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Chapter 1 INTRODUCTION 
 

1.1 Background 
 

The movement of goods or freight transport is vital to the economic activities of a region. Not 

only is it essential for the everyday lives of citizens as a means of distribution of consumer 

goods and services but it is invaluable in the procurement process of raw materials for the 

manufacturing of consumer goods or other intermediate goods for other purposes, and 

equipment for the further production of other goods and services. It essentially enables 

businesses to operate and provide the necessary goods and services for an economy to grow. 

Freight transport is also what enabled trade across cities and countries, which lead to the 

existence of a globalized economy. Because of differences in labor and raw material costs 

between regions, countries, or even cities within a country, producing a single good may have 

had multiple freight transportation associated with it. Freight transport also plays a vital role in 

transporting goods, especially relief goods and medicines, to areas affected and stricken by 

disasters for humanitarian logistics purposes. Trade and freight transport are drivers of 

economic growth and development of a nation, and without freight transportation, goods and 

services will not be accessible to citizens who determine the demand for goods and services. 

The importance of freight transportation to the local and global economy, to people’s everyday 

lives, and to humanitarian logistics highlights its significance in the overall transportation 

system of a region, which includes private and public passenger transportation. This poses 

challenges from the viewpoint of having an integrated transport policy. Compared to passenger 

transport, there are many aspects to be considered in terms of integration in freight transport 

such as the involvement of many different companies in production and supply of a particular 

product, the object of study (whether vehicle or goods), and the effort that goes into the 

management of information flow during logistics management (Allen et al., 2010). Thus, 

bringing about greater integration in freight transport can mean different things, and is likely 

to be a relatively complex process that needs the involvement of many different organizations 

(Allen et al., 2010). This can be seen from the various key stakeholders in freight transportation, 

namely, shippers, freight carriers, residents, and administrators (Taniguchi et al., 2001). The 

inter-relations of the different stakeholders in freight transportation are shown in Figure 1.1. 
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Figure 1.1 Stakeholders in freight transportation (Taniguchi et al., 2001) 

Shippers are the customers for freight carriers who either send goods to other companies or 

persons or receive goods from them (Taniguchi et al., 2001). Freight carriers are those directly 

related to transporting the goods from origin to destination where there can be intermediate 

origins and destinations which are identified as transshipment points. Freight carriers typically 

attempt to minimize costs and maximize profits as well as maintain a certain level of service 

due to pressure from customers (Taniguchi et al., 2001). Residents are the people who live, 

work, and shop in the city (Taniguchi et al., 2001) are the end-consumers that are the source of 

the demand for goods and services. Administrators are the ones that attempt to enhance the 

economic development of a city or region (Taniguchi et al., 2001). Administrators or the public 

sector (government) are the ones essentially in charge of maintaining the balance between the 

interests of different stakeholders in the freight transport system. They also aim to provide 

better quality-of-life through investments that will make it easier for other stakeholders to 

function. 

The above leads to the need for a better understanding of the different aspects of freight 

transportation to be able to predict their respective outcomes for more informed policies and 

decision making. This is because stakeholders in freight transportation have their own specific 

objectives and tend to behave differently from each other (Taniguchi et al., 2001) and will 

either want to optimize operations, lower costs, increase utility and profits, lower the 

externalities to the environment, and improve services and quality of life. This has led to a 

surge of studies focusing on freight transportation, particularly in modeling freight 
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transportation in terms of jointly optimizing inputs, outputs, profits, costs, scheduling, and 

routes choices. Often, studies related to freight transportation are tied to private of publicly 

funded projects for practical purposes like conducting forecasts through prediction models. 

These prediction models are for freight-related indices and measures of production of goods 

and services, which are a precursor to measures of economic performance and growth, and 

evaluations of investments and infrastructure projects.  

