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ABSTRACT 

Water is the source of life, and a good water environment is even more vital for our life 

and work. To closely cooperate with the policy of protecting water resources and building a 

good water environment for living and working, the technology about water environment 

monitoring research is gradually developing in recent years. This combines the 

communication technology, computer technology and the Internet of Things (IoT) in one of 

the Wireless Sensor Networks (WSNs) of water environment monitoring system, because of 

its wide distribution, the formation of a flexible network, real time sensing and many other 

advantages and convenience, more suitable for the complex and changing requirements of 

the water environment monitoring. However, most of the water pollution detecting results 

are often relatively partial, and there are large deviations from the actual water quality, and 

this will cause a large degree of impact on the subsequent assessment of the water 

environment quality, prediction, and other processing. At the same time, a large amount of 

raw data directly transmitted to the monitoring and processing center will inevitably increase 

the amount of data transmission of the node, which in turn leads to network congestion and 

increased energy consumption. Therefore, it is necessary to use data fusion technology to 

process various water quality parameters obtained from WSNs. 

In this article, water environment monitoring based on WSNs is used as a research 

background, and an industrial water purification plant in Chiba prefecture is selected as a 

specific data collection site. In view of the above problems, an area specific and feasible data 

fusion method for water environment intelligent monitoring system is proposed. Combined 

with the actual situation and characteristics of water quality monitoring in local water 

purification plants, pH, water temperature, turbidity, chromaticity, electrical conductivity, 

and other indexes of industrial water are selected as the measurement parameters of water 

environment monitoring, and these data are fused and processed. A multi-level data fusion 

method is proposed for the specific situation of the water purification plant. At the Data 

Level, Adaptive Weighted Data Fusion (AWDF) methods are used to initially process the 
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raw data and reduce the amount of data transmitted. And for the original algorithm, the 

weight coefficients are difficult to determine, the accuracy is insufficient and other problems, 

to optimize and improve it. At the Feature Level, a neural network-based data fusion 

algorithm is used, using multiple measurement parameters as input to the network, and the 

water environment is classified through sample training and preliminary judgment of the 

current water quality situation. Finally, at the Decision level, an optimization-based LSTM 

deep neural network is used to further predict future changes in single water quality to multi-

parameter water quality. 

The simulation results show that the multi-level data fusion method proposed in this article 

can monitor the water environment more comprehensively and accurately, discriminate the 

current water quality more effectively, and predict the water quality parameters between a 

period. These can provide favorable basic support for the subsequent strategy of water 

environment monitoring. 

 

 

KEY WORDS: water environment monitoring,multi-level data fusion, AWDF, neural 

network, LSTM
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1. Introduction 

1.1 Research background and significance 

To protect water resources, Wireless Sensor Networks (WSNs) are being widely used for 

water quality monitoring in different areas[1]. Instead of manually measuring the water 

quality parameters, the inspectors can realize the automatic collection of data by using the 

sensor nodes deployed in the target waters, and the collected data can be transmitted to the 

aggregation node through the sensor nodes in different areas, from which the water quality 

parameters of the whole monitoring waters can be further obtained, thus monitoring the 

water environment in a more flexible way[2]. However, in this process, the amount of 

environmental data collected by the sensor nodes is huge and easily interfered by external 

conditions, if the acquired raw data is not processed[3],on the one hand, it is likely to generate 

a large amount of redundant and abnormal data, increasing the energy loss in the 

transmission process .On the other hand, it is not conducive for the monitor to analyze the 

large amount of raw data acquired by the nodes, thus affecting the assessment and prediction 

of water quality. Therefore, processing (data fusion) of water quality data acquired by 

monitoring nodes is necessary. For example, abnormal and duplicate data can be removed to 

obtain a more comprehensive data from many original data. The correlation between 

multiple environmental parameters is used to comprehensively judge whether an indicator 

in the monitoring area meets the requirements. Through the collected data, analysis and 

prediction of future data and its changes, these are the basic contents of data fusion.For 

different monitoring environments, selecting multiple data fusion methods according to 

different needs can not only alleviate the transmission pressure of the network, extend the 

life cycle of the network[4], but also provide more intuitive and effective data evaluation and 

prediction methods for the monitoring personnel[5]. 

Taking the research of Zhang Xunuo, Zhao Ying et al on the water ecological function 

zoning of Songhua River Basin[6] as an example. The authors took the Songhua River basin 



 2 

as the monitoring object, and took a variety of water quality environment and biological 

environment parameters as the original data. Through data fusion technology, according to 

different regional characteristics (for example, the ecological environment of the first region 

is good, the agricultural area of the second region is large, and the river network density of 

the third region is high), The ecological functions of the target watershed were divided (1-4) 

and the importance of the respective zones was assessed. This has promoted the protection 

of water resources, the maintenance of biodiversity and the development of agriculture in 

the region. 

 

1.2 Main research content and purpose  

This article focuses on water environment monitoring in WSNs and selects a portion of 

water quality parameters (such as water temperature, pH, turbidity, color, conductivity, etc.) 

from industrial water purification plants in Chiba prefecture between 2018 and 2022 as the 

data source. To address the two major difficulties in water environment monitoring: to 

determine whether the collected raw data are correct (whether there are anomalies, erroneous 

data, etc.) and whether the fusion accuracy meets the requirements; and whether it is possible 

to reasonably assess the current water quality situation as well as the changes in the water 

quality over a period under continuous observation. A suitable and feasible data fusion 

method for water environment monitoring is designed to fuse the acquired water quality 

parameters at three levels: data level, feature level and decision level.  

Firstly, at the Data Level, an optimization scheme is proposed for the problems of the 

original adaptive weighted fusion algorithm to make it better applicable to the monitoring of 

the water environment. Then the initial numerical fusion is performed by MATLAB, and the 

original data without data fusion is compared and analyzed to further make the data more 

accurate for subsequent use. 

Then, at the Feature Level, various water quality parameters (water temperature, pH, 

turbidity, conductivity, etc.) obtained from the water environment are extracted, and the data 
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fusion is determined at the feature level using an optimized neural network, which further 

gives the specific condition of the current water quality (water quality evaluation) for the 

next solution. 

Finally, at the Decision Level, the LSTM deep neural network is designed and constructed 

to predict the water quality changes in the future period based on some time series parameters 

in the water environment obtained previously[7]. Specifically divided into water quality 

single-parameter prediction and multi-parameter prediction considering the correlation 

between multiple water quality, analyze and discuss the effect of these two time-series 

prediction methods and adaptation scenarios. 

 

1.3 Structure of the article 

Section 1 introduces the research background and significance of this article, the content 

and purpose of this study. Section 2 introduces the status of related research. Section 3 

introduces the framework of the multi-level data fusion method proposed in this study. 

Section 4 illustrates the data fusion method of AWDF applicable to water environment. 

Section 5 discusses the data fusion mechanism for water quality evaluation based on neural 

networks. Section 6 presents the method of water quality parameter prediction using LSTM 

deep neural network. Section 7 evaluates the proposed multi-level data fusion method. 

Finally, Section 8 concludes this article. 
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2. Related works 

2.1 Research status of water environment monitoring based on 

WSNs 

WSNs with many features such as low cost, automation, distributed, high accuracy and 

spatio-temporal continuity have been successfully applied in various scenarios related to 

water environment monitoring, and many international universities and research institutions 

have conducted research on them, such as the University of California at Berwick, the 

University of São Paulo, Brazil, and the University of Bologna, Italy, have explored the 

solutions of WSNs in many different scenarios such as river snow storage measurement, 

mountain hydrological parameter measurement, and groundwater environmental parameter 

monitoring[8][9]. 

