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Chapter 1

Introduction
1.1 Research background

Navigators perform duty assignments to ensure safe navigation and prevent mar-
itime accidents. Maritime accidents are classified into 13 categories [1]. The acci-
dents include collisions, contacts, grounding, flooding, et cetera. Among these, col-
lisions are the most frequently occurring type of maritime accident. According to
Japan Marine Accident Tribunal(JMAT), collision accidents account for 25% of all
accidents[2, 3, 4]. Collision accidents involve the collision itself and give rise to sec-
ondary issues like oil spills, casualties, and vessel damage [5, 6, 7, 8]. Therefore,
it is essential to find solutions to reduce collision accidents and achieve safe naviga-
tion [9]. This section’s subsections report definitions of collision accidents, customary
practices for collision avoidance, and decision-making in collision avoidance.

1.1.1 Collision accident

A collision accident is a physical collision between encountering vessels [10]. In
maritime law, it is defined as an act that causes damage to two or more ships or, peo-
ple or property on different vessels due to navigational issues [11]. To avoid collision
accidents, navigators analyze the situation and consider courses of action. This pro-
cess applies customary rules known as COLREG (Convention on the International
Regulations for Preventing Collision at Sea). COLREG is the fundamental set of rules
used in collision avoidance. The rule has 41 regulations across six categories (Part A
to F). They instruct navigators to use all available means to detect collision risks (Rule
5: Look-out). Navigators have no restrictions on their means, but some commonly
known ones include DCPA(Distance at the Closest Point of Approach), TCPA(Time
to DCPA), navigational areas, performance, vessel specifications, speed, and relative
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bearing [12]. The factor of individual experience influences the recognition of the
risk of conflict using these factors [13]. After recognizing the risk of collision, navi-
gators need to assess the current encounter situation to decide on collision avoidance
actions. The customary practices defined in COLREG determine the encounter situa-
tion and collision avoidance actions as follows [14].

• Head-on situation (Rule 14, Figure 1.1 (a)): It is considered that a vessel has
sighted another vessel directly ahead or nearly ahead. In such a situation, both
vessels are required to change their course to the right (starboard) in order to pass
each other on the left (port) side.

• Crossing situation (Rule 15, Figure 1.1 (b and c)): It is considered to occur when
a ship crosses the path of another. In such instances, the vessel that has the other
on its starboard side is required to yield the right of way.

• Overtaking situation (Rule 13, Figure 1.1 (d)): In COLREG terms, a vessel is over-
taking another when it approaches from a direction more than 22.5 degrees be-
hind the other vessel’s beam. In this scenario, it is expected that any vessel over-
taking another should yield the right of way to the vessel being overtaken.

Ownship

Target ship

(a)

Target ship

Ownship

(b)

Ownship

Target ship

(c)

Vessel 1

Vessel 2

(d)

Figure 1.1. The encounter situations defined by COLREGs. (a), head-on , (b), stand-on
of crossing situation, (c), give-away of crossing situation , (d) overtake.

Figure 1.2 illustrates the encounter situations distinguished by sectors. Here, the
coordinate system is relative bearing coordinates with respect to the own ship’s cen-
ter. When the other vessel is in sector 1, the encounter situation is classified as Head-
on. If the other vessel is in sector 2, it falls under Crossing with Stand-on situation; if it
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is in sector 3, it is classified as Crossing with Give-way. If the other vessel is within the
sector of the own ship’s masthead lights, it is categorized as Overtaking. Excluding
overtaking situations, COLREG applies exceptions to following customary practices
(Rule 2) [15]. COLREG does not numerically define the method for distinguishing
encounter situations by sectors, as explained in Figure 1.2. However, it mentions an
angle for overtaking situations, which is the stern light angle. The angles used to
differentiate Head-on and Crossing in Figure 1.2 (j1 ⇠ j2) varied slightly in value
in each reported paper. These values are documented in Table 1.1. The definitions of
the terms used in Table 1.1 are as follows.

• The concept of "Relative Bearing" pertains to the determination of the azimuth
angle between the heading of two ships, measured in a clockwise direction from
the heading of the observer’s ship to the heading of the target ship [16].

• The term "Heading" denotes the orientation of a vessel at a specific point in time,
represented as the angular measurement from 000 degrees in a clockwise direc-
tion to 360 degrees [16].

• The term "Encounter angle" denotes the angle determined by aligning the heading
of the TS(Target Ship) with the initial point of the heading vector of OS(Own Ship)
[17].

Table 1.1. Variables and parameters employed in the categorization of encounter sce-
narios.

Relative
bearing

Heading
(OS)

Heading
(TS)

Encounter
angle

Range
Head-on

[18]
p p p

337.5 ⇠ 022.5
[19]

p p p p
348.75 ⇠ 011.25

[20]
p p p

345.0 ⇠ 015.0
[21]

p p p p
355.0 ⇠ 005.0

[22]
p p p p

348.75 ⇠ 011.25

Here, the term "Range of Head-on" denotes the specific area value identified as a
head-on situation when a target ship (TS) is within a certain range relative to the
bearing of the own ship (OS).
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0º

112.5º247.5º Overtaking

φ1º φ2º

Sector1

Sector2 Sector3

Figure 1.2. Illustrate of encounter situation.

Tam and Bucknall [18] classified the categorization of collision risk encounters
with obstacles as an approach based on geographical areas for the development of an
evaluation method. Hasegawa et al. [19] and Namgung [22] categorized the regions
confronting obstructions into six segments according to the relative orientation of the
obstacle in order to develop the algorithm. Yoo and Lee [20] conducted a numerical
classification of encounter situations according to the COLREGs in order to validate
the environmental stress model, which is a collision risk index. Zhang et al. [21] cate-
gorized encounter scenarios by considering spatial areas and angles in order to create
a decision making system for collision avoidance. Nevertheless, discrepancies were
found in the relative bearings utilized to differentiate between head-on and crossing
situations across various studies.
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1.1.2 Decision making for collision avoidance

1.1.2.1 Flows of decision making

The navigation officer of a vessel on underway goes through a four-stage decision-
making process: information acquisition, situational analysis, decision-making, and
action [23]. As reported in Section 1.1.1, navigators analyze the possibility of colli-
sion and encounter situations using variables such as DCPA, TCPA, relative bearing,
distance, et cetera [14]. Subsequently, they utilize personal skills, conventional rules,
and knowledge to make avoidance decisions based on the acquired and analyzed
risky situations. The collision prevention rules that form the foundation of special-
ized knowledge define only basic concepts and principles, allowing exceptions based
on on-site judgment [15]. Navigators’ situational analysis and decisions are subjec-
tive and prone to errors [24, 25]. In particular, there have been reports that nav-
igators’ CPA-based situational analysis method when observing ARPA(Automatic
Radar Plotting Aids) RADAR is unsuitable for predicting collision risks [26]. This
is because human experience and knowledge influence the interpretation of infor-
mation [15]. This error is reported as a significant cause of collision accidents [15].
Various methods for reducing this error, as well as quantifying collision risks, have
been reported.

1.1.2.2 Modeling of collision risk and avoidance

Various studies have been conducted on the establishment of collision avoidance
algorithms. Imazu et al. [27] proposed an Obstacle Zone by Target (OZT) model by
introducing the concept of safe distance and evaluated OZT according to the situation
and speed of encounters with the other ship. Kayano et al. [28] applied a Kalman
filter based on the OZT model to predict and evaluate ship movements. Sawada et
al. [29] used reinforcement learning to build and evaluate an OZT-based automatic
evacuation algorithm. Here, the concept and calculation method of internal OZT was
proposed for the first time to solve the shortcomings of the trigonometric function-
based OZT calculation process, and the Velocity Obstacle (VO) model was proposed.
The VO model is an algorithm developed for robot motion planning [30]. Kuwata
et al. [31] applied the VO algorithm to ships and proposed a rule-based collision
avoidance algorithm based on COLREG. Huang et al. [32] evaluated the usefulness
of the VO algorithm in multi-vessel collision situations. A scenario was constructed
to simulate a multi-ship collision, and numerical simulations were performed. Zhang
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et al. [21] built and evaluated a rule-based collision avoidance algorithm based on the
VO model. Zhang et al. defined the concepts of collision-avoidance actions before the
counter situation (CAAB) and collision-avoidance actions in counter situation (CAAI)
with the concept of collision avoidance threshold. Contributions have been made to
address the problem of over-following rules based on these two variables.

Many exciting reports attempt to quantify the risk of collision. Kearon [33] pro-
posed a computational method that calculates the weights of DCPA and TCPA to
generalize the risk of collisions. Lisowski [34] proposed a method to define the risk
of collision as a mathematical function of TCPA and DCPA. Ren et al. [35] reported a
model that combines membership functions to calculate collision risk based on fuzzy
logic using AIS data. Xu and Wang [36] reviewed the basic concepts of collision risk
and numerical models for collision risk calculation. Since then, various studies have
contributed to performing collision risk evaluation by introducing an evaluation in-
dex and determining the weight of the index.

In addition to the above risk calculation, there have also been reports on quantify-
ing the risk of collision by building a ship domain. A ship domain is a generalization
of the threshold area where a ship does not allow other ships to enter when enter-
ing an encounter situation. The domain model is constructed based on statistically
processed ship trajectory data. Since it was first proposed by Fujii and Tanaka [37],
researchers have proposed many concepts. Goodwin [38] proposed the concept of
a domain with three sectors of different critical points. Coldwell [39] proposed an
elliptical model in which OS positions are lop-sided.

Finally, some interesting work has been reported on efforts to build models that
reflect the cognitive judgment of navigators. Yim et al. [40] proposed a multiple re-
gression model to quantify human risk perception using Coast Guard vessels. Chen
et al. [41] reported a scenario-based study of patterned vessel trajectories using AIS
data based on human cognitive judgment in inland waterways. Using simulation
data, Xue et al. [42] proposed a human maneuvering decision model. This simula-
tion constructed a scenario for the berthing process near a pier. Xue et al. [43] used
scenario-based simulation data to propose a human judgment model based on envi-
ronmental variables, hull control variables, external forces, and loading conditions in
berthing maneuvers. Xue et al. [44] proposed a decision tree model using simulation
data to explain collision avoidance decision outcomes in crossing situations occurring
near piers in port limit.
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1.2 Objective of this dissertation

A review of existing research shows that Vessel collisions are a significant chal-
lenge because they cause more than just crashes; they cause disasters. COLREG, a
collision avoidance convention, does not provide strict figures, and it has been re-
ported that human subjectivity can be involved due to the existence of exceptions. I
have identified the decision flow required for collision avoidance and the potential
for human error. I identified reported contributions to reducing human error and
quantifying collision avoidance. Some interesting contributions to human cognitive
judgment have also been reported. These works have quantified human perception
of hazard passage patterns in inland waterways and modeled human maneuvering
decisions using a variety of variables. However, it is imperative to address the re-
search needs identified in the aforementioned study.