While there has been a surge of studies focusing on freight transportation, it still generally 

follows the traditional four-step modeling approach that is well established in passenger 

transportation modeling, and transportation planning literature in general. The four-step model 

consists of trip generation, trip distribution, modal split, and traffic assignment. The output in 

the trip generation step is usually the number of trips generated (Rodrigue et al., 2016), and in 

the context of freight transportation, an additional layer is considered in the form of freight 

volume generated. The output in trip distribution is usually a flow matrix between spatial units 

(Rodrigue et al., 2016). Modal split disaggregates movement between origins and destinations 

by modes (Rodrigue et al., 2016), and there can be more than one mode used for a specific 

shipment, especially when there are intermediate locations (such as warehouses and 

distribution centers) or transshipment points. Traffic assignment loads the estimated trips onto 

the transportation network (Rodrigue et al., 2016). In line with this, Tavasszy and de Jong 

(2014) distinguished three primary layers or markets of freight systems: (1) the commodity 

market, (2) the inventory logistics services market, and (3) the transport logistics services 

market. The commodity market is where the consumption and production of goods occur and 

are primarily driven by producers and consumers. The producers are on the receiving end of 

goods flows, goods such as raw materials and other inputs for manufacturing, and consumers 

are on the sending end of freight when it comes to waste or return shipments (Tavasszy and de 

Jong, 2014). Consumers and households shape the final demand for goods, and their decision 

includes, by analogy, the residential location, their consumption patterns, and the way they deal 

with waste, (Tavasszy and de Jong, 2014). The inventory services market deals mostly with 

keeping logistics costs low (by bundling shipments and transport flows) and maintaining high 

levels of service with proximity to markets (Tavasszy and de Jong, 2014). The intermediate 

inventories where transshipment happens changes the spatial pattern of trade where  new 

origins and destinations for transport are created (Tavasszy and de Jong, 2014) and is where 

consolidation or deconsolidation of shipments happen which adds another factor in the 

decision-making process in freight transportation. The transport logistics services market is 
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concerned with the transport mode of freight which can be road, rail, water, and air or a 

combination thereof. The transport mode of freight is the most discussed point of intervention 

for freight transport policies and each mode of transport offers different specialized means of 

transport appropriate to different type of goods and shipment sizes (Tavasszy and de Jong, 

2014). When all modes of transport are available, decision makers intensively optimize 

transport (Tavasszy and de Jong, 2014) to either decrease cost and travel time, increase profit, 

or a compromise while maintaining a high level of service when feasible. 

The decisions leading to freight transport are not independent (Tavasszy and de Jong, 2014), 

as is clear from the different stakeholders and the different corresponding markets (which 

reflects the four-step model for passenger transport) in freight transport. In contrast to 

passenger transport, where a decision-maker is usually a single person, freight transport 

involves a multitude of decision-makers, which lead to freight transport and, thus, freight 

vehicle trips. 

 

1.2 Problem Identification 
 

Freight models have a tendency to overfit the data by increasing the number of independent 

variables in the model to improve model fit as well as to not consider unobserved factors, 

particularly the spatial effects in the freight system. While increasing the number of predictor 

variables will increase a model’s fit to data, an excellent model fit does not necessarily mean 

that the model is suitable for forecasting because overfitted models tend to perform poorly in 

prediction. On the other hand, unobserved variables are neglected, particularly the spatial 

dependence of some variables in freight transportation, which lead to  

 

1.3 Objectives of the Study 
 

This thesis aims to tackle the problems of overfitting of freight volume generation and freight 

trip generation, the dependence of freight trip generation to the location of logistics facilities, 

and the issues of unobserved spatial dependencies in freight trip generation. The specific 

objectives of this thesis are as follows: 

1) To recommend an alternative method to deal with the overfitting issues in freight 

transportation models; 
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2) To be able to consider unobserved factors particularly the spatial dependencies in freight 

trip generation through modeling of spatial autocorrelation 

 

1.4 Significance of the Study 
 

The studies conducted in this thesis are significant in proposing improved methods for applied 

modeling of freight volume and freight transport generation. The study will show how to deal 

with overfitting and unobserved effects (spatial dependence) by using penalized regression 

methods and spatial regression.  

  

1.5 Scope 
 

While the freight transport system is complex and involves different stakeholders and markets 

and different layers or steps in modeling, which are interrelated, this thesis will primarily focus 

on the generation of freight volume and freight trips. 

