAAGTCCCGCTGGAATC:	ACCTATTGCACAAGTTTATCA'
CDS					
	520	640	660	680	700
GGCCATTTAAAGGGAG	CTTCTGCCAACTGGTGGAATC	TEGECATTICEAGEATEACG	CCARACCCARCATCTTCAG	AAGGACCCTGACATCAACA	TGTTGAACATCTTTGTAGTTG
CDS					
	240	260	780	800	820
a h h c = c h a c c = a = a a			****		******
CDS	NOTACOOCATAAAAAAAAA	ACACATOCCCTACAATCACC	AGE ACCAGINE TETTET	ioroooxeccercrocrew	I I CORRECTION I CONCRETE O
600	850	880	900	920	940
ATAATGCACACCATGA	TCTCTCGCCATGACTGGGTGG	ATCTGGTTTGGTCCATGTCTT	ACTATETTEGETACTTEAGE	TGTTACATACCCCTCTATG	SCCTGTTTGGCTCGGTGGCTC
cbs	690	1 000	1 020	1.040	1.000
ATCAGCTTTGTCAGGT	TTCTGGAAAGTCATTGGTTTG	IGTGGGTGACTCAGATGAATC	ATCTGCCAATGGATATTGAC	CTATGAGAAGCACCAAGACT	3GTTAACCATGCAGCTCCAAG
CDS					
	3,300	1 120	3.340	3, 160	1.380
ACCTGCAACGTTGAGC	AGTCCGCCTTCAACGACTGGT	FCAGTGGACACCTCAACTTTC	AGATCGAGCATCATCTGTTT	ICCTACAATGCCACGCCACA	ACTACCACCTGGTGGCTCCAC
CDS					
	1 220	1.240	1.260	1.280	1 300
GTCCGCGCGCTCTGCG	CAAAGTACGGTATTCCTTACC	AGGTGAAAACTCTGTCGCAAG	GCTTTACTGATATTGTCAG	STCACTGAAAAACTCGGGCG;	ACCTCTGGCTTGATGCATATC
CDS					
CATAAATGA					

Hypoclinemus mentalis Fads2a amino acid sequence

20 I	4	0 60) 80 I	100
MGGGGQLTESGKQRSGGVYT	WEEVQSHDSKNDQWLVVDRI	KVYNITQWARRHPGGFRVISH	YAGQDATEAFSAFHPDPAFV	QKFLKPLLIGELAASEPSQD
120 I	1	60 16 I I	0 180 I	200 I
RNKNAAIIQDFHTLRTQAEH	KGLFRARPLFFCLHLAHIVI	LLEALAWLMIWLWGTNWMLTL	LCAVMLTISQSQAGWLQHDF	JHLSVFKKSRWNHLLHKFII
220	2	10 26 I I	0 280 I	300 I
GHLKGASANWWNHRHFQHHA	KPNIFRKDPDINMLNIFVV(JETQPVEYGIKKIKHMPYNHQ	HQYFFLVGPPLLIPIFFHIQ	IMHTMISRHDWVDLVWSMSY
320 I	3	40 36 I I	0 380 I	400 I
YLRYFSCYIPLYGLFGSVAL	ISFVRFLESHWFVWVTQMN	HLPMDIDYEKHQDWLTMQLQA	TCNVEQSAFNDWFSGHLNFQ	IEHHLFPTMPRHNYHLVAPQ
420 I	4	40 I		
VRALCAKYGIPYQVKTLSQG	FTDIVRSLKNSGDLWLDAY	LHK		