The first is modeling how humans make collision avoidance decisions. Existing
studies do not show the reflection of collision avoidance algorithms on human deci-
sions. Furthermore, efforts to reflect human cognitive judgment have been based on
data acquired in complex environments within the navigation system. It has been re-
ported that navigation in this region has to consider a smaller margin area, path width
impact, and UKC(Under Keel Clearance) impact and may be affected by specific traf-
fic rules [45]. It has also been reported that this area’s voyage planning, monitoring,
and navigation habits are different [46, 47]. Therefore, there is a need to construct and
validate a model that predicts collision avoidance directions by reflecting figures from
collision avoidance algorithms based on human-performed navigation data outside
of port-limit from a different perspective.

Second, modeling the outcome of the navigator’s perception of the encounter sit-
uation after detecting the collision risk. The decision flow of the navigator regarding
collision avoidance was identified. It is reported that the navigator’s decisions are
subjective and contain errors. Interesting contributions have also been reported to
compensate for errors and thus contribute to safe navigation. The goal is to develop a
decision system for collision avoidance that reduces errors. However, some problems
have identified an issue in which varying numerical values are utilized in construct-
ing the decision systems outlined in each respective study. Therefore, the need to
build and validate a predictive model of the outcome of the navigator’s perception
of the encounter situation in the context of detecting the risk of a collision has been
found.
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1.3 Structure of this dissertation

The scope of this research is limited to the following four works: 1) Acquisition
and processing of data required for building a prediction model, 2) Building a pre-
diction model by machine learning, 3) Acquisition of the model, 4) Performance ver-
ification of the model, and 5) Proposal of an optimized model.

I. Modeling the ship’s collision avoidance direction, which humans operated in an
encounter situation.

II. Modeling the ship’s encounter situation awareness result

This dissertation consists of four chapters. Chapter 1 presents the necessity of in-
venting a model that quantifies human behavior outcomes and efforts to perform col-
lision avoidance. In addition, the purpose of this dissertation was presented. Chapter
2 outlines a procedure for determining the parameters of the two vessels, OS and TS.
Chapters 3 and 4 consist of the primary studies conducted in this dissertation. The
research subjects mentioned in Section 1.2 will be explained on in Chapters 3 and
4, respectively. Chapter 5 summarizes the conclusions obtained in each chapter as
a summary of this dissertation and presents the overall conclusions. The structural
overview of this dissertation is shown in Figure 1.3.
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Chapter 2
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results 

Chapter 1
Introduction

Figure 1.3. Structural overview of dissertation.
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Chapter 2

Calculation of the relationship be-
tween the ships

This section describes a method of calculating the variables between OS and TS.
That is described to define the parameters encountered in the collision situation,
which is required for data processing in Chapters 3 and 4.

Figure 2.1 shows the variables of the two ships encountered in a collision risk
situation. It is assumed that two ships are on the Earth-fixed coordinate system. Here,
the position of the ownship(OS) is Po(xo, yo), velocity is Vo, the course is yo, and the
position of the target ship(TS) is Pt(xt, yt), velocity is Vt, the course is yt. Az is the
azimuth of TS’s position from OS. When OS navigates in its course yo, its relative
velocity components on the X and Y axis(DX, DY), respectively, and its relationship
is calculated as follows [48].

DY = Vtsinyt � Vosinyo

DX = Vtcosyt � Vocosyo

(2.1)

Vr =
p

DX2 + DY2 (2.2)

yr = arctan
DY

DX
(2.3)

Here, Vr is the relative velocity and yr is relative bearing.

When knowing the three parameters (OS’s coordinates converted into radians (jo,
lo), distance to the TS (d), and bearing to the TS (Az)), the coordinates of the TS (jt,
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Y(Longitude)

X(Latitude)

ѱo

ѱt

Az

Vo

Vt

Po

Pt

Own ship
Target ship

ѱr

d = PoPt

Figure 2.1. Representation of the OS and TS parameters within the earth fixed coordi-
nate system.

lt) were obtained using rhumb line calculation [49, 50]. The equation for converting
the latitude of the TS into radians (jt) is denoted as Equation 2.5, where the angular
distance (f) is calculated from Equation 2.4 [49, 50].

f = d/R (2.4)

Here, R is the radius of the Earth (3440 nautical miles).

jt = jo + f · cosAz (2.5)

The longitude of the TS expressed in radians (lt) is calculated by adding the dif-
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ference in longitude between them (Dl)(Equation 2.9). The calculation of Dl uses
the projected latitude difference described in Equations 2.6 and 2.7. The constant d

of Equation 2.6 is derived using the inverse gudermannian function, which provides
the elevation of the Mercator projection corresponding to a specific latitude.

d = ln(tan(p/4 + jt/2)/tan(p/4 + jo/2)) (2.6)

As for the projected latitude difference (q), distinct values were employed in cases
where a difference in latitude existed, as opposed to cases where no such difference
was present, utilizing the constant d. For the computerized calculation, 10e

�12 was
used as a number which is close to zero.

q =

8
<

:
(jt � jo)/d, If d > 10e

�12

cosjo, Else
(2.7)

Dl = f · sin(Az/q) (2.8)

lt = lo + Dl (2.9)

By the way, When knowing the two ships positions, the distance (d) between OS
and TS in Equation 2.11 is calculated using rhumb line calculation as follows [49,
50]. The distance calculated in Equation 2.11 is derived from Pythagorean theorem.
However, there is a need to correct the projected latitude difference(q)(Equation 2.7)
for the correction of the Mercator calculation, which converts the curve to a straight
line. Dl is the difference in longitude, and a different value is used according to
Equation 2.10, because the difference in longitudes between the two positions must
be calculated for a close direction.

Dl =

8
<

:
�(2p � (lt � lo)), If (lt � lo) > p

2p + (lt � lo), If (lt � lo) < �p
(2.10)
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d =
q
(jt � jo)2 + q2 · Dl2 · R (2.11)

where j and l are the values obtained by converting latitude and longitude into
radians, respectively, and R has a radius of The Earth (3440 nautical miles).

Using this variable, the DCPA and TCPA, which are used as criteria for determin-
ing when a navigator performs a collision avoidance operation, are obtained using
Equation 2.12 and 2.13

DCPA = d ⇥ |sin(yr � Az + p)| (2.12)

TCPA = d ⇥ cos(yr � Az + p)/Vr (2.13)
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Chapter 3

Modeling ship’s collision avoidance
direction in an encounter situation
3.1 Objective of this work

The object of this work is to construct a model that models the direction of avoid-
ance action of the vessel, which is the answer to human behavior in situations where
the risk of collision exists. Here, the direction of collision avoidance means only a
change of her course. To develop the model, ship trajectory data, which results from
actual human behavior, has collected. Based on the collected data, variables that cri-
teria for judgment were obtained when the ship avoided another ship. That contains
the basis for the essential judgment used by navigators and the figures obtained from
the collision-avoidance algorithm. Subsequently, the performance was verified by
constructing an ensemble model that predicted the avoidance direction. The decision-
tree-based bagging and the AdaBoost have been used among the models.

Remainder of this chapter is organized as follows. Section 3.2 describes a method-
ology that includes the establishment and evaluation of an classification model to de-
fine collision situations; describes the data, variable construction, and pre-processing
used in the work; and describes the relationship between the variables and the di-
rection of the changed course in the event of a collision avoidance action. Section 3.3
presents an analysis of the acquired data and results of the estimated model. Section
3.4 discusses the results.
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3.2 Materials and methods

Figure 3.1 shows a flow chart of this study. To illustrate the proposed model, the
collision avoidance situation was defined first. It is then described in the order of
data acquisition and processing, modeling, and verification methods.

Data acquisition Data processing VerificationModeling

Obtaining ship trajectory 
from database

Trajectory data(AIS data)
 - MMSI number
 - position
 - speed of ground
 - course of ground
 - time-series
 - ship size

Bagging model
 - model calibration
 - find high accuracy

AdaBoost model
 - model calibration
 - find high accuracy

Data aggregation

Data cleansing

Data processing

Variable construction

Pre-processing

Confusion matrix

Classification accuracy

ROC-AUC metrics

F1 score

Figure 3.1. Flow charts of model construction and validation.

3.2.1 Collision avoidance

In this subsection, the concept of figures acquired in the collision situation and the
collision avoidance algorithm are defined. The encounter situations between the OS
and TS are divided into three categories [14]. These are the head-on situation, crossing
situation, and overtaking situation. Here, the crossing is divided again into the case
where the OS performs a collision avoidance action and the case where TS performs
one. Although each situation is distinguished using relative azimuths, DCPA, and
TCPA figures, COLREG did not declare clear numerics, and many studies have used
different figures to distinguish encounter situations [18, 19, 20, 21, 22]. In this study,
encounter situations were classified based on Zhang et al. [21] (See row 4 of Table
1.1).
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3.2.1.1 Collision avoidance algorithm

In this study, OZT was used as an algorithm to obtain the predictor variables. The
OZT algorithm calculates the area where a ship collision can occur as a line or plane
[27, 29]. Various methods for calculating OZT have been proposed. In this study, the
OZT calculation model was used to express the area where the course should not be
set as a line [48]. This model was calculated based on the safe distance set by the
operator. Figure 3.2 (a) illustrates the parameters used to calculate OZT.

The method of geometrically constructing the collision course required for the
OZT construction using the parameters described in Figure 3.2 (a) is as follows.

1. Draw a black circle with a safe distance (rs) as the radius around the positions of
OS(xo, yo).

2. Draw the tangent lines (AA0, BB0) connecting TS and the safety distance circle in
step 1.

3. Draw a virtual point C in the opposite direction of the TS’s speed and direction
vectors (Vt,yt), and draw a purple circle with the speed of the OS(Vo) as the radius
around the point C.

4. Obtain the intersection (E, F) of the tangent line(AA0, BB0)with the speed circle
of OS in Step 3, respectively. Here,

�!
CEand

�!
CF are acquired as courses that allow

the OS to pass through the TS at a predetermined rs. When navigating between
angles of Co, TS passes closer than a safe distance set in advance.

The angle a between the tangent lines (AA0, BB0) and d is calculated to perform a
numerical calculation of the geometrically plotted course (

�!
CEand

�!
CF). Hereafter, the

course (
�!
CEand

�!
CF) is denoted as Co

a = arcsin(rs/d) (3.1)

where, rs is a safe distance, which is a hyperparameter of the OZT, and d is the
distance between OS and TS.
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(a)

OS

TS

OZT1

OZT2

 0.5 mi 
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Figure 3.2. (a) Conceptual diagram of OZT with parameters, (b) The computed results
of OZT. OS’s speed 15 kts, course 000deg, Length Over All 150m. TS’s speed 10 kts,
course 270deg. Az 050deg and the distance of two vessels 3.0 nautical miles.
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According to Imazu [48],rs, a safe distance, was calculated as half the sum of the
length of OS and TS, but that was judged as not appropriate. Therefore, the safe
distance in this study was set to six times the length of OS, based on the work of Fujii
and Tanaka [37]. Take an arbitrary point D by dropping a perpendicular line from
point C to the tangent lines respectively. Angles are calculated using the law of sines
through the relationship between the divided 4PtCD and 4CDE or 4CDF [48]. The
triangles have a common segment CD as shown in Equation 3.2. Equation 3.2 is then
organized based on Co, as shown in Equation 3.3.