 

1.6 Thesis Composition 
 

Chapter 1 introduces the study; Chapter 2 presents the literature review of freight generation 

and freight trip generation models; Chapter 3 aims to solve the overfitting problem in freight 

volume generation by applying a Bayesian varying (random) intercept model for national 

freight volume in Japan. Chapter 4 presents a method to consider location choice and location 

variables of logistics facilities to freight trip generation. Chapter 5 introduces sparse regression 

methods as an alternative to the classical regression method to deal with overfitting for freight 

trip generation. Chapter 6 shows how unobserved spatial variables can be considered for 

modeling freight trip generation through regression that considers spatial autocorrelation. 

Chapter 7 summarizes, concludes, and discusses the implications. 

Figure 1.2 below shows the thematic relationship of the respective chapters in the study, 

particularly those directly dealing with freight volume and freight trip generation modeling. As 

stated in the problem identification and objectives of the study, the two main themes in this 

study is to deal with the overfitting of freight generation and freight trip generation models, 

and to consider the spatial dependencies in freight trip generation.  
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Figure 1.2 Thematic relationship of the chapters 

 

Chapter 3, modeling the national freight volume generation of Japan, and Chapter 5, sparse 

regression as a method for trip generation modeling in Kanto, Japan specifically deals with 

overfitting by introducing a varying-intercepts model to improve out-of-sample  prediction, 

and by conducting variable selection through sparse regression, respectively. On the other hand, 

Chapter 4, logistics facility allocation, size, and freight trip generation of Tokyo Metropolitan 

Area introduces methodologies that takes into account the numerous zero values in the data 

which is a representation of the spatial dependency of the allocation of freight facilities and 

truck trip generation. Chapter 6, truck trip generation modeling considering spatial auto-

correlation in Kanto and Kansai, Japan using spatial regression, both considers the overfitting 

issue and spatial dependencies in the data by first conducting a variable selection to narrow 

down the number of independent variables relevant to modeling truck trip generation, then 

proceeding to model the spatial dependencies in the data through spatial regression. Although 

the methodology of considering the spatial dependencies in the freight trip generation data 

differs between chapter 4 and chapter 6, it is the objective of this study to introduce methods 

that will be appropriate depending on the different characteristics of freight trip generation data.  
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Figure 1.3 Venn diagram of the relative thematic relationship of the freight and freight trip 

generation models  

 

Figure 1.3 highlights the relative differences of the chapters with respect to the main themes of 

the study. While chapter 3 and chapter 5 both deals with the overfitting of freight volume 

generation and freight trip generation models, respectively, chapter 4 deals with the spatial 

dependencies in the data. On the other hand, chapter 6 is the intersection between overfitting 

and the spatial relationships as it shows how the two issues are tackled by utilizing a method 

for dealing with overfitting introduced in chapter 5 and applying the said method to aid the 

application of a model that considers the spatial dependency of freight trip generation. And 

while the different chapters are demonstration of the different models and how they deal with 

the issues of overfitting and spatial dependencies, they give insights to how different data and 

their context are handled through modeling. As most cases of freight transportation modeling 

are based on observational data, that is, data that are collected not for the sole purpose of 

modeling but for statistical summaries, it is important that different approaches to model the 

freight transportation data for forecasting purposes be considered and explored.  
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Chapter 2 LITERATURE REVIEW OF FREIGHT GENERATION AND FREIGHT 

TRIP GENERATION MODELS 
 

2.1 Overview of Freight Transport Modeling 
 

Tavasszy & de Jong (2014) gave an overview of the different decisions and markets of the 

freight transport system as well as the different freight modeling approaches from a theoretical 

and practical perspective. Before analyzing the different actors in a freight system, we must 

first determine the decision-makers, what decisions they make, and how those decisions affect 

the freight transport system (Tavasszy and de Jong, 2014). This gives a clear overview of the 

system in general. Decisions in transport policy are generally strategic (5 to 10 years), tactical 

(months to years), or operational (days to months) in the timeframe. Strategic decisions involve 

major investments and cannot be reviewed frequently; tactical decisions are related to smaller 

investments and are reviewed frequently but still has a lag time; and operational decisions are 

those that can be taken at discretion and have a short review period in the planning and 

management cycles (Tavasszy & de Jong, 2014).  