Hypoclinemus mentalis fads2b mRNA, complete CDS

CDS						
	20	40	60	80	100	120
ATGGGA	GTGGAGGCCAGCTGACCGAG	TCAGGAAAGCAGAGATCTGGAG	GCGTGTACACCTGGGAGGAG	GTGCAGAGCCACGACAGCAAG	AACGACCAGTGGCTGGTGG	TCGATCGAAAA
CDS						
	140	360	380	200	220	240
GEGEAC				CAGATGCCACAGAGGTGTTC	A GEOGREEC A CCGGA CC	CACCETTERE
CDC		ROACACCCOODADOOTTICOTO	ICAICAGE CACIAIGE 1007	CROOKIGCCRCROROOIOIIIC	A DIOCOTTICATECOURTE	CROCCITIOIO
CDS						
	220	280	200		40	
CAGAAG	TTCCTGAAGCCCCTGCTGATT	GGAGAACTGGCAGCATCTGAGC	CGAGCCAGGACCGAAACAAG	AACGCTGCGATCATACAGGAT	TTCCACACTTTACGCACGC	AGGCGGAGCAC
CDS						
	380	400	420	440	460	480
AAAGGT	CTGTTTCGCGCTCGGCCTTTG	TTCTTCTGCCTCCACCTGGCTC	ACATCGTGCTGCTGGAGGCC	CTCGCCTGGCTGATGATCTGG	CTTTGGGGAACAAACTGGA	TGTTGACGCTC
CDS						
	500	520	540	560	580	600
CTCTGT				TOTOTOTOTOTOTOTOTOTO	TGGANTCACCTATTGCACA	
CICIOI	Jero Terro el Grecca III el	CR01000R00010001000100	ARCATORCITIOSCERCEI	TETOTOTTERRORROTCECCO	TOORATCACCTATTOCACA	AGTTTATCATT
CDS						
	£20	***	6.811 	EX.		100
GGCCAT	TTAAAGGGAGCTTCTGCCAAC	TGGTGGAATCATCGCCATTTCC	AGCATCACGCCAAACCCAAC	ATCTTCAGAAAGGACCCTGAC	ATCAACATGTTGAACATCT	TTGTACTTGGC
CDS						
	740	260	780	800	820	840
GAAACT	CAGCCTGTGGAGTACGGCATA	AAAAAGATCAAACACATGCCCT	ACAATCACCAACACCAGTAC	TTCTTTCTTGTGGGACCCCCT	CTGCTCATTCCAATTTTCT.	ACCACATTCAC
CDS						
	860	880	900	920	940	960
					CRORNBOOCCRORRBOOCCR	
ATAATO	CACACCATORICICICOCCAT	1401000100410100111001	ceardientienateriese	INCITCAGEIGIINCAINCEE	CICIAIOSCCIOIIIOSCI	
CDS						
	940	1.000	1 020	1.020	060	1 080
ATCAGC	TTTGTCAGGTTTCTGGAAAGT	CATTGGTTTGTGTGGGTGACTC	AGATGAATCATCTGCCAATG	GATATTGACTATGAGAAGCAC	CAAGACTGGTTAACCATGC	AGCTCCAAGCC
CDS						
	3-300	1.120	1.140	1,160	1.150	1.200
ACCTGC	AACGTTGAGCAGTCCGCCTTC:	AACGACTGGTTCAGTGGACACC	TCAACTTTCAGATCGAGCAT	CATCIGITICCIACAAIGCCA	CGCCACAACTACCACCTGG	TGGCTCCACAG
CDS						
	1.220	1.240	1.260	1.280	1,300	1 320
					Reasesses	
GTCCGC	JUSCICITUTUCUCAAAGIACGGI	ATTECTTACCAGGTGAAAACTC	ISISSCAASSCITTSCTGAT	ATTOTCAUGTCACTUAAAAAC	TUBBBCBACCTUTEGCTTG.	AIGCATATCTA
CDS						
	>					
CATAAA	r g A					

Hypoclinemus mentalis Fads2b amino acid sequence

20 I	40 I	60 I	80 I	100
MGGGGQLTESGKQRSGGVYTW	VEEVQSHDSKNDQWLVVDRK	VYNITQWARRHPGGFRVISH:	YAGQDATEVFSAFHPDPAFV	QKFLKPLLIGELAASEPSQD
120 I	140 	160 I	180	200 I
RNKNAAIIQDFHTLRTQAEHF	GLFRARPLFFCLHLAHIVL	LEALAWLMIWLWGTNWMLTL	LCAVMLTISQSQAGWLQHDF	3HLSVFKKSRWNHLLHKFII
220 I	240	260 I	280 I	300 I
GHLKGASANWWNHRHFQHHAF	CPNIFRKDPDINMLNIFVLG	ETQPVEYGIKKIKHMPYNHQI	HQYFFLVGPPLLIPIFYHIH	IMHTMISRHYWVDLVWSMSF
320 I	340 	360 I	380	400 I
YLRYFSCYIPLYGLFGSVALI	ISFVRFLESHWFVWVTQMNH	LPMDIDYEKHQDWLTMQLQA	T C N V E Q S A F N D W F S G H L N F Q	IEHHLFPTMPRHNYHLVAPQ
420 I	440 I			
VRALCAKYGIPYQVKTLWQGF	FADIVRSLKNSGDLWLDAYL	нк		

Hypoclinemus mentalis fads2a and/or fads2b mRNA, 5'UTR

ATCAGRGAATAA	20 I CTGTGCGGCCGAGCGGC	40 I I GCAGGGTGTCTTGAATGGAG	دہ I CAGAGCGGATCGCGAGCGGA	I I TCCAGTCGCCCGGCGTGTTG	100 I TTGTGGATGAGAGCAGGAGGA	GACGCGGGAT
Conflict						
† CTAAGGCTGTTG	I AGCACACCGTCTCCGTC	CTACGTCCAGACTCTCAGTG	I I I I I I I I I I I I I I I I I I I	I GGACAGCAGTCAGGCTGAGG		