Vo = sin(Az ± a � Co) = Vtsin(yt � p � (Az ± a)) = Vtsin(Az ± a � yt) (3.2)

Co = Az ± a � arcsin
⇢

Vt

Vo

sin(Az ± a � yt)

�
(3.3)

where Az denotes the azimuth of TS from OS, Vt denotes the speed of TS, Vo denotes
the speed of OS, and yt denotes the course of TS.

The OZT is constructed by connecting coordinates advanced by the estimated
navigation distance (Vo · TCPA) from the location of OS (jo, lo) to the direction of
Co. The coordinates of the OZT are obtained using the Rhumb line calculation [50].
The latitude of OZT (OZTLat) is calculated as shown in Equation 3.5 using the angular
distance (f) calculated from Equation 3.4.

f = (Vo · TCPA)/R (3.4)

OZTLat = jo + f · cosCo (3.5)

The longitude of the OZT (OZTLong) is obtained by adding the longitude differ-
ence (DlOZT) between OS and OZT. DlOZT was calculated using the projected lati-
tude difference obtained in Equation 3.6 and Equation 3.7.
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dOZT = ln(tan(p/4 + OZTLat/2)/tan(p/4 + jo/2)) (3.6)

q =

8
<

:
(OZTLat � jo)/dOZT, If dOZT > 10e

�12

cosjo, Else
(3.7)

DlOZT = f · sin(Co/qOZT) (3.8)

OZTLong = lo + DlOZT (3.9)

where, jo and lo are figures obtained by converting the latitude and longitude of the
OS into radians, respectively, and R is the radius of The Earth (3440 nautical miles).

Figure 3.2 (b) is an example of OZT calculation by above steps.
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3.2.2 Data acquisition

In this subsection, the data used in this study is described, including the data
collection and adopted processing methods.

3.2.2.1 Data collection

For modeling(Construction and evaluation), variables extracted from the collected
data. Among these, followed data has required; the trajectory data take action to
avoid risk of collision. Methods for collecting such data include ship maneuvering
simulations, traffic surveys, and scenario-based numerical simulations [40].

In the case of ship maneuvering and scenario-based numerical simulations, there
is a problem that the actual situation cannot be reflected at sea. However, among
the methods of collecting data, the method of collecting AIS(Automatic Identification
System) data has the advantage of being able to reflect the actual situation at sea, un-
like the previous two methods [51]. AIS data are classified as static information, dy-
namic information, and navigation-related information [52]. The data were extracted
in CSV format from the AIS database constructed on the Advanced Navigation Sys-
tem of the Tokyo University of Marine Science and Technology. The extraction range
of data is latitude 34�30.00 N ⇠ 35�01.80 N and longitude 139�12.60E ⇠ 139�39.60E.
The reason for using only the data in the above boundary is to exclude data affected
by traffic rules in Tokyo Bay. Although the area contains an island and the recom-
mended route, the area has the relative meaning of the open waters outside the port
limit. In addition, no collision avoidance action near the recommended route was
detected. The period of extraction was continuous 24-h data from January 1, 2017, to
December 31, 2019. Figure 3.3 illustrate the sea areas in which data were collected.
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Figure 3.3. Geographical visualization of the data collected area (Near Oshima, Japan).

21



3.2.2.2 Data processing

The collected data were processed in four steps, and Figure 3.4 illustrates the flow
of the processing procedures.

� Step 1 : (Data aggregation and cleansing): The data required for the experiment
were extracted from the raw data (static and dynamic information of AIS data).
When the extraction was performed, the static information(ship’s size and MMSI)
were extracted, and the dynamic information (MMSI, coordinate (latitude, longi-
tude), ship’s speed, and course, and time-series) were extrated. This information
was aggregated based on the MMSI number. Subsequently, missing values were
removed from the aggregated information, and only the data in the extraction
range described in Section 3.2.2.1. were preserved. Among these, day data with a
Beaufort scale of 7 or higher were excluded to minimize weather impacts [53]. Fi-
nally, the data of each ship were stored in an independent file based on the MMSI
number.

� Step 2 : (Data interpolation and resampling): The data required to obtain predic-
tor variables should be compared based on the same time interval. This is because
collision avoidance is a consequence of simultaneous operation with a risk of col-
lision. Unfortunately, AIS data are stored irregularly according to standards [54].
Therefore, interpolating the data was necessary. When interpolating data, linear
interpolation was performed if the time-step interval of the data points was 60 s
or less, and cubic spline interpolation was performed if the time-step interval was
between 60 s and 180 s. If it exceeds 180 s, there is a concern that data that do not
exist may be excessively interpolated, so it was not interpolated. The interpolated
data were re-sampled at intervals of 30 s.

� Step 3 : (Data processing according to logic): The data of each ship stored in the
process of Step 2 were called using a double loop. The double loop was derived
using the total number of files (a count of ships detected). The vessel called in
the first loop is named OS, and that in the second loop is named TS. Then, check
whether the two data sets overlap in time series and traffic within a certain dis-
tance. Collision avoidance occurs because the two ships interact within the same
space and time. According to the ship domain theory, if the minimum passage
distance between the OS and TS is less than six times length of the OS, it is ex-
cluded from the data for variable construction. The reason is to exclude data that
pass through dangerous distances.
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Step 3.1, Identification of the point of altering the course : To obtain data on
which the vessel has performed altering her course, talter which the time the ves-
sel began to change her course must be identified. The commencement of the
alteration was identified using the curvature(k). The curvature was calculated by
numerically differentiating the set of trajectory coordinates
P =

�
P =

�
Px, Py

�
| P1, P2, ..., Pn

 
of the ship operated in the Earth coordinate sys-

tem, with longitude as the x-axis and latitude as the y-axis. Thereafter, the time at
which the curvature reached its maximum value was identified as talter.

- Condition 1: It was confirmed that the time series data of OS and TS were pre-
served for 1 hour before and after based on the point at which the minimum pas-
sage distance between the two ships occurred (dmin). The OS and TS data were
re-sampled for 30 s in step 2. If the number of data points was less than 120, the
data were not intact. Hence, they were excluded from the training data.

- Condition 2: At the time of talter, it was confirmed that altering course operation
performed by the OS was owing to the risk of collision. When interference by
the OZT occurred in front of the OS’s course at times of talter, the manoeuver was
considered a collision avoidance operation.

- Condition 3: It was confirmed whether OS was in a give-away situation(including
both head-on and crossing give-away).

k =
⇣ ��P̈x · Py � Ṗx · P̈y

��
. ��Ṗx · Ṗx + Ṗy · Ṗy

��
⌘1.5

(3.10)

Step 3.2, Identification of single avoidance situation : In the algorithm of Step 3,
data that performed the collision avoidance operation was stored as the index of
OS. The variable was constructed by extracting from the data only when the OS
performed a single operation with TS.

Step 3.3, Variable construction : The predictive variable was constructed using
the indicators that the ship operator determines the risk of collision and the vari-
ables obtained by the collision avoidance algorithm. The variable was calculated
from the time of talter. In addition to the DCPA and TCPA indicators used in ARPA
RADAR, the length ratio of two ships, the speed ratio of two vessels, and the As-
pect which is the relative bearing calculated by the sight of the TS were selected as
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predictor variables. In addition, the relative direction (qOZT) and distance (dOZT)
to OZT, which enable passage from the safe distance set by the operator, were
selected as predictors. Here, qOZT and dOZT obtained the values of Co with a
small difference in angle based on the course of the OS. Moreover, the variables
corresponding to the angle were converted from �180� to 180� by relative bear-
ing based on the course of the OS. Additionally, the response variable was used
as a categorical variable. If the direction in which the course changes to avoid a
collision with the target ship is in the starboard direction, it is 1; otherwise, it is 0.

� Step 4 : (Data Pre-processing): The pre-processed data were converted to be suit-
able for model construction. This is important because it affects the performance
of the model [55]). Since the predictor used in this study was a continuous vari-
able, it was standardized to unify the scale. In addition, data points were uni-
formly sampled through under-sized sampling to prevent the model from de-
grading predictive power due to an imbalance in the resulting variables.

24



AI
S 

da
ta

(st
ati

c)
AI

S 
da

ta
(dy

na
mi

c)

Ex
tra

cti
ng

 In
for

ma
tio

n
(sh

ip 
siz

e, 
MM

SI
)

Ex
tra

ctin
g I

nfo
rm

ati
on

(M
MS

I, P
os

itio
n, 

Sp
ee

d, 
Co

urs
e)

Me
rgi

ng
 da

ta 
by

 M
MS

I

Sa
ve

 as
 an

 in
div

i-
du

al 
file

 by
 M

MS
I

Re
mo

ve
 th

e m
iss

ing
 da

ta,
 he

av
y w

ea
the

r d
ata

Pe
rfo

rm
 tim

e s
eri

es
 

int
erp

ola
tio

n b
as

ed
 on

 M
MS

I

Re
sa

mp
lin

g d
ata

(by
 30

 se
c.)

Sa
ve

 as
 an

 in
div

idu
al 

file
 by

 M
MS

I

Lo
op

 2
j =

 i+
1,∙
∙∙,N

 (N
 is

 to
tal

 nu
mb

er 
of 

file
s) 

# O
S 

= D
ata

 of
 ith  fil

e 
# T

S 
= D

ata
 of

 jth  fil
e

OS
, T

S

Is 
the

re 
da

ta 
of 

the
 sa

me
 tim

e s
eri

es
?

No

Ye
s

6 ·
LO
A O

S 
≤ d

mi
n 

No

Ye
s

No

Ye
s

Fin
d t

he
 tim

e(t
alt
er) a

t w
hic

h t
he

alt
eri

ng
 ac

tio
n w

as
 pe

rfo
rm

ed
  

Co
nd

itio
n 1

Co
nd

itio
n 2 Ye

s

No

Co
nd

itio
n 3

No

Ye
s

Is 
the

re 
a d

uty
 of

 ac
tio

n t
o a

vo
id 

the
 ris

k o
f c

oll
isi

on
 

(H
ea

d-o
n a

nd
 C

ros
s(g

ive
-aw

ay
) 

to 
OS

?