In conjunction with the timeframes, there are three main layers or markets of freight systems: 

the exchange of goods (commodity market), the inventory networks (inventory services 

market), and the transport organization (transport logistics services market) (Tavasszy & de 

Jong, 2014). The exchange of goods market revolves around producers and consumers; 

inventory networks are spatial forms of organization of inventories that provide storage, 

consolidation and/or deconsolidation of flows at intermediate locations in between production 

and consumption areas which aims to keep logistics costs low and maintain high service levels; 

and transport organizations deal with the choice of modality or mode of transportation as well 

as the shipment size or a joint decision on both (Tavasszy & de Jong, 2014) and to an extent, 

the network assignment and route choice. There can be direct and mutual dependence between 

decisions in freight transport and, although it is desirable to strive for a comprehensive and 

integrated model, in practice, sub-models are synthesized through integrative theory and where 

empirically feasible (Tavasszy & de Jong, 2014). The framework for the type of decisions and 

markets in freight transport systems leads to different models that reflect the market or layer in 

the freight transport system and the specific decisions they aim to describe. Table 1 summarizes 

the different model types. See Tavasszy & de Jong (2014) for more discussion. 
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Table 2.1. Model types based on decisions and markets (Tavasszy & de Jong, 2014). 

Market Partial Models Disciplinary Focus 

Production/consumption and 

trade 

• Production/consumption: Input/output 

models 
• Input/output economics 

• Trade: Gravity models • Engineering 

• Combined: Spatial computable general 

equilibrium models and derivatives 
• Economic geography 

• Freight generation models • Econometrics 

Inventory logistics • Shipment size choice • Operations research 

• Inventory chain models • Discrete choice theory 

Transport logistics • Mode choice models • Discrete choice theory 

• Freight to trip conversion models • Engineering 

• Mode and route choice: supernetworks • Network modeling 

 

2.2 Freight Generation and Freight Transport Generation 
 

Freight volume generation or freight generation (FG) is defined as the amount of cargo 

generated, specifically the amount of cargo produced or consumed, while freight trip 

generation (FTG) is the freight traffic required to transport cargo or the number of freight trips 

generated (Holguin-Veras et al., 2014; Holguín-Veras et al., 2011). Holguín-Veras et al. (2011) 

argue that FG and FTG must be treated as separate concepts because FTG is the output of 

logistic decisions, while FG is determined by the economics of productions and consumption. 

The freight transport modeling literature has established that the size of establishments is a 

determining factor of FG, i.e., as the size of businesses increases, the FG also increases. 

However, although it is expected that FG increases with business size, FTG does not 

necessarily increase proportionately; increases in FG can be accommodated by smaller 

increases in shipment size that may not necessarily have an impact on FTG, which could lead 

to changes in vehicle or mode and even a decrease in FTG (Holguín-Veras et al., 2011). The 

fact that FG and FTG are different phenomena in the overall context of freight transport 

modeling (Holguín-Veras et al., 2011) requires FG and FTG to be treated separately.  

Comprehensive reviews on the state-of-the-art and recent developments in freight transport 

modeling were conducted by different groups that determined research gaps and opportunities 

in the literature (Chow et al., 2010; de Jong et al., 2013; Tavasszy et al., 2012). Chow et al. 
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(2010) reviewed the recent advances in freight forecasting models and the data requirements 

for model development in the USA and concluded the need for including dynamic shipper-

carrier interactions in freight transport modeling and that the development of hybrid models 

such as the integration of regional logistics models with urban truck touring models will result 

in new problems consistency in the results of multiple models. de Jong et al. (2013) reviewed 

the recent developments in freight transport modeling in Europe and determined that the 

introduction of logistics has been the main improvement of the models. However, de Jong et 

al. (2013) assessed that most practical freight transport models still lack logistics choice making. 