A distributed wireless sensor network for spatially scaled "water balance" monitoring was 

designed and deployed in a 2000 km2 snow-dominated area in the upper American River 

Basin, California by a team from the University of California at Berwick. Welch et al. 

analyzed 11 years of historical data from the target area and used a clustering approach to 

determine the location of the sensor nodes. They found through their study that the 

monitoring performance of the network can be significantly improved by placing the right 

number of sensors. 

Between 2012 and 2015, a multi-scale integrated observation experiment HiWATER was 

conducted in the Heihe River Basin, China[10], with the interplay of satellite and airborne 

remote sensing and ground-based observations. the experiment significantly improved the 

observation capability of the water environment and established a leading hydrological 

observation system. 
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2.2 Research status of data fusion technology 

In 2019, Sun Guiling, Zhang Ziyang[11] published a study on the use of multiple sensors 

for data fusion in greenhouse environments. To address issues such as low fusion accuracy 

and poor interference resistance, they proposed a multi-sensor data fusion algorithm based 

on trust and an improved genetic algorithm. The raw data collected by the sensors is 

transmitted to the gateway through receiving nodes, where data preprocessing is performed 

to eliminate abnormal data. Then, using fuzzy theory, the preprocessed data is subjected to 

trust-based fusion operations, avoiding absolute trust among the data. Finally, an improved 

genetic algorithm is employed to optimize the fused estimation values. Experimental results 

demonstrate that this fusion method can ensure accuracy while reducing the execution time 

of the algorithm, making it a feasible data fusion approach. 

In 2022, Gong Li, Yan Jinlong[12][12] published a paper on an Internet of Things (IoT) 

intelligent irrigation system with data fusion capabilities. This study optimized irrigation 

plans by incorporating data fusion techniques into a conventional irrigation system. It 

employed LSTM (Long Short-Term Memory) and integrated diverse data sources such as 

historical weather data, past irrigation logs, weather forecasts, and Wireless Sensor Networks 

(WSNs). By simulating and predicting irrigation requirements, the system achieved 

significant improvements in water Water-saving efficiency. efficiency compared to 

traditional automatic timer-based irrigation methods. 
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3. Overview of data fusion methods based on the water 

environment  

3.1 Concept and significance of data fusion 

Data fusion is an information processing method that uses computers to automatically 

analyze several measurement data obtained in a temporal sequence under certain guidelines 

to accomplish the required decision-making and evaluation tasks. The sensors collecting the 

observed data have limited capacity in storage, data forwarding and data calculation, etc. If 

these data are directly utilized without processing, it will not only cause more energy loss in 

the process of data transmission, but also lead to many problems such as lack of data 

accuracy and inaccuracy. For the final monitoring results will also have a large deviation 

from the actual situation[13], thus affecting the assessment of the monitoring area. Therefore, 

it is necessary to perform data fusion on the raw data collected by the sensors to reduce 

duplicate and abnormal data, reduce energy consumption, and evaluate the situation of the 

monitoring area more comprehensively[14].  

As shown in Fig.3.1, for multiple different environmental parameters a, b, c, d, and e, the 

spatial position fusion of the same sensor (1-n represents the data of sensor nodes at different 

locations) can be used to obtain a larger range of unique fusion values from many raw data 

collected in a small range. For the time series fusion of the same sensor (where 1-n represents 

the time series data of the same parameter), the change trend of the data in a certain time can 

be intuitively reflected. The abnormal data can be eliminated, and its weight reduced in the 

fusion process to reduce the impact on the fusion result. 
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Fig.3.1 Data fusion of single sensor 

In practical application scenarios, there is often more than one type of sensor involved in 

data collection, but many different types of sensors working together, each collecting 

different environmental parameters[15]. Each type of sensor has its own characteristics, and 

a specific sensor can only collect the required parameters in a specific range, which requires 

a method that can use the correlation between multiple information for comprehensive 

processing and evaluation, which is multi-sensor data fusion technology.  

The spatial data fusion of multiple sensors is shown in Fig.3.2. The leftmost region 

represents the divided monitoring sub-region (1-n), different colors represent different 

sensor nodes, and the fusion value in the middle is the fusion value of each sub-region (this 

fusion value can be any known environmental parameters or new parameters associated with 

these environmental parameters). Using the single sensor spatial fusion method in Fig.3.1, 

The final fusion value of the entire monitoring area can be obtained. 

The time data fusion of multiple sensors is shown in Fig.3.3. The leftmost part represents 

a time node (1-n), which contains multiple environmental parameters collected at this 

moment, and the fusion value in the middle is the fusion value of the current moment (this 

fusion value can be any known environmental parameters, or it can be a new parameter 

associated with these environmental parameters). Using the single sensor time fusion method 
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in Fig 3.1, we can know the time series changes of the target parameters in the monitoring 

area. 

 

Fig.3.2 Spatial data fusion of multi sensor  

 

Fig.3.3 Time data fusion of multi sensor  
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Data Fusion 

Centralized Fusion 

Distributed Fusion 

Lossy Fusion 

Lossless Fusion 

Data Level Fusion 

Feature Level Fusion 

Decision Level Fusion 

The multi sensor data fusion technique Compared with single sensor data fusion, multi-

sensor data fusion can collect environmental parameters more comprehensively and 

accurately, analyze the possible internal correlations between multiple data, and thus make 

more reasonable judgments and decisions. 

 

3.2 Classification and methods of data fusion 

3.2.1 Classification of data fusion 

According to the processing type of data fusion, the variation of data volume and the level 

of fusion, as shown in Fig.3.4. we can classify data fusion into the following different 

types[16]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4 Classification of data fusion 

 

(1) Classification by the type of data fusion structure 

Centralized Fusion: the data collected by all sub-nodes are transmitted directly to the 

aggregation node without any processing, which will greatly increase the channel pressure 

and may cause information blocking, but on the other hand, this approach preserves the 
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integrity of the data to the maximum extent. 

Distributed Fusion: in contrast to centralized, the data collected by sub-nodes are 

processed before transmission, which effectively reduces the amount of data transmission 

and extends the effective working time of nodes. However, it is easy to cause data loss and 

accuracy is difficult to guarantee. 

 

(2) Classification according to the number of variations of data fusion 

Lossy Fusion: save energy of each link by reducing the amount of data transmitted, but it 

must ensure that the remaining data contains valid information, otherwise the final fusion 

result will be difficult to guarantee. 

Lossless Fusion: processing based on ensuring data integrity and only roughly grouping 

part of the data, which can reduce the duplicated grouped header information, but the fusion 

effect is often not ideal because the operation is too simple. 

 

(3) Classification according to the level of data fusion 

Data Level Fusion: it is a lower level of fusion, in which similar data acquired by nodes 

in the monitoring area are fused. Therefore, this method is usually only applicable to the case 

of single environmental parameter acquisition and cannot be adapted to the fusion of 

multiple parameters in complex environments. However, it can still be used as an initial 

fusion method for the initial processing of the raw data numerically. The adaptation to multi-

parameter data fusion needs to be further improved by combining other methods in specific 

application scenarios. 

Feature Level Fusion: this method belongs to the intermediate level, where the 

multivariate data collected from the nodes of the monitoring area are abstracted to obtain 

feature values to obtain possible correlations between multiple data, which in turn can better 

fuse the original data and provide evaluation criteria for subsequent assessments. 