Va
ria

ble
 co

ns
tru

cti
on

Sa
ve

 da
ta 

as
 in

de
x 

of 
OS

 

Is 
the

 da
ta 

of 
1 h

ou
r b

efo
re 

an
d 

aft
er 

pre
se

rve
d b

as
ed

 on
 d m

in? 
(Is

 th
e d

ata
 po

int
 12

0?
)

At
 th

e t
im

e t
alt
er, O

ZT
 be

tw
ee

n O
S 

an
d T

S 
wa

s e
sta

bli
sh

ed
, a

nd
 

do
es

 it 
hin

de
r th

e c
ou

rse
 of

 O
S?

i =
 1,

2,∙
∙∙,N

-1 
(N

 is
 to

tal
 nu

mb
er 

of 
file

s) 
Lo

op
 1

Fin
d t

he
 si

tua
tio

n i
n w

hic
h t

he
 O

S 
ha

s p
erf

orm
ed

 a 
sin

gle
 TS

 
av

oid
an

ce
 si

tua
tio

n

Sa
ve

 va
ria

ble
 da

ta 

St
an

da
rd 

Sc
lai

ng

Un
de

r-s
ize

 sa
mp

lin
g

St
ar

t

En
d

St
ep

 1

St
ep

 2

St
ep

 3

St
ep

 4

Figure 3.4. Flow chart of data processing and variable construction.
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3.2.3 Ensemble model

An ensemble classification model is formulated to estimate the relationship be-
tween the obtained predictor variables and the direction of course change, which is
the result of collision avoidance. Figure 3.5 illustrates a framework in which the vari-
ables calculated using the acquired data were used to train an ensemble model. The
inputs were the variables obtained through the process described in Section 3.2.2.2.
Furthermore, the output was the direction of collision avoidance predicted using the
trained model. To clarify the framework, the base model used in the ensemble model
is described, followed by the Bagging, AdaBoost, and hyperparameters. Ultimately,
the model’s validation method is delineated.

Model 
predicting

Model training

Bootstrap sampling

Prediction n

Prediction

Prediction 2Prediction 1

Training data nTraining data 2Training data 1

Train data

Base 
model n

Base 
model 2

Base 
model 1

Final model

Model 
predicting

Model training

Prediction n

Prediction

Prediction 2Prediction 1

Training data nTraining data 2Training data 1

Base 
model n

Base 
model 2

Base 
model 1

Bagging AdaBoost

Weight 1 Weight n

Final model

Figure 3.5. Illustration of model framework for Bagging (Left), and AdaBoost(Right).
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3.2.3.1 Base model

Ensemble models are a supervised learning algorithms that combines multiple
base models for improved predictive capabilities [56]. A Decision-tree model was
used as the base model for the ensemble model. Because this model can be con-
structed efficiently even for massive amounts of data, the premise for the data dis-
tribution is not required [57]. While various decision-tree models exist, I opted to
utilize the widely employed Classification And Regression Trees (CART) model for
analysis. The Decision-tree model divides the space such that data points with the
same result variable are grouped while dividing the nodes. When dividing a node
in the CART model, the Gini index, which is a measure of the impurity of data, was
used as a reference. This is the sum of the product of probability (pi) that belongs to
the class (i) of the outcome variable among the number of M result variables when
divided between a node (S) and the probability that it does not belong.

G(s) =
M

Â
m=1

pi(1 � pi) (3.11)
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3.2.3.2 Bagging and AdaBoost model

The Bagging model is an ensemble model that is based on a decision tree. The
advantage of the Bagging model is that it is robust to data noise of the data and
the possibility of low overfitting [56, 58]. In addition, each model was independent,
because the base model was constructed in parallel. K pieces of training datasets
were extracted by sampling using the replacement method, and K pieces of bootstrap
samples were constructed and used as a training dataset [59]. Subsequently, the base
models were created using multiple datasets and combined to build a final model.
The final model is derived by combining the results of the multiple-base model. The
final model is formulated as follows [59, 60].

C
⇤(x) = argmax

y

 
K

Â
i=1

I( f
(i)(x) = y), y 2 {0, 1}

!
(3.12)

where, C
⇤(x) is the final model, I is the indicator function, f

(i)(x) is the prediction
model for the reconstructed and extracted bootstrap samples, and y is the outcome
variable.

The AdaBoost model improves classification performance by constructing a strong
learner by linearly combining the learning outcomes of weak learners based on deci-
sion trees [61]. Moreover, it is known for its excellent performance in simple imple-
mentation and generalization [62]. Starting with the first iteration, the weak learner
learns and delivers the classification result information to the next classifier. The
following classifiers leverage the information received from existing classifiers to im-
prove the weight of the data that fail to be classified. That is, the misclassification rate
is lowered while the weight of the sample misclassified by the previous classifier is
changed. The model is formulated as follows [60, 61].

C
⇤(x) = sign

"
M

Â
j=1

ajhj(x)

#
(3.13)

where, C
⇤(x) is the final model, a is the weight, h is the weak learner, and N is the

number of repetitions.
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3.2.3.3 Hyperparameters and model assessment

The ensemble models used in this study are the Bagging and AdaBoost models
based on the Decision Tree. Each model adjusts the hyperparameters to find the op-
timal prediction.

Hyperparameters of the Decision Tree model: The depth of the tree was ad-
justed to prevent overfitting. Because the Decision Tree model can cause over-
fitting by expanding trees to minimize impurities. Depth was adjusted to max
(non-limited), 1, 3, 5, and 7 when applied to the bagging tree, and 1, 3, 5, 7, and 9
when applied to AdaBoost.

Hyperparameters of the Bagging model: The sampling rate determining the
number of base models and the ratio of bootstrap samples was adjusted. The
base models were 10, 30, 100, 500, and 1000, and the sampling rates were 0.1, 0.3,
0.5, 0.7, and 1.0.

Hyperparameters of the AdaBoost model: The number of the base model and
learning rate were adjusted. The base models were 10, 30, 100, 500, and 1000, and
the learning rates were 0.0001, 0.001, 0.01, 0.1, and 1.0.

Grid search: To perform training reflecting all hyperparameters, model learning
of all cases must be performed. Grid search was performed for efficient model
training. Grid Search uses predetermined figures of hyperparameter candidates
to derive an optimal hyperparameter after cross-validation for all cases. Here,
Test data should not be involved in Grid search. Therefore, the set of variables
was split into Train-validation data and Test data, and the Train-validation data
was split into Train data and Validation data set once again. After that, Grid
search was performed using Train data and Validation data set to obtain hyperpa-
rameters with high acuity. Finally, the model was trained using hyperparameters
and train-validation data obtained through grid search

The performance of the ensemble classification model was assessed using the con-
fusion matrix and ROC-AUC metrics. Accuracy, precision, recall and F1-score were
also used for the performance evaluation. These measures are derived from the cal-
culation of a confusion matrix [63]. The matrix represents the anticipated values of
the labels derived from the actual labels. Figure 3.6 illustrates the confusion matrix
for binary classification. Confusion matrix is the basis for calculating metrics that
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measure the performance of a classification model. The terms of the confusion matrix
are summarized below.

TP (True Positive): This is the case, the model predicts True and the actual answer
is True.

TN (True Negative): This is the case, the model predicts False and the actual
answer is False.

FP (False Positive): This is the case, the model predicts True and the actual answer
is False.

FN (False Negative): This is the case, the model predicts False and the actual
answer is True.

Predicted labels

True labels
T

F
True 

Positive
(TP)

False 
Negative

(FN)

False 
Positive

(FP)

True 
Negative

(TN)

T F
Sensitivity

=Recall
TP/(TP+FN)

Specificity
TN/(TN+FP)

Precision
TP/(TP+FP)

Negative 
Predictive 

Value
TN/(TN+FN)

Figure 3.6. Illustration of confusion matrix for binary classification.
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The model’s accuracy is the rate at which it correctly predicts the answers. How-
ever, when the data is imbalanced, using only accuracy may not accurately assess
the model. Therefore, recall and precision have to be used to evaluate whether the
classification was done correctly. Accuracy is calculated by Equation 3.14.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.14)

Precision is defined as the likelihood that the true label is positive given a posi-
tive prediction, and does not ensure the model’s accuracy for negative predictions.
Precision is calculated by Equation 3.15.

Precision =
TP

TP + FP
(3.15)

Conversely, recall represents the probability of a positive prediction given a pos-
itive true label, and does not offer insights into predictions for negative true labels.
Recall is calculated by Equation 3.16.

Recall =
TP

TP + FN
(3.16)

The F1 score, an evaluation metric that considers both recall and precision, is cal-
culated using Equation 3.17. Recall and Precision, as previously reported, are comple-
mentary evaluation metrics, thus they are utilized together in the integrated metric,
F1 score. F1 score takes into account both Precision and Recall, giving a high value
when both are high without being skewed.

F1 score =
2 ⇥ Precision ⇥ Recall

Precision + Recall
(3.17)

The receiver operating characteristic (ROC) curve is a performance metric derived
from the combination of the true positive rate (TPR) and the false positive rate (FPR).
The TPR is equivalent to the recall and sensitivity, while the FPR is computed as 1
minus the specificity. Specificity represents the likelihood of a negative prediction
when the true label is negative. Unlike the recall, the FPR does not offer insights into
predictions made when the true label is positive. The area under the curve (AUC) is
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depicted by plotting the TPR on the y-axis and the FPR on the x-axis, as indicated in
Equation 3.18. And FPR is calculated by Equation 3.19.

AUC =
Z 1

0
TPR(FPR�1(x))dx (3.18)

FPR =
FP

FP + TN
(3.19)

Python and its libraries have been used as tools for model construction and eval-
uation [64, 65, 66, 67].
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3.3 Result

3.3.1 Result of data analysis

Through AIS data acquisition and pre-processing, the predictive variables and re-
sponse variables used in the model construction were obtained. Seven continuous
variables were used here. As a result of the data pre-processing, 950 pieces of data
were obtained. However, the variable was biased when altering the course to the
starboard side (starboard 629, port 321). Since this result affects the model’s learn-
ing and predictive power, it was balanced to 483 data points by undersize sampling
(starboard 284, port 199).

Table 3.1 briefly describes the characteristics and statistics of variables extracted
from the data. Figure 3.7 shows the distribution of the predictor set. Most data were
collected when the speed ratio of the OS and TS was around 1, that is, the speed was
similar. Evidently, a sample of vessels less than twice the size of OS was collected
more than vessels more than twice the length of OS. Most of the collected samples can
be found to perform the collision avoidance action at a time point of 30 min or less of
TCPA. However, the aspect, which is a characteristic of the relative bearing looking
at the OS from TS, had a high level of around 000�. A large number of samples were
collected where the ship was positioned in the direction of the other ship’s positive
bow at the time the ship carried out its evasive maneuver.

Table 3.1. Description of data and statistical metrics.

Variable Type Unit Count Mean Std Min Max

Speed rate Continuous - 483 1.06 0.40 0.30 2.50

Size rate Continuous - 483 1.26 0.84 0.20 4.90

DCPA Continuous Nautical mile 483 0.60 0.51 0.00 4.40

TCPA Continuous Hour 483 0.39 0.12 0.06 0.76

Aspect Continuous Degree 483 -4.39 44.94 -179.90 178.90

dOZT Continuous Nautical mile 483 5.31 1.98 0.00 11.50

qOZT Continuous Degree 483 -2.47 12.24 -52.21 57.32

Y Categorical - 483 - - - -
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Figure 3.7. Distribution of the predictor variables. Classes 0 and 1 denote altering
course to port and starboard sides, respectively.
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Table 3.2 shows the correlation matrix between variables. There was the strongest
positive correlation between TCPA and the distance to OZT.