This is mostly because of constraints in the readily available data that are suitable for modeling 

logistic decisions and its relationship to FG and FTG. The development of logistics models and 

their integration in FG and FTG models in Europe has only been possible due to the availability 

of data beyond those compulsory aggregate freight transport statistics (de Jong et al., 2013). In 

a similar vein, Tavasszy et al. (2012) reviewed the developments in freight modeling regarding 

the state-of-the-art in representing logistics focusing on service and cost drivers of changes in 

logistics networks and how theses affect freight transport. In agreement with the findings of de 

Jong et al. (2013) concerning the lack of data befitting of including logistics in freight transport 

models, Tavasszy et al. (2012) also noted that freight modeling requires data on the various 

logistics infrastructures, the quality of costs of logistics services, and transport flows.  

The relationship between land-use and transportation is very-well established and a well-

researched area (Geurs & van Wee, 2004; James et al. 1972; Wegener, 2004; Newman & 

Kenworthy, 1996) that it is already standard to consider land-use-transport (LUT) interactions 

in city/town planning and regional planning. However, there is a lack of research tackling the 

interaction between logistics land-use and transportation, especially when utilizing models for 

policy analysis. Only a few have attempted to do so due to the complexities of the logistics 

sector (Hesse, 2002; Hesse, 2004; Wagner, 2010).  

Previous research on logistics facilities distribution focuses on decisions where to locate. For 

instance, evaluation criteria for the location selection of city logistics centers were formulated 

by combing economic, environmental, and social sustainability indicators through a fuzzy 

multi-attribute group decision-making method (Rao et al., 2015).  Lindsey et al. (2014) used 

an econometric approach to evaluate longitudinal data of metropolitan markets wherein a 

methodology was developed to rank 20 metropolitan markets from 1997 to 2007 based on their 

potential for industrial space using macroeconomic, demographic, and freight flows as input 

variables. In relation to econometric modeling, Woudsma et al. (2008) applied a spatial-
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temporal modeling approach to quantify the effects of transportation system performance on 

the patterns of logistics land-use. Woudsma et al. (2015) investigated logistics sprawl and its 

relation to locating and identifying facilities. Sakai et al. (2016) presented the historical 

transition of logistics facilities in TMA from 1980 to 2003, which revealed that the asset pricing 

bubble in Japan during the period of 1986 to 1991 was a significant factor in the 

decentralization of logistics facilities into the suburbs. Iwakata et al. (2015) highlighted the 

importance of accessibility to interchanges and expressways for mega distribution centers in 

TMA. Hong (2007) found that the location of foreign logistics firms in Chinese cities depended 

on transport conditions in terms of the roadway, railway, and waterway, as well as market size, 

labor quality, agglomeration economies, and government incentives.  

Freight trip generation, on the other hand, has been modeled through various methods in the 

past. The most basic of which is through the use of trip generation rates (Kulpa, 2014; Sorratini 

& Smith 2000), which determines the number of truck trips generated per unit of the 

independent variable (e.g., number of trips per number of employed persons). Multiple linear 

regression has also been used in numerous papers modeling truck trip generation either to 

develop generation rates or directly forecast truck trip generation (Tadi & Balbach, 1994; 

Holguín-Veras et al. 2002; El-maghraby, 2000; Sorratini & Smith, 2000; Kulpa, 2014). Truck 

trip generation models fall under the vehicle-based models as opposed to commodity-based 

models in road freight transport trip generation modeling (Kulpa, 2014). While these methods 

have been the standard in urban-transport planning, the modeling of a truck trip generation 

focused on certain types of land-use or facility one at a time (Tadi & Balbach, 1994; Holguín-

Veras et al. 2002). This is uniquely flawed when considering mixed land-use patterns, 

particularly at the regional level.  