Hypoclinemus mentalis fads2a and/or fads2b mRNA, 3'UTR

20 	40 I	60 I	80 I	100	120 		
GTACTGTAATTCCTGACAGTG	TAGAGATTGTTTTTCCTTCA	TGCATCATAAATTCATTCTA	TCTCTGCGGTTTTATGATTC	AGTGACATGTGAGCATGAT	CTTAACTTCGTGATGTTAAA		
140	160	100 I	200	220	240 I		
TCTTCTTCTACTGTTCAGATT	GTTTTCATATTACCTAATAG	TGTCTTGAACAACAGTACCA	TGTTGTAAAATGTACAATAA	TGAGAAATGATTGTGTTCCC	JTAGTGTTTTTTTTCTTCATC		
260	200	300 I	320 	340 I	360		
TATCCTGTAATATTGCTTCAA	CGGTAAACCATTGTAATTAC	AATGACAAACTTAACCGGAG	TTAAACTATTTTGCTCTTGI	AACTTTAAATTTTAAATATA	ACTACATCTTTTGCAACTCT		
380 I	400	420 1					
TACCTTATTATCTTTTGACAT	TA C C T TA T TA T C T T T T G A C A T A A A C T G T A T C T C C A C A A A A A A A A A A A						

Gymnachirus melas elov15 mRNA, partial sequence

Gymnachirus melas Fads2 amino acid sequence

20 I METFNHKLNTHIDSWLGPRDQRVR	40 I GWLLLDNYSPTFALTVMYLLIVWLG	60 I PKCMKHRQPYSCRGLMVVYN	I I I I I I I I I I I I I I I I I I I	I I GDYNFYCQNTY
120	140	160	180	200
I	I	I	I	I
SAPEVDOKIINVLWWYYFSKLIEF	MDTFFFILRKNNHOLTFLHIYHHAS	MLNIWWFVMNWIPCGHSFFG	ATLNSFVHVVMYSYYGLSAI	PAMRPYLWWKR
220	240	260	280	KLRVD
I	I	I	I	
YITQLQLIQFFLTVAHTVCGTMWP	CGFPMSWMVFQISYMVTLIILFSNF	YTQTYKKHSSSRTKDQRNGS	PASRNGHANGKPSVKQHAHN	

Trinectes maculatus elov15 mRNA, complete sequence

Trinectes maculatus Elov15 amino acid sequence

Apionichthys finis elov15 mRNA, partial sequence

Apionichthys finis Elov15 amino acid sequence

20	40	60	80	100
METUNHEENTEIDSWIGPPDOPUPGE	I.I.I.D.NYPRTFALTUMYL.I.TUWLGP	KYMKHRODYSCRODI LVYN	LGTTLLSEYMEYELVGAVWO	SDVKEVCONTY
METVANKIATI IDDA DOFRDQRVKOR	abbourrent warrent warrent warrent	ATMAINQFI DENOT DEVIN	DOLLEDDILIMI IDDIORINQ.	obini icyaii
120 1	140 I	160 I	180	200
SSPEVDKKVINALWWYYFSKLIEFMD	TFFFILRKNNHQITFLHVYHHASM	LNIWWFVLNWIPCGHSFFG	ASLNCFVHVVMYSYYGLSAI	PAVRPYLWWKR
220 I	240 I	260 I	280	
YITQLQLIQFFSTVSHTTCAAIWPCG	FPMGWLLFQISYMVTLIILFFNFY	IQTYQKHSRSLQKDHRNGS	PTRNGHVNGKPSVEQPAHKK	LRVD

Hypoclinemus mentalis elov15 mRNA, complete sequence

Hypoclinemus mentalis Elov15 amino acid sequence

Table 1 | Desaturase and elongase activities shown by fatty acid-
metabolising enzymes of Achiridae expressed in the recombinant
yeast