Table 3.2. Correlation matrix between predictor variables.

Speed rate Size rate DCPA TCPA Aspect dOZT qOZT

Speed rate 1

Size rate 0.25 1

DCPA 0.01 0.16 1

TCPA -0.05 -0.03 0.07 1

Aspect -0.05 -0.10 -0.13 0.25 1

dOZT 0.33 0.10 0.26 0.74 0.13 1

qOZT 0.09 0.04 -0.11 -0.05 -0.13 0.00 1
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3.3.2 Result of model construction

The classification model was constructed using the ensemble classification. In
this section, the results of the model’s construction are first described, and then the
verification results are reported.

3.3.2.1 Construction result

Each classification model was a decision-tree-based model trained by adjusting
the hyperparameters. Hyperparameters were explored based on good accuracy and
prevention of excessive learning. The hyperparameters adjusted were the number of
classifiers, sample rate, and branch depth for the Bagging model and the number of
classifiers, learning rate, and branch depth for the AdaBoost model. Cross-validation
was performed to prevent overfitting in the learning. The Bagging model (depth 1)
exhibited the lowest accuracy, with a value of 0.793. The Bagging models with depth
Max and 7 achieved an accuracy of 0.917. The AdaBoost model with a depth of three
obtained high accuracy(0.934). In terms of F1-Score, which takes into account recall
and bias, the Bagging (depth Max and 7: 0.930) and AdaBoost (depth 3: 0.944) models
were also acquired as the highest-performing models.(See Table 3.3)
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Table 3.3. Estimation of the optimal hyperparameters for models.

Model Feature NoE Rates Ratel Acc. Precision Recall F1-score

Bagging

Max 100 1.0 - 0.917 0.917 0.943 0.930

1 1000 0.1 - 0.793 0.881 0.743 0.806

3 10 1.0 - 0.909 0.904 0.943 0.923

5 100 0.7 - 0.901 0.903 0.929 0.915

7 500 1.0 - 0.917 0.917 0.943 0.930

AdaBoost

1 10 - 0.0001 0.868 0.865 0.914 0.889

3 1000 - 1.0 0.934 0.931 0.957 0.944

5 500 - 1.0 0.917 0.917 0.943 0.930

7 30 - 1.0 0.868 0.865 0.914 0.889

9 10 - 0.0001 0.868 0.865 0.914 0.889

where Feature is the depth of base model, NoE is the number of base model, Rates the
sampling rate, Ratel is the learning rate, and Acc. is Accuracy.

3.3.2.2 Validation result

The confusion matrix for the models is shown in Table 3.4. Furthermore, the ROC-
AUC metrics were computed, and ROC curves were generated (Figure 3.8). AUC
scores of models except AdaBoost models (depth1, 7, 9) were obtained at 0.9 or higher.
The model that obtained high accuracy in the Bagging was the model (depth max, 7).
After that, the model (depth 3) showed high accuracy. The model (depth Max, 7)
acquired a high recall and F1-score. After that, the model (depth 3) showed a high
score. Therefore, in the Bagging model, the model (depth Max, 7) appears to be the
best, but this model was founded that over-fitted with 1.0 accuracy of training. In the
AdaBoost model, the model (depth 3) was obtained with high accuracy, recall, and
F1-Score. However, the accuracy of all the training performed through the AdaBoost
model was founded to be over-fitted to 1.0. The Bagging model (depth of 3) was not
overfitted, with a training result of 0.906, and the validation results showed high ac-
curacy, recall, and F1-score. Therefore, the Bagging model with depth 3 exhibited the
best performance among the models compared.
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(a)

(b)

Figure 3.8. ROC and AUC metrics of Bagging model (a) and AdaBoost model (b).
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Table 3.4. Confusion matrix for high accuracy models.

Bagging(Max) Bagging(1) Bagging(3) Bagging(5) Bagging(7)

True Predicted True Predicted True Predicted True Predicted True Predicted

0 1 0 1 0 1 0 1 0 1

0 45 6 0 44 7 0 44 7 0 44 7 0 45 6

1 4 66 1 18 52 1 4 66 1 5 65 1 4 66

AdaBoost(1) AdaBoost(3) AdaBoost(5) AdaBoost(7) AdaBoost(9)

True Predicted True Predicted True Predicted True Predicted True Predicted

0 1 0 1 0 1 0 1 0 1

0 41 10 0 46 5 0 45 6 0 41 10 0 41 10

1 6 64 1 3 67 1 4 66 1 6 64 1 6 64

Here, 0 and 1 mean altering course to port and starboard, respectively. And Positive
label was set as 1.

3.4 Discussion

This work utilized an ensemble classification model to classify the direction of
avoidance as determined by the vessel operator. The main contribution of this study
was the development of a model to predict the avoidance direction determined by
the operator for collision avoidance. In this section, the variables and models used in
the study, and the results has discussed.

3.4.1 Discussion of variables and models

As described in section 3.2, seven numerical-type predictor variables were ap-
plied to the model: vessel size ratio, speed ratio, DCPA, TCPA, aspect, distance, and
heading to the expected hazard (OZT). Seven predictor variables were applied to the
model for the following reasons: First, information can be acquired by vessel opera-
tors during the information-gathering phase of making avoidance-direction decisions
[12, 23, 68]. Second, it reflects the characteristics of the information that humans per-
ceive when making collision-avoidance decisions [69, 70]. Third, The data obtained
from OZT means making the model train the relationship between collision avoid-
ance algorithms and human decisions in the model. Furthermore, by providing the
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model with figures of the bearing and distance to the region where the collision is
expected, it provides a basis for estimating the margin distance humans judge when
determining the avoidance maneuver. Variables used in the model are data obtained
in a relative relationship with TS around the OS. Moreover, the output is the pre-
dicted direction of avoidance of the OS. However, this does not mean predicting only
the direction of avoidance of OS. Because the relationship between OS and TS is rel-
ative. Therefore, it is possible to estimate the behavior of the TS from the point of
view of the OS using the result of this model. For the model constructed in this study
to be used to predict the direction of avoidance, a model must be constructed that
achieves high performance using data from which the direction of avoidance is de-
termined in a collision-avoidance situation. Ensemble models introduced for model
construction have the advantage of being able to combine several base models to cre-
ate strong models [71]. However, the combination of a single model does not mean
performance improvement. In addition, the model’s output analysis is complicated
[71]. A random forest model was developed to improve the predictive power of the
Bagging model and prevent overfitting. The model randomly selects predictor vari-
ables to prevent overfitting and finds optimal values [72]. However, this method was
not used in our study to use all of the acquired predictor variables. In addition, the
boosting models have a characteristic in which the weight of the first model affects
the results of the following model [71]. It is also known as a model sensitive to the
characteristics of datasets [71]. Therefore, among the boosting models, the simplest
and most general AdaBoost model was used. In addition, in this study, Grid search
was performed to find optimized parameters. As outlined in Section 3.3.2, the eva-
sive maneuver of a vessel is categorized into two scenarios: when the vessel turns to
starboard and when it turns to port. Subsequently, a predictive model to determine
the direction of the evasive maneuver was developed. The results mentioned in Sec-
tion 3.3.2.1 and validated by the confusion matrix with ROC curve and AUC score in
Section 3.3.2.2, confirm that an excellent model can be constructed using the model
proposed in this study. Despite the rejection of models with solid performance indi-
cators in validation, the models that demonstrated suboptimal outcomes were able
to develop. This result is seemed to follow the report that compared to the bagging
model, boosting is sensitive to complex, noisy data characteristics, and there is a risk
of overfitting [57]. In particular, based on the AUC evaluation criteria of Muller et al.
[73], the accuracy and performance of the classifier were inferred to be good because
the AUC score of the classifier was obtained at 0.9 or higher.
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3.4.2 Discussion of results

By constructing and modeling variables using the acquired data, a model was es-
tablished to predict the direction of collision avoidance behavior. This model reflects
the available figures and the margin of the expected threat when humans perform the
collision avoidance actions. However, some discussion of these results are needed.
The first is that the data used are AIS data. It has the advantage of providing a large
number of vessel operation tracks. However, there is also the problem that data must
be interpolated. And It is not only the change of direction that can be controlled by the
vessel’s evasive action, but also the use of engines [74]. No data directly certifying the
use of the engine were entered into the AIS data. The data can estimate the decelera-
tion of the speed; however, it is considered that this does not prove the direct use of
the engine. Therefore, additional verification of changes in evasive maneuvering be-
havior owing to changes in ship speed using engines is required. In addition, the AIS
data does not declare the qualifications of operators who have taken maneuvering
action. According to Nakamura and Okada [75], the captain’s maneuvering behavior
is relatively concise, and in inexperienced navigators have been reported to postpone
maneuvering judgment in a collision crisis. Therefore, for the model to be applied
in practice, the qualifications of the operators who performed the collision-avoidance
action must be reviewed as explanatory variables. Second, there was some inter-
esting discussion regarding additional information that the operator obtains when
avoiding a collision. This study used the essential information used by navigators to
judge and figures from the collision avoidance algorithm and focused on basic col-
lision avoidance predictions. However, it has been reported that additional figures
should be considered for safety in restricted sea areas [45]. Therefore, a fixed object
or Under Keel Clearance should also be considered when modeling for the strait or
the area within the port limit. Third, the model is not a numerical prediction of a spe-
cific collision- avoiding course. To build the necessary model in an actual operating
environment, it is necessary to have a numerical model that can predict not only the
direction of avoidance, but also the course. Finally, the result that this model predicts
is the prediction of the direction of collision avoidance. Currently, the registration
of messages on collision avoidance behavior is being discussed in the framework of
future AIS [76]. However, it is uncertain whether the equipment is forced to be set on
all types of ships [77]. In addition, it has not been demonstrated whether the correct
plan is transmitted from the ship. Therefore, considering the above points, the results

41



of this study are expected to prove helpful for the operators’ decision-making.
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Chapter 4

Modeling ship’s encounter situation
awareness result
4.1 Objective of this work

The aim of this work is to model the outcomes of the recognition of encounter sit-
uations by navigators who have identified the risk of collision in accordance with the
COLREGs. The study is centered on the modeling of human situational awareness
outcomes that differentiate between crossing and head-on scenarios. In accordance
with the regulations outlined in the COLREGs, the process of overtaking can be ascer-
tained by considering the angle of the stern light. In order to elucidate this procedure,
data pertaining to human situation awareness outcomes in the context of potential
collision scenarios was gathered. The necessary variables for the model were derived
from the compiled data. Subsequently, a classifier model was developed to forecast
human situation awareness outcomes, and its efficacy was subsequently validated.