Decision Level Fusion: it is more advanced compared to the first two data fusion methods, 

which can not only extract correlations between various parameters, but also provide future 
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decisions by reacting to changes in the detection area over a period based on changes in the 

time series. 

 

3.2.2 Data fusion methods 

They can be broadly divided into two categories: classical methods and modern methods. 

Among them, classical methods are subdivided into estimation and statistical methods. 

Modern methods are divided into information theory and artificial intelligence methods. A 

more detailed classification is shown in the Fig.3.5. 

 

Fig.3.5 Common data fusion methods 
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3.3 Analysis and design of data fusion in water environment 

monitoring 

The sensor nodes for the measuring water environment are randomly distributed on the 

water, and the raw data received by the sink nodes in small-scale areas are prone to 

redundancy, anomalies, etc. If data fusion is not used for its weighting of the appropriate 

increase or decrease, then it is difficult to exclude the interference of the sensors themselves 

and the outside of the environment. In addition, because the environmental parameters are 

diverse, it is important to establish correlation between multiple heterogeneous data, through 

the input of multiple parameters to determine the current regional water quality. Finally, 

using the historical data of environmental parameters already obtained, further predict the 

data changes over a period. 

Based on the above analysis and in combination with the specific requirements for water 

quality monitoring in industrial water treatment plants, this research proposes a multi-level 

data fusion method. The specific processing workflow is illustrated in Fig.3.6. Firstly, the 

target water environment under monitoring is taken as the research object, and various types 

of sensors (such as temperature and pH sensor) are used to measure the required 

environmental parameters. These parameters are then used as the data fusion processing 

objects and are subjected to three levels of data fusion separately. In the data level, a refined 

Adaptive Weighted Data Fusion[17] (AWDF) algorithm is utilized for a single parameter 

(temperature) obtained from the same type of sensor. This is done to address issues like the 

inability to place many sensors in the actual environment and the presence of anomalous 

data. The AWDF algorithm increases the fusion frequency and reduces the weight of 

anomalous data to further enhance the fusion accuracy. In the feature level, a 

Backpropagation Neural Network (BPNN) is employed to analyze the fusion of multiple 

parameters (temperature, pH, turbidity, color, conductivity) obtained from different sensors. 

This process provides a comprehensive assessment of the water quality in the monitored area, 

enabling the implementation of further measures. At the decision level, historical data 
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collected from various parameters are used in conjunction with Long Short-Term Memory 

(LSTM) to make single parameter predictions (based solely on the historical data of 

individual parameters) and multi parameter predictions (analyzing historical data from 

multiple parameters together) for a certain period. This approach facilitates better monitoring 

and management of industrial water quality. 

 

 

Fig.3.6 Three-level data fusion mechanism 
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4. Data fusion method based on AWDF 

4.1 Principle analysis of AWDF 

In an actual area to be measured, usually multiple sensors in different directions for its 

data acquisition and processing, and then get the environmental information in the area. 

Compared to a single sensor, a more accurate estimate will be obtained, but there will still 

be other interfering factors, such as interference from the external environment, differences 

in the individual sensors themselves, etc. How to solve this problem becomes the key to the 

first step of data-level fusion. 

Suppose there are n sensor nodes to collect and record the results of the parameters in the 

water environment, respectively 𝑋1, 𝑋2, … ,𝑋𝑛 under the premise of ensuring the minimum 

total variance of the parameter using the adaptive weighting fusion algorithm (AWDF), for 

each of these nodes to collect the data are assigned the corresponding weighting coefficient 

𝑊𝑖, when the weighting coefficient is optimal[18], the final fusion result 𝑋! , the corresponding 

fusion structure of this algorithm is shown in Fig. 4.1. 

 

 

 

 

 

 

 

 

Fig.4.1 Model of AWDF algorithm 

 

This method gives a different coefficient 𝑊𝑖 between 0 and 1 for each sample data, it 

represents the reliability of the data. The closer to 1 means that this data is more reliable, and 

... 

𝑊1 

𝑊2 

𝑊3 

𝑊𝑛 

Σ 

𝑋2 

𝑋1 

𝑋𝑛 

𝑋3 
𝑋! 
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the opposite is less reliable. However, no arbitrary values can be assigned to the node data 

according to subjective wishes, and they can only be derived by ensuring that the total 

variance is minimal. 

For acquisition data 𝑋&, 𝑋', … , 𝑋( , there are also n corresponding weight coefficients 

𝑊&,𝑊', … ,𝑊(. The relationship satisfies the following equation (4-1). 

⎩
⎪
⎨

⎪
⎧𝑋* =,𝑊)𝑋)

(

)*&

,𝑊)

(

)*&

= 1

	 (4 − 1) 

The total mean square error 𝜎'of the response according to the theoretical derivation is： 

𝜎' = 𝐸 56𝑋 − 𝑋+7 8
'9 

= 𝐸 :,𝑊)
'

(

)*&

(𝑋 − 𝑋))' + 2 , 𝑊)𝑊,(𝑋 − 𝑋))6𝑋 − 𝑋,8
(

)*&,,*&,).,

= (4 − 2) 

Since the n data 𝑋&, 𝑋', … , 𝑋(  are initially independent of each other and are also 

unbiased estimates of X, the following equation holds. 

𝐸(𝑋 − 𝑋))6𝑋 − 𝑋,8 = 0					(𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑛; 𝑖 ≠ 𝑗) 	(4 − 3) 

It can be further known that its total mean square error 𝜎' can be expressed as: 

𝜎' =,𝑊)
'𝜎)'

(

)*&

	(4 − 4) 

where 𝜎)' denotes the mean square error of each node. 

Through mathematical knowledge we can know that there is a minimum value of the total 

mean square error 𝜎' in equation (4-4), and the required value can be solved using equation 

(4-5) below. 

⎩
⎪
⎨

⎪
⎧𝜎/)(' = minH,𝑊)

'
(

)*&

𝜎)'I

,𝑊) = 1
(

)

		 (4 − 5) 

The auxiliary function 𝜃 is constructed according to the theory of conditional extrema of 
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multivariate functions. 

𝜃(𝑊&,𝑊', … ,𝑊(, 𝜆) =,𝑊)
'𝜎)'

(

)*&

− 𝜆H,𝑊) = 1
(

)*&

I (4 − 6) 

Construct the corresponding set of equations： 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝜕𝜃
𝜕𝑊&

= 2𝑊&𝜎&' − 𝜆 = 0

𝜕𝜃
𝜕𝑊'

= 2𝑊'𝜎'' − 𝜆 = 0
…

𝜕𝜃
𝜕𝑊(

= 2𝑊(𝜎(' − 𝜆 = 0

𝜕𝜃
𝜕𝜆 = 1 −,𝑊) = 0

(

)*&

									 (4 − 7) 

Using the above equation (4-7), the optimal weight coefficient for each node is calculated 

when the minimum value of the total mean square error 𝜎'in equation (4-5) is obtained as: 

𝑊) =
1

𝜎)'∑
1
𝜎)'

(
)*&

(𝑖 = 1,2, …𝑛) (4 − 8) 

The minimum value of the corresponding total mean square error 𝜎/)('  is： 

𝜎/)(' =
1

∑ 1
𝜎)'

(
)*&

(4 − 9) 

In this way, the final fusion result can be found by using equation (4-1). 