Supplementary Table 1a. Conversion rates of ElovI5 (%)							
Substrate	Product	G. mel	as T. maci	ulatus	A. finis	H. mentalis	Activity
18:4n–3	20:4n–3	44.8	48.	2	37.5	14.9	C18→20
	22:4n–3	31.1	32.	8	34.2	60.6	C20→22
	24:4n–3	3.8	3.3	3	4.5	3.8	C22→24
20:5n–3	22:5n-3	59.5	73.	8	62.1	77.6	C20→22
	24:5n-3	23.7	5.4	1	21.1	11.4	C22→24
22:5n-3	24:5n-3	14.2	3.8	3	17.7	5.9	C22→24
	Su	pplementary	Table 1b. Cor	nversion r	ates of Fads	62 (%)	
Substrate	Product	G melas	Tmaculaturs	A finis	H.	. mentalis	
Substrate	FIUUUCI	G. meias	1. Maculalus	A. 11115	Fads2	a Fads2b	- Activity
18:3n–3	18:4n–3	26.2	39.8	67.6	40.5	1.3	Δ6
20:4n–3	20:5n–3	0.6	6.5	7.3	2.0	2.3	Δ5
22:5n-3	22:6n-3	n.d.	7.2	1.1	n.d.	14.0	Δ4
Suppleme	ntary Table 1	c. Conversio	n rates of Fac	ls2 towar	d 24:5 using	co-expression	vector (%)
Fad	s2	Control-	Product	24:5n-	3→24:6n-3	Δ _{24:5n}	$_{-3}/\Delta_{control}$
G. m	elas	7.	1		4.9		0.7
T. Mac	ulatus	5.	3		16.4		3.1
A. fi	nis	6.	2		27.8		4.5
H menta	a	6.	3		23.4		3.7
	//3 b	n.	d.		8.8		-
	Suppler	mentary Tabl	e 1d. Convers	sion rates	of Fads2 mi	utants (%)	
muta	ant	18:3n-3-	→18:4n-3	22:5n-	3→22:6n-3	Δ	4/Δ6
Fada2h	1/604	<u>(Δ6 ac</u>	ztivity)	(Δ4	activity)		0.0
Fauszb Eadc2b	V09A	0.	1		1.C		0.2
Fauszb Eadc2b	L239V V077E	1.	0		4.0		4.0
Fauszb Eada2b		23	.ð 2		2.3		U. I 1 0
Fads2b		J.	2		5.6 4.0		1.0
Fads2b	F300V	1.	5 6		4.0		2.0
Fade2b	1 3001	0.	0		1.0		5.1
Fade2b	Δ/22T	0.	7	4.9		5.5	
Fade2a	F977V	0.	, 6		4.U n.d		5.7
Fade	:∠//i s2a	Ζ.	0		n.u.		-
F277Y+(Q280H	0.	6		1.2		1.9

Table 2. Reference sequences with a			
Step	Species	Nucleotide	Protein
Determined in this research			
16S rRNA	Gymnachirus melas	LC487286	
	Trinectes maculatus	LC487287	
	Apionichthys finis	LC487288	
	Hypoclinemus mentalis	LC487289	
fads2 (CDS)	Gymnachirus melas	LC487294	BBL33564
	Trinectes maculatus	LC487295	BBL33565
	Apionichthys finis	LC487296	BBL33566
	Hypoclinemus mentalis	LC487297	BBL33567
		LC487298	BBL33568
fads2 (genomic)	Hypoclinemus mentalis	LC490864	
elovl5 (CDS)	Gymnachirus melas	LC487290	BBL33560
	Trinectes maculatus	LC487291	BBL33561
	Apionichthys finis	LC487292	BBL33562
	Hypoclinemus mentalis	LC487293	BBL33563
Phylogenetic analysis			
16S rRNA	Citharoides macrolepidotus	AP014588	
	Lepidoblepharon ophthalmolepis	KJ433560	
fads1	Callorhinchus milii	XM_007887444	XP_007885635
	Scyliorhinus canicula	JN657543	AEY94454
fads2	Callorhinchus milii	XM_007887445	XP_007885636
	Scyliorhinus canicula	JN657544	AEY94455
	Salmo salar	AF478472	AAL82631
		AY458652	AAR21624
		GU207400	ADA56788
		GU207401	ADA56789
	Siganus canaliculatus	EF424276	ABR12315
		GU594278	GU594278
	Oreochromis niloticus	KF268464	ADJ29913
		XM_003440472	XP_003440520
	Chirostoma estor	KJ417838	AHX39206
		KJ417839	AHX39207
	Channa striata	EU570220	ACD70298
		KT962985	AMY15661
	Danio rerio	AF309556	AAG25710
	Solea senegalensis	JN673546	AEQ92868
	Clarias gariepinus	KU925904	AMR43366
	Oryzias latipes	XM_011476059	XP_011474361
	Lates calcarifer	GQ214179	ACS91458
	Rachycentron canadum	FJ440238	ACJ65149
	Scophthalmus maximus	AY546094	AAS49163
	Paralichthys olivaceus	KM893456	AJG36440
	Gadus morhua	DQ054840	AAY46796
	Sparus aurata	GQ162822	ADD50000
	Nibea mitsukurii	GQ996729	ACX54437