There is a disconnect between research on logistics land-use and other land-use classifications 

and actual truck trip generation wherein past research considers one aspect independent of the 

others and vice-versa. Therefore, in line with one of the objectives of this study to consider 

unobserved effects to freight trip generation, a methodology of linking land-use and transport 

in the context of freight transport (vehicle-based) is presented as well as simultaneously 

account for allocation and size of logistics facilities and truck trip generation considering all 

land-use classifications available in the data.  
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Chapter 3 MODELING THE NATIONAL FREIGHT VOLUME GENERATION OF 

JAPAN 
 

3.1 Introduction 
 

There are different approaches to modeling freight volume generation or freight generation 

(FG), and it differs depending on the resolution of analysis, i.e., if the unit of analysis is at the 

international level, national level, or the urban/local level. The methods applied in modeling 

FG vary depending on the available data, or the data that can be feasibly collected for the 

different levels of units of analyses. This means that there are various methods of modeling 

freight volume generation, and this is evident from the abundance of methods in the literature 

where authors present the novel methodology they used. However, most of these 

methodologies are dependent on availability or the collected data. A common approach to 

improving model fit is to include as many independent variables from the available data. This 

naturally improves the fit of the freight model to data. However, a model with a good fit to data 

does not necessarily mean it has a good predictive capacity. Here lies the problem because 

models are developed in freight transportation primarily for prediction and forecasting and 

mostly for policy evaluation. In this chapter, an approach to modeling FG using the national 

freight volume generation of Japan is presented with the aim of dealing with the overfitting 

issue in freight transportation models. 

 

3.2 Data Abstract 

 

The national freight volume data used in this chapter has 1,504 samples. There are 6 variables 

in the data, namely, year, prefecture, the population (in 1,000s), gross regional product (GRP), 

type of goods, and weight in tons of goods generated. There are 4 years considered, namely, 

2000, 2005, 2010, and 2015. There are 47 prefectures in Japan, and the population in (in 1,000s) 

and GRP in millions are considered for each prefecture for each of the 4 years. There are eight 

types of goods considered: agriculture, wood, mining, machine, chemical, small machinery, 

miscellaneous industry goods, and special goods. A sample of the data used is shown in Table 

3.1. 
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Table 3.1 Sample of national freight volume data 

year num prefecture pop.1000 GRP.mill goods ton 

2000 1 Hokkaido 5683 20471299 agriculture 13062354 

2000 1 Hokkaido 5683 20471299 wood 2100076 

2000 1 Hokkaido 5683 20471299 mine 47400509 

2000 1 Hokkaido 5683 20471299 machine 8638957 

2000 1 Hokkaido 5683 20471299 chemical 68047304 

2000 1 Hokkaido 5683 20471299 Smachine 13457707 

2000 1 Hokkaido 5683 20471299 miscind 3209660 

2000 1 Hokkaido 5683 20471299 special 8445845 

 

3.3 Framework of Analysis 

 

The effects of overfitting are shown using different measures of model fit and predictive 

accuracy. A widely used measure of model fit is the r-squared, which measures the proportion 

of the variance in the data captured by the model. Including more variables would lead to a 

better fit because the model will learn more from the data. However, this does not necessarily 

mean that the model is suitable for the prediction of data outside of the sample used for learning. 

Thus, we compare side-by-side the r-squared and an established method of measuring the 

predictive accuracy of regression models under a Bayesian framework. We use the Bayesian 

framework because it can easily allow the estimation of more complex models, such as those 

with varying-intercepts.  

 

3.4 Including Varying Effects in Modeling Freight Volume Generation 

 

One approach to improve predictive accuracy is to allow for varying effects in the regression 

model. Here varying effects are considered in the form of varying-intercepts in regression 

models. While varying-intercepts can be considered in the classical regression method, the 

Bayesian method of estimation allows the varying-intercepts to be correlated through a 

hyperparameter, which represents the mean effect of each varying intercept. The advantage is 

that we can estimate this from the data and allow intercepts to covary. A total of 24 national 

freight FG models were estimated, as shown in the national FG models Fit1 to Fit24 below. 