 

4.2 AWDF for water environment 

4.2.1 Algorithm improvement 

According to the derivation of the formula in the previous section, it is easy to find that 

the accuracy of the final fusion value depends largely on the number of nodes and the number 

of times each data is processed and fused. Considering the actual water environment 

monitoring situation, the common AWDF needs to wait for each group of data to arrive 

before the unified processing, which may reduce the efficiency of the network and increase 

the delay. To solve these problems and improve the fusion accuracy, this article makes an 
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optimization for the common AWDF algorithm and proposes a new superposition virtual 

AWDF algorithm (SV-AWDF). The basic idea is to increase the number of fusions, reduce 

the waiting time and further improve the fusion accuracy by adding virtual sensor nodes. 

The approximate fusion is shown in Fig.4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 schematic diagram of the SV-AWDF 
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The specific convergence flow chart is shown in Fig.4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3 SV-AWDF work flow chart 
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4.2.2 Fusion results and performance analysis 

Considering the actual monitoring situation in water environments, the original data 

collected from the water treatment plant, including parameters such as water temperature, 

pH, turbidity, color, and conductivity, were used as the acquisition node's raw data. The 

optimized AWDF algorithm was applied for the Data Level Fusion. The approximate process 

is shown in the Fig.4.4. 𝑆𝑁& − 𝑆𝑁( represents the number of sensors measuring the same 

parameter, and the data collected by all sensors at the same time is used as input to obtain 

the unique fusion value at the same time. 

 
Fig.4.4 Data level fusion diagram 

 

The following table 4.1 shows a portion of the collected raw data. 

Table 4.1 Partial water environmental parameters 

Temperature pH Turbidity Chroma Conductivity 

16.5 

15.5 

16.0 

18.0 

19.0 

7.8 

8.1 

8.1 

8.9 

9.0 

26.0 

22.7 

19.8 

19.7 

22.8 

31 

29 

26 

25 

26 

20.4 

20.9 

21.2 

22.7 

23.0 
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21.0 

20.0 

19.5 

19.0 

18.0 

19.5 

21.0 

20.5 

20.0 

19.0 

18.5 

17.0 

19.5 

20.5 

22.0 

21.5 

20.0 

21.5 

21.0 

22.0 

23.5 

20.5 

24.5 

24.5 

23.5 

20.5 

21.5 

9.2 

9.3 

9.4 

9.3 

8.9 

9.3 

9.5 

9.2 

8.3 

8.3 

7.9 

7.7 

8.3 

8.8 

9.1 

9.2 

9.1 

9.4 

9.2 

8.8 

9.2 

8.9 

9.1 

9.1 

9.1 

9.0 

8.1 

18.9 

21.6 

24.0 

24.1 

26.1 

25.9 

20.3 

22.6 

25.5 

29.9 

21.2 

15.1 

18.9 

20.8 

24.3 

19.2 

24.5 

32.2 

29.3 

30.2 

31.7 

42.2 

31.0 

30.7 

36.3 

45.8 

26.5 

21 

25 

28 

29 

28 

26 

22 

29 

34 

38 

31 

23 

26 

25 

27 

22 

30 

34 

32 

34 

34 

48 

35 

33 

40 

54 

38 

21.7 

23.1 

21.4 

23.3 

24.6 

23.5 

22.5 

23.9 

22.4 

21.6 

21.8 

22.1 

21.5 

22.5 

22.5 

22.8 

23.2 

22.6 

23.1 

24.5 

22.8 

24.6 

27.1 

27.1 

27.1 

24.4 

29.0 
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23.5 

23.0 

22.5 

23.0 

19.0 

19.5 

18.5 

18.5 

21.0 

21.0 

21.0 

21.0 

19.5 

19.0 

20.0 

21.5 

22.5 

24.5 

23.5 

24.0 

23.0 

24.0 

24.5 

26.5 

28.3 

28.5 

29.0 

9.1 

9.0 

8.9 

8.9 

8.6 

8.4 

8.5 

8.6 

9.1 

8.6 

8.7 

8.5 

8.6 

8.7 

8.9 

8.7 

9.0 

9.0 

8.5 

9.0 

8.9 

8.8 

8.9 

8.6 

8.9 

9.1 

9.2 

39.2 

26.2 

32.9 

36.5 

55.1 

32.0 

37.4 

35.1 

34.5 

24.5 

34.3 

29.1 

49.2 

40.6 

32.7 

30.3 

17.8 

25.0 

37.6 

33.3 

45.1 

42.2 

38.5 

34.3 

38.6 

38.0 

28.9 

46 

35 

40 

45 

70 

47 

49 

42 

44 

32 

40 

37 

67 

48 

39 

37 

26 

31 

42 

39 

57 

49 

53 

43 

48 

47 

39 

26.6 

24.6 

23.9 

23.6 

24.9 

24.9 

24.3 

24.4 

24.4 

25.4 

25.1 

25.2 

23.8 

24.6 

24.4 

27.8 

27.1 

27.4 

28.2 

23.9 

22.0 

23.7 

26.7 

27.9 

29.4 

28.6 

27.8 
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27.0 

29.5 

8.6 

9.1 

35.6 

25.7 

45 

37 

28.1 

27.4 

(Reference: Chiba prefecture open data site, Water quality information[19]) 

As shown in Fig. 4.5, the temperature data in the above table is fused using the proposed 

SV-AWDF method to obtain the temperature trend before and after fusion.

 
Fig.4.5 Temperature trends before and after fusion 

 

The result of temperature change is shown in the Fig.4.6. Considering the lack of actual 

monitoring of possible abnormal data in the open data used, more obvious abnormal data is 

artificially added to the original data (the 12th data of sensor 3 is lower than that of the other 

two sensors, and the 17th data is higher than that of the other two sensors), and the SV-

AWDF method is used again for data fusion processing. It is not difficult to find that this 

method can reduce the weight of abnormal data and give the final fusion result more 

accurately after adding abnormal data. 
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Fig.4.6 Temperature trends before and after fusion (add abnormal data) 

 

In practical applications, even sensors of the same type may exhibit differences in data 

transmission, and the number of sensors placed in the water environment may be limited. To 

fuse the data more accurately, the proposed SV-AWDF method is utilized. If the first two 

sensors to transmit data are Node 1 and Node 2, the data from these two sensors are first 

subjected to regular AWDF fusion processing, resulting in the creation of the first virtual 

sensor. Then, this virtual sensor is combined with the next sensor through regular AWDF 

fusion, and the process continues until the last sensor is also included in the fusion process. 
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5. Data fusion method based on neural network 

5.1 Introduction to Neural Network 

In Feature Level data fusion, widely used techniques include the Dempster-Shafer theory 

of evidence and neural networks. In this study, the second-stage data fusion is performed 

using a backpropagation (BP) neural network[20][21], which has strong capabilities in parallel 

processing and data mapping. Its structure is shown in Fig.5.1. 

The BP neural network possesses the following characteristics: 

(1) The data storage form is decentralized, ensuring the stability of the network. It is not 

significantly affected by the interference of data from a specific node, thus minimizing the 

impact on the output. 

(2) By relying on multidimensional mapping techniques, the BP neural network can 

achieve pattern recognition functionality and capture linear or nonlinear relationships in 

multi-input and multi-output scenarios. 

Therefore, the BP neural network is suitable for the second-stage data fusion as it can 

effectively handle parallel processing and complex mapping relationships to enhance the 

fusion results. 