Table 2. Reference sequences with accession numbers (continued)			
Step	Species	Nucleotide	Protein
Designing degenerate primers			
16S rRNA	Achirus lineatus	JQ939049	
	Gymnachirus melas	JQ939050	
	Gymnachirus texae	JQ939051	
	Trinectes maculatus	JQ939052	
fads2	Scophthalmus maximus	AY546094	AAS49163
	Solea senegalensis	JN673546	AEQ92868
	Paralichthys olivaceus	KM893456	AJG36440
	Cynoglossus semilaevis	XM_008312161	XP_008310383
elovl5	Scophthalmus maximus	AF465520	AAL69984
	Solea senegalensis	JN793448	AER58183
	Paralichthys olivaceus	KM893457	AJG36441
	Cynoglossus semilaevis	XM_008322048	XM_008322048
Table 3. Primers used ir	n this study		
--------------------------	---------------------------	-----------------------------------	
Step	Primer name	Sequence (5' to 3')	
cDNA synthesis	oligo_dT_adapter_primer	GTAATACGACTCACTATAGGGCACGCGTGGTC-	
		GACGGCCCGGGCTGGTTTTTTTTTTTTTTTTT	
Phylogenetic analysis	16S_Fw	CATCTCTGTGGCAAAAGAGT	
	16S_Rv	TAGGATGTCCTGATCCAACAT	
Degenerate PCR	flatfish_fads2_F1	TGGRARGAGGTGCARARMCACAGCA	
	flatfish_fads2_F2	AAAAGACAYCCAGGAGGGTTTC	
	flatfish_fads2_R1	AGATGATGYTCGATYTGAAAGTTGAG	
	flatfish_fads2_R2	AGCTGCATKGTTAACCAGTCCT	
	flatfish_elovl5_F1	CACCAACCTTTGCACTCACA	
	flatfish_elovl5_F2	CTTCTGATTGTGTGGATGGG	
	flatfish_elovl5_R1	TCTTGTACGTCTGAATGTAG	
	flatfish_elovl5_R2	GCTGWAACTGTGTGATGTAT	
RACE	3'RACE_adapter_R1	CCATCCTAATACGACTCACTATAGGGC	
	3'RACE_adapter_Rn	CTATAGGGCACGCGTGGT	
	Hm_fads2_5'RACE_R1	AGGTGGAGGCAGAAGAACAA	
	Hm_fads2_5'RACE_Rn	GTTCTTGTTTCGGTCCTGGCT	
	Hm_fads2_3'RACE_F1	CCCCCTCTGCTCATTCCAATTT	
	Hm_fads2_3'RACE_Fn	CTGGGTGGATCTGGTTTGGT	
	Tm_fads2_5'RACE_R1	CTGGATCCGGATGAAAAGCAGAAAACAC	
	Tm_fads2_5'RACE_Rn	AGCATAGTGGGCGATGACACGGAAG	
	Tm_fads2_3'RACE_F1	GGTGTGTTTGGCTCGTTGGCTCT	
	Tm_fads2_3'RACE_Fn	TGGAAAGTCACTGGTTTGTGTGGG	
	Hm_elovI5_5'RACE_R1	TGTGAGTGTTTTGGCAGTAGAAGTT	
	Hm_elovI5_5'RACE_Rn	CCACAGGACCCACAAGCTCAT	
	Hm_elovI5_3'RACE_F1	GAGGCCGTATCTTTGGTGGAA	
	Hm_elovI5_3'RACE_Fn	AGATACATCACAGCTACAG	
	Tm_elovl5_5'RACE_R1	ATGTAGAAAGACAAGAGCGTGAGG	
	Tm_elovl5_5'RACE_Rn	CCCCAGCCAGACAATCAGAAGGTACAT	
	Tm_elovI5_3'RACE_F1	TTCGTTCTTCGGTGCCTGCCTA	
	Tm_elovl5_3'RACE_Fn	TGTGGCTTCAGCATGGGTTGG	
CDS cloning	Hm_fads2_5'UTR_Fw	TGTTGTTGTGGATGAGAG	
	Hm_fads2_3'UTR_Rv	AACCGCAGAGATAGAATGA	
	Hm_Tm_elovI5_5'UTR_Fw	CAGGCTGGCAACTTTATGGT	
	Hm_Tm_elovI5_3'UTR_Rv	AGCATCATTAGCTAACACAC	
	Tm_fads2_5'UTR_Fw	GTTGTTGTGGATGAGAGCTGGA	
	Tm_fads2_3'UTR_Rv	TTTTATGGCTGGTGCGACTTGT	
	Achiridae_fads2_5'UTR_F1	AGTGTGCAGGTGGATTAAGG	
	Achiridae_fads2_5'UTR_F2	GGATTAAGGCCAGGGACAGC	
	Achiridae_fads2_3'UTR_R1	GAATCATAAAACYGSAGAGA	
	Achiridae_fads2_3'UTR_R2	ACYGSAGAGATAGAATKAAT	
	Achiridae_elovI5_5'UTR_F1	CGMCAGGCYGGSAACTTTAT	
	Achiridae_elovI5_5'UTR_F2	GGCYGGSAACTTTATGGTGACAAA	
	Achiridae_elovl5_3'UTR_R1	AGCAKCATTAGCTAACACACT	
	Achiridae_elovl5_3'UTR_R2	ACTAMAGTGARYTTTGGGTGACG	