The dependent variable is the log of the total volume of freight generated, log⁡(𝑦𝑖), and the 

independent variables are the population and GRP of the prefectures, the dummy for the prefecture, the 

dummy for the year, and the dummy for the goods type. The independent variables population and GRP 
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are standardized to have a mean equal to zero and a standard deviation of one. Fit1 to Fit3 is the 

conventional method of incorporating dummy variables for each prefecture, year, and goods 

type. The difference among Fit1 to Fit3 is that, in addition to the dummy variables for each 

prefecture, for each year, and for each goods type,  Fit1 consists of both population and GRP, 

Fit2 consists of only the independent variable population, and Fit3 consists of only the 

independent variable GRP. The rest of the national FG models estimated are of the varying 

effects type of models where the varying effects are represented as varying-intercepts. Fit4 to 

Fit24 are all varying-intercepts models, and the difference is what variables are considered as 

varying-intercepts and whether population and/or GRP is included. Fit4 to Fit6 are varying-

intercepts models where prefecture is the varying-intercept variable. Fit7 to Fit9 are varying-

intercepts models where year is the varying-intercept variable. Fit10 to Fit12 are varying-

intercepts models where goods type is the varying-intercept variable. Fit13 to Fit15 are 

varying-intercepts models where prefecture and year are the varying-intercept variables. Fit16 

to Fit18 are varying-intercepts models where prefecture and goods are the varying-intercept 

variables. Fit19 to Fit21 are varying-intercepts models where year and goods are the varying-

intercept variables. The last set of national FG models, Fit22 to Fit24, are varying-intercepts 

models where prefecture, year and goods are the varying-intercept variables.  

Fit1:log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓1 +⋯+ 𝛼𝑝𝑟𝑒𝑓46 + 𝛼𝑦𝑒𝑎𝑟1 +⋯+ 𝛼𝑦𝑒𝑎𝑟3 + 𝛼𝑔𝑜𝑜𝑑𝑠1…𝛼𝑔𝑜𝑜𝑑𝑠7 +

𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit2:log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓1 +⋯+ 𝛼𝑝𝑟𝑒𝑓46 + 𝛼𝑦𝑒𝑎𝑟1 +⋯+ 𝛼𝑦𝑒𝑎𝑟3 + 𝛼𝑔𝑜𝑜𝑑𝑠1…𝛼𝑔𝑜𝑜𝑑𝑠7 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit3:log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓1 +⋯+ 𝛼𝑝𝑟𝑒𝑓46 + 𝛼𝑦𝑒𝑎𝑟1 +⋯+ 𝛼𝑦𝑒𝑎𝑟3 + 𝛼𝑔𝑜𝑜𝑑𝑠1…𝛼𝑔𝑜𝑜𝑑𝑠7 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit4: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit5: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit6: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓                        + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit7: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit8: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit9: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟                       + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit10: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit11: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit12: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑔𝑜𝑜𝑑𝑠                       + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit13: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit14: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 
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Fit15: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟                       + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit16: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit17: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit18: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑔𝑜𝑜𝑑𝑠                       + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit19: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit20: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit21: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠                        + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit22: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

Fit23: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 

Fit24: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠                       + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

 

3.5 Bayesian Inference Framework of Parameter Estimation 

 

The theoretical foundation for parameter estimation under the Bayesian Inference framework 

is the Bayes’ theorem. Bayes’ theorem and probability theory is used to derive the distribution 

of parameters of a statistical model given the data, called the posterior distribution 𝑝(𝜃|𝑦). To 

utilize Bayes’ theorem to estimate the posterior distribution, the beliefs about the parameters 

𝜃, before taking into account the data, must be specified using a probability distribution called 

the prior distribution 𝑝(𝜃) of the parameters 𝜃.  Also, a probability model must be chosen for 

the data 𝑦 given the parameters 𝜃 to complete the factors necessary for Bayes’ theorem to 

derive the posterior distribution of parameters 𝑝(𝜃|𝑦).  The posterior distribution of parameters 

𝑝(𝜃|𝑦) using Bayes’ theorem is derived as follows. 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 

The numerator is the product of the likelihood 𝑝(𝑦|𝜃) and the prior distribution of parameters 

𝑝(𝜃) , while the denominator is the sampling distribution 𝑝(𝑦) , which is also called the 

“evidence” or “average likelihood” (McElreath, 2018). It is the average probability of the data 

where the probability is taken for all possible values of the parameters from its prior distribution, 

as shown below. 