 

Fig.5.1 BP neural network structure 
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The explanations of each parameter in the above figure are as Table 5.1: 

 

Table 5.1 Explanations of each parameter 

parameter explanation 

𝑋𝑗 The input to the j-th node in the input layer 

𝑊𝑖𝑗 The weight between the j-th node in the input layer 

and the i-th node in the hidden layer 

𝑊𝑘𝑖 The weight between the i-th node in the hidden layer 

and the k-th node in the output layer 

𝜃𝑖 The threshold (bias) of the i-th node in the hidden layer 

𝑎𝑘 The threshold (bias) of the k-th node in the output layer 

𝜙 The activation function of the hidden layer 

𝜓 The activation function of the output layer 

𝑌𝑘 The output of the k-th node in the output layer 

 

The specific algorithm is derived as follows. 

(1) The forward propagation process of a signal: 

Input 𝑛𝑒𝑡𝑖 of the i-th node in the hidden layer： 

𝑛𝑒𝑡) =,𝑊),𝑋,

2

,*&

+ 𝜃) (5 − 1) 

 

Output 𝑛𝑒𝑡𝑖of the i-th node in the hidden layer： 

𝑌) = 𝜙(𝑛𝑒𝑡)) = 𝜙[,𝑊),𝑋,

2

,*&

+ 𝜃)\				 (5 − 2) 

 

Input 𝑛𝑒𝑡𝑘 the k-th node in the output layer： 
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𝑛𝑒𝑡3 =,𝑊3)𝑌)

4

)*&

+ 𝑎3 =,𝑊3)𝜙
4

)*&

[,𝑊3)𝑋,

2

,*&

+ 𝜃)\ + 𝑎3 (5 − 3) 

 

Output 𝑛𝑒𝑡𝑘 the k-th node in the output layer： 

𝑌3 = 𝜓(𝑛𝑒𝑡)) =,𝑊3)𝑌)

4

)*&

+ 𝑎3 = 𝜓 :,𝑊3)𝜙[,𝑊),𝑋,

2

,*&

+ 𝜃)\		
4

)*&

+ 𝑎3= (5 − 4)	

 

(2) Back propagation of errors： 

Reverse error propagation is a gradual adjustment from the output layer to the input layer 

using the error gradient descent method. The thresholds and weights of each layer of the 

network are continuously optimized, enabling the output of the desired results. 

For each sample p the error criterion function 𝐸𝑃(𝑇𝑘 represents the expected output of 

the k-th node in the output layer.) ： 

𝐸6 =
1
2,

(𝑇3 − 𝑌3)'
7

3*&

(5 − 5) 

The total error criterion function 𝐸𝑝′  for p samples： 

𝐸:; =
1
2,,(𝑇3: − 𝑌3:)'

7

3*&

:

:*&

(5 − 6) 

According to the gradient descent method, the corresponding parameters of each layer are 

adjusted, which are the correction of the output layer weights ∆𝑊𝑘𝑖, the correction of the 

output layer thresholds ∆𝛼𝑘 , the correction of the implied layer weights ∆𝑊𝑖𝑗 , and the 

correction of the implied layer thresholds ∆𝜃). 

∆𝑊3) = −𝜂
𝜕𝐸
𝜕𝑊3)

(5 − 7) 

∆𝛼3 = −𝜂
𝜕𝐸
𝜕𝛼3

(5 − 8) 

∆𝑊), = −𝜂
𝜕𝐸
𝜕𝑊),

(5 − 9) 

∆𝜃) = −𝜂
𝜕𝐸
𝜕𝜃)

(5 − 10) 
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Output layer weight adjustment： 

∆𝑊3) = −𝜂
𝜕𝐸
𝜕𝑊3)

= −𝜂
𝜕𝐸
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝑊3)

= −𝜂
𝜕𝐸
𝜕𝑌3

𝜕𝑌3
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝑊3)

(5 − 11) 

 

Output layer threshold adjustment： 

∆𝛼3 = −𝜂
𝜕𝐸
𝜕𝛼3

= −𝜂
𝜕𝐸
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝛼3

= −𝜂
𝜕𝐸
𝜕𝑌3

𝜕𝑌3
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝛼3

(5 − 12) 

 

Hidden layer weight adjustment： 

∆𝑊), = −𝜂
𝜕𝐸
𝜕𝑊),

= −𝜂
𝜕𝐸
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝑊),

= −𝜂
𝜕𝐸
𝜕𝑌3

𝜕𝑌3
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝑊),

(5 − 13) 

 

Hidden layer threshold adjustment： 

∆𝜃) = −𝜂
𝜕𝐸
𝜕𝜃)

= −𝜂
𝜕𝐸
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝜃)

= −𝜂
𝜕𝐸
𝜕𝑌3

𝜕𝑌3
𝜕𝑛𝑒𝑡3

𝜕𝑛𝑒𝑡3
𝜕𝜃)

(5 − 14) 

 

The final collation can be obtained: 

∆𝑊3) = 𝜂,,(𝑇3: − 𝑌3:)𝜓;(𝑛𝑒𝑡3)𝑦)

7

3*&

:

:*&

(5 − 15) 

 

∆𝛼3 = 𝜂,,(𝑇3: − 𝑌3:)𝜓;(𝑛𝑒𝑡3)
7

3*&

:

:*&

(5 − 16) 

 

∆𝑊), = 𝜂,,(𝑇3: − 𝑌3:)𝜓;(𝑛𝑒𝑡3)∆𝑊3)𝜙;𝑛𝑒𝑡)𝑥,

7

3*&

:

:*&

(5 − 17) 

 

∆𝜃) = 𝜂,,(𝑇3: − 𝑌3:)𝜓;(𝑛𝑒𝑡3)∆𝑊3)𝜙;𝑛𝑒𝑡)

7

3*&

:

:*&

(5 − 18) 
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5.2 Design of NN in water environment monitoring 

5.2.1 Process flow 

In the second stage of feature level fusion, unlike data level fusion, this part deals with all 

types of sensors at the same time in the monitoring subregion. The general fusion process is 

shown in the Fig.5.2. In the monitoring sub-area, the measured values of the five sensors are 

taken as a group, and the values of these parameters are used to give the evaluation of the 

water quality class (1-4) at a certain moment in the current area. 

 
Fig.5.2 Feature level fusion diagram 

In terms of BP neural networks, the process begins with the initial normalization of the 

entire network, where the weights and thresholds are initialized. Then, various 

environmental data collected by the water environment monitoring system is used as input 

parameters. Next, based on the input values from the samples, the input and output values 

of the nodes in the intermediate hidden layer are calculated. The next step involves 

calculating the input and output values of the nodes in the output layer. Finally, the output 
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layer error is computed, and the network weights are continuously adjusted to minimize the 

error, repeating the above steps to ensure that the overall mean square error meets the 

requirements. The Fig.5.3 shows the processing flow chart of BP neural network. 

 

Fig.5.3 BP neural network work flow chart 

5.2.2 Setting of related parameters 

Five sample parameters of temperature, pH, turbidity, chroma, and conductivity in water 

quality testing in water purification plants were selected as the number of input neurons for 

this network, and the output layer was the assessment level of water quality (from good level 

1 to poor quality level 4). 
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Firstly, the initial normalization is carried out for the whole network, as well as initializing 

the weights and thresholds of the network, and then a variety of environmental data collected 

in the water environment monitoring system is used as the input parameters, and then the 

input domain output values of the nodes in the middle implicit layer are calculated according 

to the sample input values. The next step calculates the input and output values of the nodes 

in the right output layer. 

 

5.2.3 Sample Training Network 

The construction of the BP neural network starts after determining the sample content. 