Table 3. Primers used in	this study (continued)	
Step	Primer name	Sequence (5' to 3')
Vector construction	Hm_Af_Fads2_Fw_HindIII	ATTAAGCTTGAGATGGGAGGTGGAGGCCAGCTGA
	Hm_Af_Fads2_Rv_Xbal	AGTTCTAGATCATTTATGTAGATATGCATCAA
	Tm_Fads2_Fw_HindIII	AAAAAGCTTAGGATGGGAGGTGGAGGCCAGTTGAC
	Tm_Fads2_Rv_Xbal	CCCTCTAGATCATTTATGTAGATACGCATCAAGCC
	Gm_Fads2_Fw_HindIII	AAAAAGCTTAGGATGGGAGGTGGAGGCCAGCGGTC
	Gm_Fads2_Rv_Xbal	CCCTCTAGATCATTTATGTAAATATGCATCGAGCC
	Hm_Tm_ElovI5_Fw_HindIII	ATCAAGCTTAAAATGGAAACCTTCAATCATAAACTCAA
	Hm_ElovI5_Rv_Xbal	ATTTCTAGATCAATCCACCCTCAGTTTCTTGTGT
	Tm_ElovI5_Rv_Xbal	TAATCTAGATCAATCCACCCTCAGTTTCTTGTGCG
	Af_ElovI5_Fw_HindIII	GGGAAGCTTAAAATGGAAACCGTCAATCATAAATT
	Af_ElovI5_Rv_Xbal	TTTTCTAGATCAATCCACCCTCAGTTTCTTGTGTG
	Dr_Fads2_Fw_HindIII	ACGAAGCTTACGATGGGTGGCGGAGGACAGCAGACA
	Dr_Fads2_Rv_Xbal	ACGTCTAGATTATTTGTTGAGATACGCATCCA
	Dr_Elovl2_Fw_Kpnl	CCGGGTACCAATATGGAATCATATGAAAA
	Dr_Elovl2_Rv_Xbal	CGGTCTAGATCACTGTAGCTTCTGTTTGG
	pYES2_linearize_Fw	TCCACAGAATCAGGGGATAAC
	pYES2_linearize_Rv	TAACCGTATTACCGCCTTTGAGT
	PADH1_DrElovI2_TADH1_Fw	GCGGTAATACGGTTATCTAGCTCCCTAACATGT
	PADH1_DrElovI2_TADH1_Rv	CCCTGATTCTGTGGAGTGTGGAAGAACGATTAC
Genomic analysis	Hm_gfads2_5'Fw	AAAAGTGTACAACATCACCC
	Hm_gfads2_5'Rv	ATCTCTGCTTTCCTGACTCG
	Hm_gfads2_3'Fw	CTCTGGCTTGATGCATATCT
	Hm_gfads2_3'Rv	CCCGAGTTTTTCAGTGACCT
Mutagenesis	Hm_Fads2b_V69A_Fw	ACAGAGGCGTTCAGTGCGTTTCATCCGGATCCA
	Hm_Fads2b_V69A_Rv	ACTGAACGCCTCTGTGGCATCCTGTCCAGCATA
	Hm_Fads2b_L239V_Fw	CTTTGTAGTTGGCGAAACTCAGCCTGTGGAGTA
	Hm_Fads2b_L239V_Rv	TCGCCAACTACAAAGATGTTCAACATGTTGATG
	Hm_Fads2b_Y277F_Fw	ATTTTCTTCCACATTCACATAATGCACACCATG
	Hm_Fads2b_Y277F_Rv	AATGTGGAAGAAAATTGGAATGAGCAGAGGGGG
	Hm_Fads2b_H280Q_Fw	ACATTCAGATAATGCACACCATGATCTCTCGCC
	Hm_Fads2b_H280Q_Rv	GCATTATCTGAATGTGGTAGAAAATTGGAATGA
	Hm_Fads2b_Y290D_Fw	TCGCCATGACTGGGTGGATCTGGTTTGGTCCAT
	Hm_Fads2b_Y290D_Rv	ACCCAGTCATGGCGAGAGATCATGGTGTGCATT
	Hm_Fads2b_F300Y_Fw	ATGTCTTACTATCTTCGCTACTTCAGCTGTTAC
	Hm_Fads2b_F300Y_Rv	AAGATAGTAAGACATGGACCAAACCAGATCCAC
	Hm_Fads2b_W418S_Fw	ACTCTGTCGCAAGGCTTTGCTGATATTGTCAGG
	Hm_Fads2b_W418S_Rv	GCCTTGCGACAGAGTTTTCACCTGGTAAGGAAT
	Hm_Fads2b_A422T_Fw	AGGCTTTACTGATATTGTCAGGTCACTGAAAAA
	Hm_Fads2b_A422T_Rv	ATATCAGTAAAGCCTTGCCACAGAGTTTTCACC
	Hm_Fads2a_F277Y_Fw	ATTTTCTACCACATTCAGATAATGCACACCATG
	Hm_Fads2a_F277Y_Rv	AATGTGGTAGAAAATTGGAATGAGCAGAGGGGG
	Hm_Fads2a_F277Y+Q280H_Fw	TTTTCTACCACATTCACATAATGCACACCATGATC
	Hm_Fads2a_F277Y+Q280H_Rv	CATTATGTGAATGTGGTAGAAAATTGGAATGAGCA