The remainder of this work is as follows. Section 4.2 outlines the potential haz-
ards and circumstances of collisions, and details the interview scenarios, variable con-
struction, and pre-processing procedures employed for data collection. Subsequently,
The methodology including constructing and evaluating a support vector machine
had described to explain the relationship between the obtainable variables and the
situation aware results in the face of a collision. Section 4.3 provides an analysis of
the collected data and the outcomes derived from the model estimation. Section 4.4
discusses the results.
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4.2 Materials and methods

Figure 4.1 shows the flow of this work. To illustrate the proposed model, the risk
of collision had defined. The rationale behind establishing a definition for the risk
of collision lies in the need to assess human susceptibility to such incidents, prompt-
ing the implementation of situation awareness and information processing strategies
to prevent collisions. However, the risk of collision is a subjective. Hence, a metric
known as the collision risk index (CRI) was employed to measure the likelihood of
collision. It has been reported that a CRI exceeding 0.5 indicates a significant risk
of conflict [78]. First, matrices are constructed to represent the navigator’s situation
recognition results in relation to the defined risk of collision. Subsequently, a ques-
tionnaire is developed based on the constructed scenarios. Finally, the methods for
data collection, pre-processing, model construction, and verification are outlined.

Collision risk scenario development

Start

Caculating CRI

Input Variables
(Bearing, Aspect, Speed, Distance)

CRI ≥0.5 

Save variables
as interview scenario

Yes

No

Data acquisition

Construct graphical
interview questionnaire

Save Interviewed 
data

Interview

Merging variables & 
interviewed data

Delete data answered 
as safe situation

Standard scaling

Data-processing

End

Train data Validation data

Test data

Model construction
(Grid-searching)

Find high performance 
model

Optimized
hyper-parameter

Train data 
+

Validation data

Model 
construction

Model 
validation

Find optimized hyper-parameter 
for model construction

Data split
(Train, Validation, Test) Model construction 

and validation

Figure 4.1. Flow charts of this work.
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4.2.1 Risk of collision

This section outlines the numerical computation approach for determining the
collision risk index during ship encounters. Subsequently, the process of conducting
an interview scenario to gather the navigator’s perception of the situation is detailed.

4.2.1.1 Collision Risk Index

In this research, a risk assessment index was employed to quantify the likelihood
of collision. While various metrics exist for evaluating collision risk, the index de-
scribed in the research conducted by Shaobo et al. [79] was utilized in this study. The
reason for this decision was based on the variation in collision risk indexes reported in
previous studies, which utilize different criteria to define head-on and crossing situ-
ations, resulting in the application of different weights. Consequently, it was deemed
unsuitable for incorporation into this work. The necessary parameters for computing
the indexes utilized in this work include DCPA, TCPA, distance (d), relative bearing
(yr), and speed ratio (K).

In the process described in Figure 4.1, The necessary parameters for computing the
CRI were acquired. The CRI is determined through the conversion of the obtained
parameters into utility functions. Equation 4.1 defines the collision risk indicators.
The calculation involves the multiplication of the function of each parameter (U(x))
by its respective weight. The figures in Table 4.1 are the weights multiplied by the
utility function. If the CRI exceeds 0.5, there is a potential for collision between the
Own Ship (OS) and Target Ship (TS), necessitating the implementation of suitable
measures by the OS to prevent the collision.

CRI = w1U(DCPA) + w2U(TCPA) + w3U(d) + w4U(yr) + w5U(K) (4.1)

Table 4.1. Weight values for utility function of CRI.

Weight w1 w2 w3 w4 w5
0.4 0.367 0.167 0.033 0.033

Equation 4.2 delineates a utility function (U(DCPA)) that pertains to the DCPA.
This function transforms the DCPA into a numerical value ranging from 0 to 1, taking

45



into account the minimum passing distance (ds) and the safe passing distance (dp).
Equation 4.3 outlines the computation of ds based on the relative bearing (yr).

U(DCPA) =

8
>>>><

>>>>:

1 , DCPA  ds

sin
h p

dp � ds

(DCPA �
dp + ds

2
)
i

, ds < DCPA  dp

0 , dp  DCPA

(4.2)

Here, dp is twice ds [79].
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Equation 4.4 delineates a utility function (U(TCPA)) representing a CRI’s relation-
ship with the TCPA. This function transforms the TCPA under specific circumstances.

U(TCPA) =

8
>>>><

>>>>:

1 , 0  |TCPA|  t1
⇣

t2 � |TCPA|
t2 � t1

⌘2
, t1 < |TCPA|  t2

0 , t2  |TCPA|

(4.4)

Here, t1 and t2 of Equation 4.4 are calculated by Equations 4.5 and 4.6.

t1 =

8
>>><

>>>:

q
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(4.5)
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t2 =

q
d2

p � DCPA2

Vr

(4.6)

Following this, the utility functions of the CRI pertaining to distance, direction,
and speed ratio are derived as Equations 4.7, 4.8, and 4.9.

U(d) =
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>>>><
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4.2.1.2 Scenarios of collision

In order to collect data, it is essential to create a situation involving the potential
for collision. This scenario was developed by constructing CRI values in matrix form,
using numerical parameters to identify instances where the risk of collision is present.
The horizontal axis of the matrix was based on the relative bearing of the TS in rela-
tion to the OS. In this study, the relative bearing was determined by the heading of
the OS, ranging from �27 degrees to 27 degrees. Additionally, the aspect, defined
as the angle at which the TS observes the OS, was limited to values between �25 de-
grees and 25 degrees. To create the questionnaire scenario, a collision risk index (CRI)
of 0.5 or higher was calculated at randomly selected intervals for the aforementioned
variables. The distance between the OS and the TS was fixed at 6 miles which re-
ported as the distance to initiate collision avoidance procedures [80, 81]. The collision
risk matrix was developed using the collision risk index outlined in section 4.2.2.1,
considering three cases: when the OS is faster than the TS, when the speeds of the OS
and TS are equal, and when the OS is slower than the TS. All cases are constructed
based on the relative bearing, aspect, and fixed distance(6 nautical miles).
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4.2.2 Acquisition of experimental data

In this section, a method for collecting data for model and for processing the col-
lected data are described.

4.2.2.1 Interviewing

To carry out the interview, a scenario was created featuring an encounter with a
CRI of 0.5 or greater, indicating a heightened risk of collision. The interview was
then executed using this constructed scenario in the following manner: The survey
was conducted from November 2022 to December 2022, with the aim of determining
the type of encounter situation depicted in a given image (i.e., head-on, stand-on,
give-away, or safe situation). The method employed for data collection was online,
and the interviewees consisted of experienced navigators.
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4.2.2.2 Data processing

The gathered data underwent a three-step procedure for processing:

• Step 1 (integration of variables and survey data): The data necessary for the study
were synthesized by amalgamating the scenarios presented during the interviews
with the responses obtained from the interviewers. The presented scenario was
utilized as a predictor, while the response outcome was utilized as a dependent
variable.

• Step 2 (variable construction): The explanatory variables chosen for analysis in-
cluded the relative bearing, aspect, and speed ratio. Additionally, the result vari-
able was categorized as head-on(0), give-away(1), and stand-on(2). It is important
to note that data indicating a safe situation were excluded from model construc-
tion.

• Step 3(data pre-processing): The data undergo pre-processing to prepare for model
development, which is essential as it impacts the model’s performance [55]. In
this work, each data point is split into training, validation, and test sets. Initially,
the entire dataset is divided into training-validation and test sets, followed by a
further division into training and validation sets at a ratio of 7:3. The predictors
are then standardized, with standardization applied solely to the training data,
without affecting the validation and test sets.
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4.2.3 Modeling

The support vector machine is designed to estimate the correlation between the
predictor obtained and the situational context resulting from the survey response.
The model takes as input a variable derived from the process outlined in Section
4.2.2.2 and produces a prediction of situational awareness. The input and output data
pairs were segregated into training-validation data and test data, with a division ratio
of 7:3. Subsequently, the training-validation data were further divided into training
and validation data at the same ratio, as the optimal hyperparameter is determined
using grid search. (Box of Figure 4.1 named "Find optimized hyperparameter for
model construction"). Ultimately, the final model was developed utilizing the most
effective hyperparameters identified through the grid search. This section outlines
the application of a support vector model to the constructed model, as well as the
description of the hyperparameters. Lastly, the validation approach for the model is
expounded upon.

4.2.3.1 Support Vector Machine

The Support Vector Machine (SVM) is a model designed to identify hyperplanes
that effectively categorize given data [82]. SVMs have been noted for their strong
generalization performance, as they strive to minimize training errors [83]. In SVM,
the process of selecting a hyperplane involves finding the optimal solution, where
the margin of the distance between the class data is maximized. The input data for
the model is defined as D = {(x1, y1), (x2, y2) · · · (xi, yi), yi 2 {�1, 1}}. The equation
that defines the hyperplane for classifying classes based on their labels is w · xi + b =

0. Here, w represents the gradient of the hyperplane, x denotes the data’s position
on the hyperplane, and b signifies the bias. The separation hyperplane for the two
classes of data is expressed as w · xi + b � +1(for yi = +1) and w · xi + b  �1(for
yi = �1). Constraint term is derived by combining the two equations (Equation 4.10)

yi(w · xi + b) � 1 (4.10)

The support vectors refer to the data points located on the separation hyperplane
of each class, and are characterized by the equation w · xi + b = ±1. The margin,
which is the distance between the two support vectors, is calculated as (2/ kwk2).
The SVM is based on Equation 4.11, which aims to minimize the reciprocal of the
distance, thereby maximizing the margin.
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maxMargin = min
1
2
kwk2 (4.11)

Equations 4.10 and 4.11 are only available when they are entirely linearly separa-
ble. Therefore, Equations 4.12 and 4.13 are derived by adding terms that allow errors
(xi).

maxMargin = min
1
2
kwk2

2 + C

n

Â
i=1

xi (4.12)

yi(w · xi + b) � 1 � xi, i = 1, 2, · · ·, n (4.13)

Here, xi represents a measure of error, while C serves as a regulatory term that
governs the extent of error regulation. A lower value of C permits a greater number of
training errors, potentially leading to underfitting. Conversely, a higher value of C
may result in overfitting due to the restriction of training errors.

Kernel transformations are employed to map predictors into higher dimensions,
enabling the modeling of non-linear boundaries. These transformations encompass
linear, polynomial (with d

th degree, where d is greater than or equal to 2), and Gaus-
sian kernels, as defined by Equations 4.14 – 4.16.

K hx1, x2i = hx1, x2i (4.14)

K hx1, x2i = (a hx1, x2i+ b)d (4.15)

K hx1, x2i = exp

 
�kx1 � x2k2

2
2s2

!
(4.16)
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4.2.3.2 Hyperparameters

The study employ the SVM models that encompasses linear, polynomial (2nd,
3rd), and Gaussian kernel. Each model is tailored to seek an optimal model by ad-
justing hyperparameters:

• The linear model and polynomial models (2d, 3d): The regulatory parameter C
has modified, with previous values of 0.001, 0.01, 0.1, 1, 10, 100, and 1000.