The input data were first divided into training and testing sets, the samples were normalized, 

and the number of iterations, target training error, and learning rate were set. Then start 

training the network, followed by back normalizing the trained data and sorting them 

according to the water quality level from 1 to 4. 

 

5.3 Water quality evaluation and analysis 

The water quality in the testing area is categorized into four classes from 1 to 4, where 

class 1 is the best and class 4 is the worst, as specified in the testing index for water quality 

in industrial water purification plants. The simulation is carried out using the data of a whole 

year 2022, the data of the first 285 days is used as the training set, and the data of the last 80 

days is used as the test set, and the results are shown as follows Fig.5.4-5.5. where the 

horizontal coordinate represents the data samples used for the assessment, the vertical 

coordinate represents the water quality classes assessed (1,2,3,4), and the correctness rate is 

the amount of data correctly assessed for the water quality classes as a percentage of the total 

amount of data. 
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Fig.5.4 Water quality assessment results for the train set 

 

 
Fig.5.5 Water quality assessment results for the test set 

Fig.5.6, 5.7 show the confusion matrices for the training and test sets. It represents the 

distribution of the evaluation class and the real class. From the figure, it can be seen the 

amount of data in each class in the evaluation class and the real class and the data that are 

misclassified. 
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Fig.5.6 Confusion Matrix for the train test  

 

Fig.5.7 Confusion Matrix for the test set 

Based on the simulation results, in the training set, the highest false detection rate occurs 

in data corresponding to water quality level 4, with 3 sets being incorrectly assessed as level 

3. In the test set, there are minor false detection rates for water quality levels 1, 2, and 4, but 

the overall assessment is relatively accurate. This indicates that the feature-level data fusion 

method based on the BP neural network is effective and feasible for water quality evaluation. 
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6. Water quality prediction based on LSTM 

6.1 LSTM neural network 

Long short-term memory (LSTM) is an improved result of traditional recurrent neural 

networks (RNN). It is a long-term and short-term memory network. Compared with ordinary 

RNN, LSTM adds a memory cell to judge whether the information is useful or not, which 

solves the problems of gradient disappearance and gradient explosion in the process of long 

sequence training[22][23]. This improvement enables it to perform better in longer sequences. 

The structure of the LSTM network is shown in Fig.6.1. Its core elements are the cellular 

state and the gating structure. Cell state is the pathway through which information can be 

passed down a sequence chain; it can be thought of as the memory of a network.  

 

Fig.6.1 LSTM structure 
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Gating structure generally includes three types of gates: a forget gate, an input gate, and 

an output gate. Each of these three gates, and the cell state, are described below. 

Forget gate (F): Its function is to decide what information should be discarded or retained. 

The forget gate controls the hidden cell state of the upper layer with a certain probability, 

and its calculation is shown in Equation 6-1. 

𝐹< = 𝜎6𝑋<𝑤= + 𝐻<>&𝑤=? + 𝐶<𝑤=@ + 𝑏=8 (6 − 1) 

Input gate (I): It is used to update the cell state. The input gate processes the input at the 

current sequence position and consists of two parts, the results of which are multiplied to 

update the cell state. Its calculation is shown in Equation 6-2. 

𝐼< = 𝜎(𝑋<𝑤) + 𝐻<>&𝑤)? + 𝐶<>&𝑤)@ + 𝑏)) (6 − 2) 

Cell state (C): The cell state depends on the result of the previous forget and input gates, 

and its calculation is multiplied point-by-point by the cell state of the previous layer and the 

forget vector, as shown in Equation 6-3.  

𝐶< = 𝐹< ∗ 𝐶<>& + 𝐼< ∗ tanh	(𝑋<𝑤@ + 𝐻<>&𝑤@? + 𝑏@) (6 − 3) 

Output gate (O): At first, the value of the next hidden state is determined; this contains the 

information entered earlier. The hidden state is then used as the output of the current cell, 

and the new cell state and the new hidden state are passed to the next time step. The 

calculation process is shown in Equations 6-4 and 6-5. 

𝑂< = 𝜎(𝑋<𝑤A + 𝐻<>&𝑤A? + 𝐶<>&𝑤A@ + 𝑏B) (6 − 4) 

𝐹< = 𝑂< ∗ tanh	(𝐶<>&) (6 − 5) 

For Equation 6-1 through 6-5, 𝑋𝑡  are the input variables; 𝜎  represents the sigmoid 

function; 𝑤𝑓, 𝑤𝑖, 𝑤𝑐, and 𝑤𝑜are the weights of 𝑋𝑡 in the forget gate, input gate, cell state, 

and output gate, respectively; 𝑤𝑓ℎ , 𝑤𝑖ℎ , 𝑤𝑐ℎ , and 𝑤𝑜ℎ  are the weights of 𝐻𝑡−1  in the 

forget gate, input gate, cell state, and output gate, respectively; 𝑤𝑓𝑐 , 𝑤𝑖𝑐 , and 𝑤𝑜𝑐  are 

weights related to the connection between the cell state and forget gate, input gate, and output 

gate, respectively; 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜are the biases in the forget gate, input gate, cell state, 

and output gate, respectively; and * represents the scalar product of two vectors.  
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The back propagation algorithm is employed by LSTM in the entire training procedure, 

and the corresponding parameter matrix will be continuously optimized to finally find a set 

of optimal parameters. 

 

6.2 Water quality prediction 

6.2.1 Single parameter prediction 

The simulation data is derived from the water quality monitoring open data of an industrial 

wastewater treatment plant between 2020 and 2022, comprising a total of 1095 sets. The 

main parameters include water temperature, pH, turbidity, color, and conductivity. 

𝑆),( = n6𝑦),&, 𝑇&8, 6𝑦),', 𝑇'8, … , 6𝑦),3 , 𝑇38, … , 6𝑦),(, 𝑇(8o (6 − 6) 

Where 𝑦𝑖,𝑘 is the value of the ith water quality parameter detected by the node at the 

moment 𝑇𝑘 (1 ≤ 𝑖 ≤ 𝑗, 1 ≤ 𝑘 ≤ 𝑛).𝑇 is a time variable, and the sampling interval is fixed 

as Δ𝑇 = 𝑇3I& − 𝑇3.for any moment 𝑇𝑘. 

For a single parameter 𝑆𝑖,𝑛  define the forecasting step of the time series as 𝑚,𝑚 ∈

{1,2, … },The single-parameter time series forecasting can be realized by applying the water 

quality forecasting fusion algorithm, whose task is to give the time series at a future moment: 

𝑆),(I/ = n6𝑦),(I&, 𝑇(I&8, 6𝑦),(I', 𝑇(I'8, … , 6𝑦),(I3 , 𝑇(I38, … , 6𝑦),(I/, 𝑇(I/8o (6 − 7) 

The general processing flow is shown in the Fig.6.2. The processing object of this part is 

a single environmental parameter in the monitoring sub-area. Take temperature as an 

example, the first k data collected by the temperature sensor is used as the first temperature 

time series, and the k+1-th data is predicted through LSTM, and then the second to the k+1-

th data predicted just now is used as a new temperature time series, and the k+2-th data is 

predicted by the same method. The time series is constantly updated by adding the predicted 

values from the previous time series to the next new time series, this is repeated until k+m 

data is finally predicted, at which point all data is processed. 
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Fig.6.2 Decision level fusion (single parameter) diagram 

Based on the analysis, in the fusion of single parameter water quality prediction, five 

parameters are selected as the fusion targets. A total of 900 sets of data from April 2020 to 

September 2022 are used as historical data for deep learning and training. The goal is to 

predict the water quality data for the next 6 months. 