Table 4. PCR conditions							
				Denature tenperature (°C)	Annealing tremprature (°C)	Extention temperature (°C)	Number of cycles
PCR	Forward primer	Reverse primer	DNA polymerase	(duration in s)	(duration in s)	(duration in s)	
Achiridae							
16S rRNA gene	16S_Fw	16S_Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
n. mentalis fads2 cloning							
	flatfich fode3 E1	flotfich fodo? D1	ToKoBo Ev Too	04 (20)	50 (30)	72 (60)	26
			Tanana Ex Tay	94 (30) 0 1 (30)		12 (00)	10
5 KACE 1ST PCK	Genekacer 5		такака Ех тад	94 (30)	- (cc) /c < 7/	(100) 7/	22
5'RCAE nested PCR	GeneRacer 5' nested	Hm_fads2_5'RACE_Rn	TaKaRa Ex Taq	94 (30)	55 (30)	72 (60)	30
3'RACE 1st PCR	Hm_fads2_3'RACE_F1	3'RACE_adapter_R1	TaKaRa Ex Taq	94 (30)	72 > 57 (35)*	72 (60)	35
3'RACE nested PCR	Hm_fads2_3'RACE_Fn	3'RACE_adapter_Rn	TaKaRa Ex Taq	94 (30)	55 (30)	72 (60)	30
CDS cloning	Hm_fads2_5'UTR_Fw	Hm_fads2_5'UTR_Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Hm_Af_Fads2_Fw_HindIII	Hm_Af_Fads2_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
elov15 cloning							
Degenerate PCR	flatfish_elovI5_F2	flatfish_elov15_R1	TaKaRa Ex Taq	94 (30)	52 (30)	72 (60)	35
5'RACE 1st PCR	GeneRacer 5'	Hm_elovI5_5'RACE_R1	TaKaRa Ex Taq	94 (30)	70 > 55 (35)*	72 (90)	35
5'RACE nested PCR	GeneRacer 5' nested	Hm_elovI5_5'RACE_Rn	TaKaRa Ex Taq	94 (30)	58 (30)	72 (90)	35
3'RACE 1st PCR	Hm_elovl5_3'RACE_F1	3'RACE_adapter_R1	TaKaRa Ex Taq	94 (30)	70 > 55 (35)*	72 (90)	35
3'RACE nested PCR	Hm_elovI5_3'RACE_Fn	3'RACE_adapter_Rn	TaKaRa Ex Taq	94 (30)	58 (30)	72 (90)	35
CDS cloning	Hm_elovI5_5'UTR_Fw	Hm_elov15_3'UTR_Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Hm_ElovI5_Fw_HindIII	Hm_ElovI5_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Genomic fads2 analysis	Combinations of primer series		TaKaRa LA Taq	94 (10)	<pre>68 (900)**</pre>		30
	for genomic analysis		PrimeSTAR GXL DNA Polymerase	98 (10)	60 (15)	68 (10)	30
fads2 mutagenesis	Each pair of primer series		PrimeSTAR Max DNA Polymerase	98 (10)	55 (15)	72 (40)	30
	for mutagenesis						
T. maculatus							
fads2 cloning							
Degenerate PCR	flatfish_fads2_F1	flatfish_fads2_R1	TaKaRa Ex Taq	94 (30)	55 (30)	72 (60)	35
5'RACE 1st PCR	GeneRacer 5'	Tm_fads2_5'RACE_R1	PrimeSTAR HS DNA Polymerase	98 (10)	55 (5)	72 (60)	30
5'RCAE nested PCR	GeneRacer 5' nested	Tm_fads2_5'RACE_Rn	PrimeSTAR HS DNA Polymerase	98 (10)	55 (5)	72 (60)	30
3'RACE 1st PCR	Tm_fads2_3'RACE_F1	3'RACE_adapter_R1	PrimeSTAR HS DNA Polymerase	98 (10)	55 (5)	72 (60)	30
3'RACE nested PCR	Tm_fads2_3'RACE_Fn	3'RACE_adapter_Rn	Tks Gflex DNA Polymerase	98 (10)	60 (15)	68 (30)	30
CDS cloning	Tm_fads2_5'UTR_Fw	Tm_fads2_5'UTR_Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Tm_Fads2_Fw_HindIII	Tm_Fads2_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
elovl5 cloning							
Degenerate PCR	flatfish_elovI5_F1	flatfish_elov15_R1	TaKaRa Ex Taq	94 (30)	55 (30)	72 (60)	35
5'RACE 1st PCR	GeneRacer 5'	Tm_elovI5_5'RACE_R1	ТаКаRа Ех Таq	94 (30)	72 > 57 (35)*	72 (90)	35
5'RCAE nested PCR	GeneRacer 5' nested	Tm_elovI5_5'RACE_Rn	TaKaRa Ex Taq	94 (30)	72 > 57 (35)*	72 (90)	35
3'RACE 1st PCR	Tm_elovI5_3'RACE_F1	3'RACE_adapter_R1	TaKaRa Ex Taq	94 (30)	72 > 57 (35)*	72 (90)	35
3'RACE nested PCR	Tm_elovI5_3'RACE_Fn	3'RACE_adapter_Rn	ТаКаКа Ех Таq	94 (30)	60 (30)	72 (90)	35
CDS cloning	Hm_Tm_elovI5_5'UTR_Fw	Hm_Tm_elovI5_5'UTR_Fw	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Hm_Tm_ElovI5_Fw_HindIII	Tm_ElovI5_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35