• The Gaussian kernel model: The parameters C and gamma, which regulate the
Gaussian kernel dispersion, were modified. C was adjusted to the values of 0.001,
0.01, 0.1, 1, 10, and 100, while gamma was set to auto, 0.001, 0.01, 0.1, 1, 10, and
100. When gamma is set to auto, it is determined by the reciprocal of the number
of predictors.

• Grid search: Grid search techniques were employed to efficiently determine the
most suitable numerical value from a range of adjustable hyperparameters. This
method involves pre-evaluating all potential hyperparameter combinations and
identifying the optimal set through cross-validation. It is important to note that
the test data should not be included in the grid search process. Consequently, the
dataset was partitioned into three distinct subsets: training, validation, and test.
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4.2.3.3 Verification of model

Various measures have been employed to assess the effectiveness of the constructed
support vector machine models. Validation has been conducted using the Accuracy
and F1 score, as well as the receiver operating characteristic (ROC) and area under the
ROC curve (AUC) metrics. These measures are derived from the calculation of a con-
fusion matrix [63]. The matrix represents the anticipated values of the labels derived
from the actual labels. The calculation methods for most evaluation metrics are con-
sistent with those reported in Chapter 3, subsection 2.3.3.. But, this study employed a
multi-classification model. Figure 4.2 illustrates the confusion matrix for multi-class
classification. In the assessment of multiple categories, metrics are computed using
two methods, one of which is macro-averaging.

The precision and recall for each class in Figure 4.2 are computed independently.
For classes 1, 2, and 3, the precision values are 5/7, 3/4, and 4/5, and the recall val-
ues are 5/5, 3/6, and 4/5, respectively. The macro-averaged precision and recall are
obtained by averaging the precision and recall values for each class, resulting in val-
ues of 0.75 and 0.77, respectively. In contrast, micro-averaging involves calculating
metrics using the overall positive and negative figures by constructing a confusion
matrix for each class and summing the matrices. Figure 4.3 illustrates the develop-
ment of a confusion matrix for each class using micro-averaging based on the data in
Figure 4.2. The precision and recall achieved through micro-averaging is 0.75.

Python 3.7 and its libraries were used to build and validate the model [64, 65, 66,
67].
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Figure 4.2. Illustration of the confusion matrix for Multi-class classification.
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Figure 4.3. Illustration of the confusion matrix for micro-averaging.
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4.3 Result

In this section, results of data acquisition and model construction are reported.

4.3.1 Results of data acquisition

In this subsection, the results of the construction of collision risk matrices required
for the survey and survey are described.

4.3.1.1 Calculation results of Collision Risk

The scenario involving potential collision risk was represented as a matrix utiliz-
ing the CRI. The values outlined in subsection 4.2.1.2. were employed in the construc-
tion of the matrix, which was carried out in three distinct instances (Vt < Vo, Vt = Vo,
and Vt > Vo). Figure 4.4 is a visualization of the constructed matrix as a heat map.
In order to conduct interviews efficiently, some of the three scenarios was used as the
final collision risk scenario.
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(a)

(b)

(c)

Figure 4.4. Visualization of collision risk matrices in case (a), Vt < Vo, (b), Vt = Vo, (c)
Vt > Vo.
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4.3.1.2 Results of data acquisition

The predictors and outcome variables utilized in constructing the model were ob-
tained through the collection and pre-processing of data via surveys.
Interviewed data: It was collected from 36 mates(12 chief officers, 19 second officers,
and 5 third officers) and 4 captains. In particular, 4767 data points were collected. Ta-
ble 4.2 summarizes the characteristics and statistics of the variables used in the model.
Figure 4.5 shows the distribution of predictors. Table 4.3 shows the correlation matrix
between variables.

Table 4.2. Data description and statistical metrics.

Variable Type Unit Count Mean Std Min Max

Relative bearing (yr) Continuous Degree 4767 0.22 14.31 -27 27

Aspect Continuous Degree 4767 -0.03 11.98 -25 25

Speed rate (K) Continuous - 4767 1.00 0.17 0.75 1.25

Y Categorical - 4767 - - - -

Table 4.3. Correlation matrix between the predictors.

Relative Bearing(fr) Aspect Speed Rate(K)

Relative Bearing(yr) 1

Aspect -0.63 1

Speed Rate(K) 0.04 -0.01 1
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Figure 4.5. Distribution of the predictors. Set (Y) denote Head-on(0), Give- away(1),
and Stand-on(2), respectively.
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4.3.2 Results of modeling

The support vector machine model was utilized to develop the classification model.
This section outlines the process of constructing the model and subsequently presents
the findings of the verification process.

4.3.2.1 Estimation results of modeling

Each classification model utilized a support vector machine that was trained through
the adjustment of the kernel and hyperparameters. The hyperparameters were se-
lected through a search process aimed at achieving a high F1 score. The adjusted
hyperparameters included the kernels, regulatory terms C, and gamma, which gov-
ern the bias of the Gaussian distribution for the Gaussian kernels. Table 4.4 shows the
parameters of the optimized classification model. In model training, cross-validation
was performed to prevent overfitting (5-fold).

Table 4.4. Estimation result of the optimal hyperparameters of the each kernel.

Model Kernel C Gamma Acc.
Precision Recall F1 Score

Macro Macro Macro Micro

SVM

Linear 0.001 - 0.86 0.86 0.86 0.86 0.86

Polynomial(2d) 10 - 0.62 0.61 0.63 0.61 0.62

Polynomial(3d) 10 - 0.86 0.87 0.87 0.87 0.86

Gaussian(RBF) 100 0.01 0.86 0.86 0.86 0.86 0.86

Here, C represents the regulatory terms, while Gamma serves as the parameter
controlling the spread of the Gaussian kernel. Additionally, Acc. denotes the measure
of accuracy.
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4.3.2.2 Validation result of modeling

The confusion matrix for each model is shown in Table 4.5.

Table 4.5. Confusion matrices for high-performance by kernels of model.

Linear Polynomial(2d) Polynomial(3d) Gaussian (RBF)

True
Predicted

True
Predicted

True
Predicted

True
Predicted

0 1 2 0 1 2 0 1 2 0 1 2

0 320 35 21 0 343 20 13 0 335 20 21 0 302 41 33

1 43 366 0 1 49 243 117 1 47 362 0 1 33 376 0

2 70 0 337 2 81 174 152 2 74 0 333 2 60 0 347

Here, 0, 1, and 2 mean Head-on, Give-away, and Stand-on, respectively.

Furthermore, the study involved the computation of AUC scores and the acqui-
sition of ROC curves, as depicted in Figure 4.6). With the exception of the polyno-
mial (2d) model, the AUC scores obtained exceeded 0.9. Notably, the polynomial
(3d) model demonstrated the highest accuracy and performance (F1 score) among
the models developed. It is worth noting that this model did not exhibit overfitting,
as evidenced by its training score of 0.88. Moreover, the ROC and AUC metrics also
indicated a high performance level of 0.9 or above. Consequently, the polynomial
(3d) model outperformed the other models under comparison.
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(a) (b)

(c) (d)

Figure 4.6. The receiver operating characteristic (ROC) curve and area under the curve
(AUC) score of the different kernel functions are evaluated in the following cases: (a)
Linear, (b) Polynomial (2nd degree), (c) Polynomial (3rd degree), and (d) Gaussian
(RBF).
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4.4 Discussion

This work utilized a support vector machine to construct a classification model for
identifying encounter situations recognized by navigators. The primary contribution
of this work was the development of a predictive model for identifying encounters
recognized by navigation officers in situations with a risk of collision. This section
provides an overview of the data, models, and results employed in the investigation.
As outlined in Section 4.2, three numerical predictors were utilized: relative bearing,
aspect, and speed ratio. These variables, as indicated in prior research, can be de-
rived from the relative relationship between the OS and TS. In this study, the distance
between the OS and TS was set at 6 miles, a distance known to trigger collision avoid-
ance measures. The variables incorporated in the model were derived from surveys
based on scenarios estimated using the CRI to indicate a collision risk in the relative
relationship between the OS and TS. The CRI values are widely acknowledged as in-
dicative of a risk of collision [78]. Hence, the decision to exclude the response to a spe-
cific question regarding safety from the model construction process was made. The
survey involved 40 navigators, and despite this relatively small sample size, it was
deemed feasible to construct the model due to the utilization of 4767 data points for
its development and validation. To enable the model to accurately predict situational
outcomes in collision-risk scenarios, it is imperative to establish a high-performing
model based on human situational awareness findings. As detailed in Subsection
4.3.2, a model was devised to categorize situational recognition outcomes as head-
on, give-away, and stand-on, and subsequently forecast these outcomes. The results
presented in Subsection 4.3.2.1, along with the validation using ROC and AUC met-
rics and confusion matrix in Subsection 4.3.2.2, demonstrate the high performance of
the model proposed in this study. Notably, the classifier’s effectiveness is indicated
by the ROC and AUC metrics scoring 0.9 or higher [73]. Method 1 provides the crite-
ria established by Tam and Bucknall [18], Method 2 provides the criteria established
by Hasegawa et al. [19] and Namgung [22], Method 3 provides the criteria estab-
lished by Yoo and Lee [20], and Method 4 provides the criteria established by Zhang
et al. [21]. Currently, Method 1 predominantly categorized the majority of cases as
head-on situations. This is attributed to the classification standard of 22.5 degrees,
which encompasses the widest range. Additionally, a segment of the study involved
gathering the navigator’s awareness results as a sample, and the methods employed
for calculation were adjusted accordingly. This adjustment was necessitated by the
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recognition of human fallibility and the impact of situational awareness, which are in-
fluenced by individual skills and technical expertise, and are presumed to have been
accounted for in the reported findings.
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Chapter 5

Conclusion
Modeling human situational awareness is a crucial element for maritime safety.

This doctoral dissertation addressed the issue of operator’s behavioral responses to
the surrounding environment of ships at sea. To illustrate this, a predictive model
based on machine learning was constructed to model ship’s situational awareness
outcomes. Two models were developed for this purpose. The first model is aimed
at describing the relationship of evasion directions determined to escape situations
where a collision seems imminent. This model was constructed using AIS data. The
model was constructed using pre-processed variables derived from AIS data. The
second model aims to describe the relationship between the conditions encountered
by vessels in situations where a collision seems imminent and the situations inter-
preted and decided upon by operators. To construct this model, net based surveys
were conducted with qualified navigators. Subsequently, the model was constructed
using pre-processed variables derived from the survey results.

The explanatory variables needed for constructing both models are expected to in-
fluence the situational awareness and outcomes of vessel operators. These variables
were selected from those reported to be used in analyzing the risk of vessels encoun-
tering potentially hazardous collision. The construction of these models utilized the
commercial programming language Python (3.7) and relevant libraries.

Afterwards, the acquired data for each task was processed, and the variables ob-
tained from that were used to train the models. Subsequently, the models were con-
structed, and their significance was validated in respectively.

• The first model, based on AIS data, successfully explained the relationship related
to ship operators’ evasion direction decisions.