(1) Training model parameter settings: 

This section sets the training of the prediction model to learn the data patterns for the next 

180 days (m=180) based on the historical data of the past 900 days. The training is performed 

for 100 iterations using the Mini-batch Gradient Descent (MBGD) method, where the 

training set is divided into mini-batches, and the gradients are computed, and parameters are 

updated for each batch. The Root Mean Squared Error (RMSE) is used as the loss function, 

and the Adam optimizer is employed to adjust the LSTM model and update the weights and 

bias parameters. Once the model training is completed, it can be used to predict the data for 

each parameter for the following six months starting from September 2022. 

(2) Water quality prediction effectiveness： 

Using the constructed LSTM-based water quality prediction model, it is possible to 

achieve predictions of the trend of a single water quality parameter to some extent. However, 

there may be significant discrepancies in the numerical values compared to the actual data. 

Fig.6.3, 6.4 show the predicted results for pH and Fig.6.5,6.6 show the predicted results for 

temperature. The horizontal coordinates in each figure indicate the predicted sample data 
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and the vertical coordinates indicate the predicted values. 

 

 
Fig.6.3 Prediction results for the pH single-parameter train set 

 

 
Fig.6.4 Prediction results for the pH single-parameter test set 
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Fig.6.5 Prediction results for the temperature single-parameter train set 

 

 
Fig.6.6 Prediction results for the temperature single-parameter test set 

 

6.2.2 Multi parameter prediction 

Unlike single parameter, multi parameter time series have more than one time-dependent 

quantity, i.e., each variable not only depends on its own past values but also has some 

dependence on other variables, and this dependence between multiple variables can be better 
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used to predict future values. 

For a given water quality multi-parameter time series moment 𝑆(  of length n can be 

defined in the following form: 

 

𝑆( = :
6𝑦&,&, 𝑇&8 ⋯ 6𝑦&,(, 𝑇(8

⋮ ⋱ ⋮
6𝑦:,&, 𝑇&8 ⋯ 6𝑦:,(, 𝑇(8

= (6 − 8) 

 

Define the time prediction step 𝑚,𝑚 ∈ {1,2, … }, and p is the number of parameters 

involved in the water quality prediction (1 ≤ 𝑖 ≤ 𝑝).The main task of using the water quality 

prediction fusion algorithm for the prediction of a multi-parameter time series is to analyze 

all the variables related to the predicted parameter to give the future time series of this 

parameter, which is consistent with a single parameter. 

𝑆),(I/ = n6𝑦),(I&, 𝑇(I&8, 6𝑦),(I', 𝑇(I'8, … , 6𝑦),(I3 , 𝑇(I38, … , 6𝑦),(I/, 𝑇(I/8o (6 − 9) 

The general processing flow is shown in the Fig.6.7. The processing object of this part is 

all the environmental parameters in the monitoring subarea. All the environmental 

parameters at the same moment are taken as a group (𝑟& − 𝑟:, There are p groups), and the 

group of the first k rounds (𝑟& − 𝑟3) is taken as the first time series, to predict the value of 

k+1 data. Then, 𝑟' to 𝑟3I& are used as a second new time series to predict the value of k+2. 

Each time series contains k groups, the time series is constantly updated by adding the 

predicted values from the previous time series to the next new time series, this repetition 

results in the k+m data point, at which point all groups (𝑟& − 𝑟:)  are involved in the fusion 

processing. 
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Fig.6.7 Decision level fusion (multi parameter) diagram 

The simulation data in this section remains the same as in 6.2.1, although within each 

parameter's dataset there is historical data for the current parameter in addition to historical 

data for other parameters with which it may be associated. 

(1) Training model parameter settings: 

Considering that in multi-parameter prediction, the amount of data involved in learning is 

significantly increased compared with that of a single parameter, each LSTM layer is set to 

128 neurons, batch size is 256, and matrix is 5*15. The RMSE transfer optimization 

algorithm is used to adjust the model and update the weight and bias parameters, and RMSE 

is used as the loss function.  
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(2) Water quality prediction effectiveness： 

By utilizing the LSTM-based water quality multi-parameter prediction model, the 

correlations among multiple parameters can be effectively utilized, leading to a significant 

improvement in data prediction accuracy. Fig.6.8,6.9 show the prediction results for pH and 

Fig.6.10,6.11 show the prediction results for temperature. Where the horizontal coordinates 

indicate the sample data involved in the prediction and the vertical coordinates 

 
Fig.6.8 Prediction results for the pH multi-parameter train set 

 

 
Fig.6.9 Prediction results for the pH multi-parameter test set 
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Fig.6.10 Prediction results for the temperature multi-parameter train set 

 

 
Fig.6.11 Prediction results for the temperature multi-parameter test set 

Based on the simulated fusion results, it is evident that the multi-parameter water quality 

prediction model exhibits good accuracy in estimating water quality over the medium to long 

term, with minimal deviations from the actual values. This indicates a strong 

interdependence among the selected parameters within the monitored area. 
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7. Evaluation 

7.1 AWDF data level fusion 

The optimized AWDF algorithm proposed in this paper as well as the other two weighted 

fusion algorithms are simulated and fused separately using MATLAB, data fusion results for 

temperature are shown in the Fig.7.1. Refer to Table 7.1 for fusion values and total variance. 

 
Fig.7.1 Trends in fusion values for the three methods 

 

Table.7.1 Comparison results of three methods  

Fusion indicators ADF AWDF SV-AWDF 

total variance 

fused value 

9.8324 

21.7852 

9.7428 

21.5186 

9.6581 

21.5036 

The above comparison shows that although there is not much difference between the 

proposed SV-AWDF and the other two methods in terms of fusion values, the introduction 

of virtual sensors makes it possible to satisfy the requirement of minimizing the total 

variance with a small number of acquisition nodes, which improves the fusion accuracy. 
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7.2 Neural network Feature level fusion 

The simulation results of water quality assessment using a general neural network are 

shown below: 

 
Fig.7.2 Water quality assessment results for the train set 

 

 
Fig.7.3 Water quality assessment results for the test set 
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Fig.7.4 Confusion Matrix for the train test 

 

 

Fig.7.5 Confusion Matrix for the test set 

Comparing the above figure, it can be found that the classification of water quality 

assessment using general artificial neural network is also effective, but the accuracy of 
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classification is not enough compared to BP neural network. There will be a concentration 

of misclassification, for example, in Fig.7.3, six data with a true water quality class of 3 were 

incorrectly assessed as class 2. 

7.3 LSTM Decision level fusion 

In the final decision level fusion, comparing the single-parameter and multi-parameter 

water quality prediction results it is easy to find that. 

(1) the single-parameter prediction is less satisfactory and has a large error with the actual 

data. Initial speculation may be that the waters where the data are collected have more 

obvious changes of their own, and only considering the changes of a single parameter is not 

enough to predict the future values. 

(2) Compared with the instability and large error of single-parameter prediction, multi-

parameter prediction can more effectively utilize the possible connection between various 

water quality indicators to optimize the prediction to the greatest extent. 

In addition, to predict water quality parameters more accurately and compare the impact 

of the amount of data involved in the training on the prediction results, this part adds the 

water quality data of 2018 and 2019 based on the data from 2020 to 2022, that is, the data of 

3 years has been changed to 5 years. As before, it is divided into single parameter and multi-

parameter predictions. The difference is that the ratio of the training set to the test set is 

different, in the 5 years of data, the first 4 years are input as the training set and the last 1 

year is output as the test set. 