Table 4. PCR conditions (continued)							
				Denature tenperature (°C)	Annealing tremprature (°C)	Extention temperature (°C)	Number of cycles
PCR	Forward primer	Reverse primer	DNA polymerase	(duration in s)	(duration in s)	(duration in s)	
A. finis							
fads2 cloning							
CDS cloning	Achiridae_fads2_5'UTR_F1	Achiridae_fads2_3'UTR_R1	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Hm_Af_Fads2_Fw_HindIII	Hm_Af_Fads2_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
elovl5 cloning							
CDS cloning	Achiridae_elovI5_5'UTR_F1	Achiridae_elovI5_3'UTR_R1	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (20)	35
Vector construction	Af_ElovI5_Fw_HindIII	Af_ElovI5_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
G. melas							
fads2 cloning							
CDS cloning	Achiridae_fads2_5'UTR_F2	Achiridae_fads2_3'UTR_R1	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
Vector construction	Gm_Fads2_Fw_HindIII	Gm_Fads2_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
elov15 cloning							
CDS cloning	Achiridae_elovI5_5'UTR_F1	Achiridae_elovI5_3'UTR_R1	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
Vector construction	Gm_ElovI5_Fw_HindIII	Gm_ElovI5_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
D. rerio							
fads2 vector construction	Dr_Fads2_Fw_HindIII	Dr_Fads2_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
elovl2 vector construction	Dr_Elovl2_Fw_Kpnl	Dr_Elov12_Rv_Xbal	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30
Constructing co-expression vectors							
Linearizing pYES2	pYES2_linearize_Fw	pYES2_linearize_Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (40)	30
Isolating ADH1-elovI2	PADH1_DrElovI2_TADH1_Fw	PADH1_DrElovI2_TADH1Rv	PrimeSTAR Max DNA Polymerase	98 (10)	55 (5)	72 (10)	30

本研究の遂行および論文の作成をはじめ、研究生活のありとあらゆることについ て、終始温かく丁寧なご指導、ご鞭撻、およびご校閲を賜りました東京海洋大学海 洋生命科学部海洋生物資源学科水族生理学研究室教授 吉崎 悟朗博士に心より感 謝の意を表します。

本論文のご校閲を賜り、有益なご教示を下さった東京海洋大学海洋生命科学部海洋生物資源学科水族生理学研究室准教授 矢澤 良輔博士、同水族栄養学研究室教授 佐藤 秀一博士に謝意を表します。

博士前期課程から新たな課題に取り組むにあたり、ひとつひとつ丁寧にご指導下 さり、先達として常に明るく道を照らして下さった、東京海洋大学海洋生命科学部 海洋生物資源学科水族栄養学研究室助教 壁谷 尚樹博士に深く感謝の意を表しま す。

本研究において耳石の分析をご担当いただいた水産研究・教育機構水産技術研究 所 三好 花歩博士、アキルス科海産種 *Gymnachirus melas* の貴重な生体サンプルの 入手に尽力下さったアメリカ海洋大気庁 John Adam Luckenbach 博士、論文投稿の 際に丁寧なご校閲を賜りました東京海洋大学海洋科学部海洋資源学科集団生物学 研究室の ストルスマン カルロス アウグスト博士に感謝の意を表します。

研究遂行にあたり、適切なご助言を頂いたうえ、実験設備を快くご貸与下さった 集団生物学研究室准教授山本洋嗣博士、水族栄養学研究室准教授芳賀 穰博士、 同学放射性同位元素管理センター 伊藤 友加里様に厚く御礼申し上げます。

また、水族生理学研究室における研究生活を支えて下さいました卒業生の皆様、 研究員の皆様、職員の皆様に心から感謝の意を表します。

最後に、研究遂行のため犠牲となった数多くの実験魚の命に対し、感謝と慰霊の 念を謹んで捧げます。