• The second model, utilizing survey data based on responses from qualified nav-
igators, effectively modeled the interpretation of vessel encounter situations by
operators in potentially collision-prone scenarios.
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• Both models captured and aided in understanding important variables in real
navigation situations. Furthermore, they were trained with high numerical accu-
racy in representing human cognitive judgments.

• The hyperparameters optimizing the accuracy of each model were estimated. Us-
ing the grid-search method, the optimal hyperparameters for each model were
identified based on the accuracy of the model.

• The practical usability of each model was validated. As a result of performing
ROC-AUC metric validation, values of 0.9 or higher were obtained, confirming
the usefulness of the proposed models.

Recently, there has been significant attention on the development of autonomous
vessels. However, the focus has primarily been on the development of autonomous
vessels themselves. Yet, after the successful development of autonomous vessels, at-
tention will inevitably turn to the era of post-autonomous vessels, where encounters
between autonomous and manned vessels cannot be overlooked. Therefore, it is an-
ticipated that this model, when combined with automatic collision avoidance logic,
could be utilized to predict the behavior of manned vessels by autonomous vessels
in such encounters.

In this dissertation, only a classification model based on the outcomes of ship op-
erators’ behaviors was utilized to estimate the model. Remaining issues that should
be addressed in future include the followings.

• It is necessary to develop a model that can predict specific numerical values even
in various environmental conditions using regression models or equivalent mod-
els that yield similar results.

• As an extension of Chapter 3 of this dissertation, a model should be developed to
explain human behavior patterns in Stand-on situations.

• This dissertation only models human situational awareness outcomes. In the fu-
ture, it is essential to statistically analyze factors influencing situational awareness
outcomes from a decision-making perspective.
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Appendix A

The outputs of the proposed models
In the main body of the doctoral dissertation, significant attention was given to

constructing goal models for each chapter and validating the validity of the models.
Therefore, in this appendix, the outputs of the models constructed in Chapter 3 and
Chapter 4 are described. To explain the outputs of the models, an overview of the en-
tire model is provided. Subsequently, the results of the model when data is inputted
under given variables are reported.

A.1 The overview of the model illustrated in Chapter 3

Information acquisition Situation awareness Decision making

Situation or 
Circumstance variables

Alter to Port

Alter to Stb’d

Model

Figure A.1. Overview of model constructed in Chapter 3

The object of Chapter 3 was to construct a model that models the direction of
avoidance action of the vessel, which is the answer to human behavior in situations
where the risk of collision exists. Here the behavior of human include the human
errors.

The figure A.1 illustrates the process by which trained ship operators process in-
formation and derive situational awareness outcomes. When sensing a crisis of col-
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lision, the operator gathers situational information and performs situational aware-
ness. Subsequently, they engage in actions to choose evasion directions. These flows
have traditionally been performed by humans and are susceptible to human errors.

A.2 The Output of the model illustrated in Chapter 3

The table A.1 describes the model’s predicted outcomes when variables are in-
putted using the trained model. The model’s predicted outcomes are explained in
the Y column of the table A.1.

Table A.1. Example of prediction result of optimal model constructed in chapter 3.

Speed rate Size rate DCPA TCPA Aspect dozt qozt Y

2.2 1.8 1.31 0.42 -9.6 7.88 -6.64 Port

1.7 1.5 0.76 0.35 -19.9 7.21 -11.12 Starboard

1.3 1.9 1.26 0.44 -8.9 8.99 -12.17 Starboard

1.3 0.6 0.91 0.47 -6.0 7.45 -2.92 Port

0.8 2.2 1.05 0.25 -8.4 3.56 -30.37 Starboard

0.7 1.1 1.28 0.48 -6.1 6.54 -5.79 Port

0.9 1 0.62 0.40 -2.3 4.54 -1.55 Port

0.6 1.2 0.70 0.39 -6.5 3.5 -6.73 Port

0.6 0.6 1.39 0.47 13 6.18 14.65 Port

0.6 0.5 0.16 0.44 1.5 5.15 4.59 Starboard

0.5 1.4 0.47 0.48 2.4 6.06 11.5 Starboard

0.4 0.4 0.36 0.29 -0.1 2.18 0.13 Starboard
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A.3 The overview of the model illustrated in Chapter 4

Information acquisition

Situation or 
Circumstance variables

Head-on

Model
Situation awareness

Stand-on

Give-away

Figure A.2. Overview of model constructed in Chapter 4

The objective of the work in Chapter 4 was to model situational awareness out-
comes of ships operator who trained about regulations the COLREG.

The figure A.2 depicts the process by which trained ship operators process infor-
mation and derive situational awareness outcomes. When sensing the risk of col-
lision, the operator gathers situational information and performs situational aware-
ness. Subsequently, they engage in analysis to define the encounter situation. The
encounter situation is interpreted by humans who have learned the regulations of
COLREG, which do not clearly define numerical values for differentiating encounter
situations.

A.4 The Output of the model illustrated in Chapter 4

The table A.2 describes the model’s predicted outcomes when variables are in-
putted using the trained model. The model’s predicted outcomes are explained in
the Y column of the table A.2.
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Table A.2. Example of prediction result of optimal model constructed in chapter 4.

Relative bearing Aspect Y Relative bearing Aspect Y Relative bearing Aspect Y

-18 0 Stand-on -5 -15 Head-on 25 -5 Give-away

-18 3 Stand-on -5 -10 Head-on 27 -17 Give-away

-18 8 Stand-on -5 -5 Head-on 7 7 Head-on

-18 13 Stand-on -5 0 Head-on 7 12 Head-on

-17 0 Stand-on -5 5 Head-on 8 -13 Give-away

-17 7 Stand-on -5 10 Head-on 8 -8 Give-away

-17 17 Stand-on -5 20 Stand-on 8 -3 Head-on

-15 -5 Stand-on -3 -13 Head-on 8 0 Head-on

-15 0 Stand-on -3 -8 Head-on 8 3 Head-on

-15 5 Stand-on -3 -3 Head-on 8 8 Head-on

-15 10 Stand-on -3 0 Head-on 8 13 Head-on

-15 15 Stand-on -3 3 Head-on 10 -25 Give-away

-15 20 Stand-on -3 8 Head-on 10 -20 Give-away

-15 25 Stand-on -3 13 Head-on 10 -15 Give-away

-13 -8 Head-on 0 -20 Head-on 10 -10 Give-away

-13 -3 Head-on 0 -15 Head-on 10 -5 Give-away

-13 0 Stand-on 0 -10 Head-on 10 0 Head-on

-13 3 Stand-on 0 -5 Head-on 10 5 Head-on

-13 8 Stand-on 0 5 Head-on 10 10 Head-on

-13 13 Stand-on 0 10 Head-on 12 -17 Give-away

-12 -7 Head-on 0 15 Head-on 12 -7 Give-away

-12 7 Stand-on 0 17 Stand-on 12 0 Give-away

-12 12 Stand-on 0 20 Stand-on 13 -13 Give-away

-12 17 Stand-on 3 -13 Head-on 13 -8 Give-away

-10 -10 Head-on 3 -8 Head-on 13 -3 Give-away

-10 -5 Head-on 3 -3 Head-on 13 0 Give-away

-10 0 Head-on 3 0 Head-on 13 3 Give-away

-10 5 Stand-on 3 3 Head-on 13 8 Head-on

-10 10 Stand-on 3 8 Head-on 15 -25 Give-away

-10 15 Stand-on 3 13 Head-on 15 -20 Give-away

-10 20 Stand-on 5 -20 Give-away 15 -15 Give-away

-10 25 Stand-on 5 -15 Give-away 15 -10 Give-away

-8 -13 Head-on 5 -10 Head-on 15 -5 Give-away

-8 -8 Head-on 5 -5 Head-on 15 0 Give-away

-8 -3 Head-on 5 0 Head-on 15 5 Give-away

-8 0 Head-on 5 5 Head-on 17 -12 Give-away

-8 3 Head-on 5 10 Head-on 17 0 Give-away

-7 -7 Head-on 5 15 Head-on 18 -13 Give-away

-7 0 Head-on 7 -7 Head-on 18 -8 Give-away

79



Acknowledgments

As important as the achievements of my research are, it is crucial to express grati-
tude to everyone who has helped me throughout my long-term Ph.D. course. I must
emphasize that completing a Ph.D. degree would have been impossible without a
significant amount of support, whether direct or indirect, technical, financial, or emo-
tional. At the same time, it is challenging to mention all those who have provided
such valuable support. Therefore, I apologize in advance to those who are not men-
tioned here, but please know that your assistance and contribution are greatly appre-
ciated.

Firstly, I would like to express my deepest gratitude to my advisors, Professor
Hitoi Tamaru, Tadasuke Furuya, and Associate Professor Jun Kayano, for their guid-
ance, care, patience, and for providing me with an excellent research environment.
Additionally, I would like to thank several graduate students whose friendships have
helped me become a better researcher.

And I owe special thanks to my former advisor, Ruri Shoji, the president of the
National Institute of Maritime, Port, and Aviation Technology, for her continuous
guidance, care, and encouragement. Without her, I couldn’t have begun the Ph.D.
course. Furthermore, I have been deeply inspired and motivated by her attitude as a
researcher and her dedication to research.

This work would not have been possible without the financial and educational
support from the JST project (TUMSAT-SPRING). They have been extremely sup-
portive of me throughout my Ph.D. course.

Finally, I want to express my special gratitude to my parents for their unwavering
support and encouragement. They have always been a tremendous source of inspi-
ration to me and have supported me in every endeavor, no matter what it was. They
have provided me with countless opportunities, for which I will be forever grateful.

Without such incredible people supporting me, I doubt that I would be where I
am today.

80


	List of Figures
	List of Tables
	Introduction
	Research background
	Collision accident
	Decision making for collision avoidance
	Flows of decision making
	Modeling of collision risk and avoidance


	Objective of this dissertation
	Structure of this dissertation

	Calculation of the relationship between the ships
	Modeling ship’s collision avoidance direction in an encounter situation
	Objective of this work
	Materials and methods
	Collision avoidance
	Collision avoidance algorithm

	Data acquisition
	Data collection
	Data processing

	Ensemble model
	Base model
	Bagging and AdaBoost model
	Hyperparameters and model assessment


	Result
	Result of data analysis
	Result of model construction
	Construction result
	Validation result


	Discussion
	Discussion of variables and models
	Discussion of results


	Modeling ship’s encounter situation awareness result
	Objective of this work
	Materials and methods
	Risk of collision
	Collision Risk Index
	Scenarios of collision

	Acquisition of experimental data
	Interviewing
	Data processing

	Modeling
	Support Vector Machine
	Hyperparameters
	Verification of model


	Result
	Results of data acquisition
	Calculation results of Collision Risk
	Results of data acquisition

	Results of modeling
	Estimation results of modeling
	Validation result of modeling


	Discussion

	Conclusion
	Bibliography

	The outputs of the proposed models
	The overview of the model illustrated in Chapter 3
	The Output of the model illustrated in Chapter 3
	The overview of the model illustrated in Chapter 4
	The Output of the model illustrated in Chapter 4
	Acknowledgments