Fig.7.6,7.7 below show the results of the train set and the test set for single-parameter 

prediction of water temperature respectively. The analysis shows that after adding 2 years of 

water quality data, the result of using LSTM single parameter to predict water temperature 

is like that before, and the accuracy is not significantly improved. 
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Fig.7.6 Prediction results for the temperature single-parameter train set (2018-2022) 

 

 
Fig.7.7 Prediction results for the temperature single-parameter test set (2018-2022) 

Fig.7.8,7.9 below show the results of the train set and test set for single-parameter 

prediction of pH, respectively. Like the prediction results for water temperature, after 5 years 

of water quality data, the prediction results are still like the previous ones, and the accuracy 

is not significantly improved. 
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Fig.7.8 Prediction results for the pH single-parameter train set (2018-2022) 

 

 
Fig.7.9 Prediction results for the pH single-parameter test set (2018-2022) 

Different from single parameter prediction, the accuracy of multi-parameter prediction 

has been significantly improved after two more years of data. Fig.7.10,7.11 show the results 

of train set and test set for multi-parameter prediction of water temperature respectively. 

Fig.7.12,7.13 show the results of the train set and test set for multi-parameter prediction of 

pH. 
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Fig.7.10 Prediction results for the temperature multi-parameter train set (2018-2022) 

 

 
Fig.7.11 Prediction results for the temperature multi-parameter test set (2018-2022) 
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Fig.7.12 Prediction results for the pH multi-parameter train set (2018-2022) 

 

 
Fig.7.13 Prediction results for the pH multi-parameter test set (2018-2022) 

Combining the single and multi-parameter prediction using 2020-2022 water quality data 

in Section 6.2 with the single and multi-parameter prediction using 2018-2022 water quality 

data in this section, the RMSE under different conditions is analyzed with the predicted 

results of water temperature and pH as examples. The following Table 7.2 shows the specific 

comparison results. 
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Table 7.2 RMSE of single and multi-parameter prediction for different data quantities 

 

method 

RMSE of water quality parameter prediction 
temperature  pH 

train set  test set  train set            test set 
2020-
2022 

2018-
2022 

 2020-
2022 

2018-
2022 

 2020-
2022 

2018-
2022 

 2020-
2022 

2018-
2022 

single- 
parameter 

1.5971 1.5072  1.8713 1.7723  0.33936 0.3382  0.34769 0.3548 

multi- 
parameter 

0.41923 0.17762  0.6227 0.19682  0.02747 0.0118  0.03814 0.0132 

 

Through the above analysis and comparison, it is not difficult to find that in the aspect of 

single-parameter prediction of water quality, increasing the amount of data does not 

significantly improve the accuracy of prediction. However, when using multi-parameter 

prediction, the increase of data volume significantly improves the accuracy of the final 

prediction. It can be further learned that when there is some correlation between multiple 

data involved in training, increasing the amount of data can improve the accuracy of 

prediction. 
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8. Conclusion 

Water quality monitoring is a basic measure to protect the water environment, through the 

collection and analysis of various environmental parameters in the target waters, observing 

the changes in the water environment, providing an effective means for water quality 

analysis and assessment, water quality prediction and other aspects. 

Which is based on WSNs water environment monitoring system has attracted much 

attention in recent years, with a variety of sensors distributed in the detection of water to 

form a wireless sensor network, can be more timely and effective monitoring of the target 

waters. However, if the raw data collected by the sensors are not processed but directly 

transmitted, then on the one hand, for the entire network, it will increase the amount of 

transmission data and energy consumption of the nodes, resulting in network congestion; on 

the other hand, it is difficult to extract useful data from a large number of environmental 

parameters to analyze the current water environment, which is prone to one-sided assessment 

of water quality, and will also have an impact on the subsequent prediction of water quality. 

Therefore, it is necessary to introduce some reasonable data fusion mechanisms to solve 

these problems. In this article, we consider the tasks faced in the three levels of numerical 

fusion, feature fusion and decision fusion, corresponding to the adoption of different data 

fusion methods to improve the problems in water environment monitoring. The specific 

research results are as follows: 

(1) Several topics that need to be dealt with in water environment monitoring based on 

WSNs are first analyzed, and a new multilevel data fusion method applied to water 

environment monitoring is proposed. 

(2) At the data level, the AWDF algorithm is used to perform a preliminary fusion process 

on the raw data to reduce the amount of data that needs to be transmitted. However, 

considering the situation that many sensors may not be able to be placed in the actual 

monitoring environment, which may lead to low fusion accuracy, this article proposes an 

SV-AWDF method to improve the number of fusions by adding virtual sensors, which in 
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turn ensures the accuracy of the results. For the fusion processing of water temperature, pH 

and other parameters in the water environment, comparing the fusion results of ADF, 

ordinary AWDF and the SV-AWDF of this article on the original data, the analysis concludes 

that the improved optimization algorithm improves the accuracy compared with the other 

two methods, and can be applied to a certain extent to the situation of insufficient number of 

sensors. 

(3) At the characterization level, a neural network-based data fusion method is proposed 

for water quality parameters (water temperature, pH, turbidity, chromaticity, and 

conductivity) that may be correlated in the water environment. The aim is to utilize the 

correlation between these parameters to give a reasonable assessment of water quality. Using 

285 days of water quality data as a training sample to assess the last 80 days of water quality, 

the results show that the accuracy can be as high as 93.75%. 

(4) At the decision-making level, to further extend the function of data fusion, this article 

utilizes LSTM deep neural network to make predictions on medium- and long-term water 

environment parameters and proposes different data fusion methods for single parameter and 

multi-parameter respectively. The results show that the multi-parameter can utilize the 

correlation between various water quality data under certain conditions and can give more 

accurate predictions than the single-parameter prediction, and the RMSE can be reduced to 

about 0.027. In the assessment process, water quality data of 2018 and 2019 were added as 

a comparison. It was found that for single-parameter prediction, increasing the amount of 

training data could not significantly improve the accuracy of prediction. However, it is 

different for multiple parameters, and the more samples involved in training, the higher the 

accuracy of the final prediction. 

Prospect: 

In this article, the water environment monitoring of WSNs is taken as the research 

background, and different data fusion methods are proposed in the three aspects of numerical 

value, feature correlation among data, and data prediction, respectively, considering the 

water temperature, pH, turbidity, and other parameters of the actual water environment. 
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Although the simulation results show good performance and provide a reliable method for 

data analysis of WSNs water environment monitoring system to a certain extent, the 

following problems still exist: 

(1) Due to the limitation of not conducting experiments in the actual water environment, 

the acquired environmental parameters are not obtained through sensor acquisition, so there 

is an ideal situation in the collection of raw data (lack of anomalies, missing data, etc.), and 

it is not possible to further analyze and compare the energy consumption of the sensor 

network, transmission delay, and so on. 

(2) In the prediction of a single water quality parameter, its prediction results differed 

greatly from the actual data, but the multi-parameter prediction was effective. In addition to 

the correlation between parameters has a large impact on the prediction results, this paper 

does not consider the interference of other factors. 

Based on the above two shortcomings, after that, when conditions allow, experiments in 

the actual water environment can more accurately reflect the changes of water quality 

parameters (considering the sensor's own influence, external interference). In addition, 

analyzing the excessive error and lack of precision that exists in the prediction of a single 

parameter is also one of the focuses of future research. 
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