𝑝(𝑦) = ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃 
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There are different methods of calculating the posterior distribution of parameters. However, 

in the advent significant improvement in computing power and storage capacity of computers, 

the most powerful methods to estimate the posterior distribution of parameters have become 

simulation methods such as Markov chain Monte Carlo (MCMC) methods because of its 

capacity to estimate complex model specifications such as hierarchical or multilevel models. 

This also means that simple model specifications will not pose any problem for MCMC 

methods. 

The national freight volume generation models in this chapter apply MCMC to estimate the 

posterior distribution of parameters conditional on the national freight volume generation data 

of Japan. The estimation of the parameters through the posterior distribution was conducted 

using the probabilistic modeling language “Stan” (Carpenter et al., 2017) through “brms” 

(Bürkner, 2018, 2017), the interface R package in the R programming language (R 

Development Core Team, 2018). Stan applies MCMC algorithms known as Hamiltonian 

Monte Carlo (HMC) (Neal, 2011) to simulate the posterior distribution of parameters and thus 

estimate the model parameters conditional on the data. The advantage of using the HMC 

algorithm is that it is more efficient because it does not need many samples to describe the 

posterior distribution, it requires less computation time, and outperforms other algorithms when 

models become more complex (McElreath, 2018).  

 

3.6 Measures of Model Fit and Predictive Accuracy 
 

Various measures of model fit and predictive accuracy were used to evaluate the classical 

regression model and the varying-intercepts model. The model fit of classical regression 

models are traditionally evaluated using the coefficient of determination, 𝑅2,⁡which measures 

the proportion of variance in the data explained by the model. The classical 𝑅2 is defined as 

follows: 

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2
𝑛
𝑖=1

 

where the numerator of the fraction above is the Residual Sum of Squares (RSS), and the 

denominator is the Total Sum of Squares (TTS). However, a problem arises under the Bayesian 

treatment of regression models where it is possible for the classical formula classical 𝑅2⁡to be 

greater than 1 (Gelman et al., 2019; Tjur, 2009). Hence, instead of using the classical 𝑅2 to 



20 

 

evaluate the fit of the nationl FG models, a generalization of the classical 𝑅2  under the 

Bayesian framework that is based on variance-decomposition is used as follows (Gelman et al., 

2019): 

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑅2 =
𝑉𝑛=1
𝑁 𝑦𝑛

𝑝𝑟𝑒𝑑𝑠

𝑉𝑛=1
𝑁 𝑦𝑛

𝑝𝑟𝑒𝑑𝑠 + 𝑣𝑎𝑟𝑟𝑒𝑠
𝑠

 

where 𝑉𝑛=1
𝑁 𝑦𝑛

𝑝𝑟𝑒𝑑𝑠 is the variance of the modeled predictive means and 𝑣𝑎𝑟𝑟𝑒𝑠
𝑠  is the residual 

variance. In the Bayesian framework, instead of point estimates of the parameters 𝜃, a posterior 

distribution of parameters 𝜃𝑠, 𝑠 = 1, … , 𝑆 , conditional on the data is estimated. Hence the 

subscript s in the factors of the 𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑅2. 

It is not enough to measure the model fit of freight transport models because, ultimately, freight 

transport models are estimated for the purpose of evaluating freight transport solutions and 

forecasting future FG and FTG. The predictive performance of freight transport models on 

future data must be evaluated to determine the appropriate model for policy evaluation and 

forecasting impacts and externalities. There are two approaches to measuring the predictive 

accuracy of regression models: information criteria and cross-validation (McElreath, 2018). 

However, only cross-validation will be used to evaluate the national FG models. The 

established measure to compare the predictive accuracy of different models is called the log-

probability score⁡𝑆(𝑞) = Σ𝑖 log(𝑞𝑖), which was derived from information entropy (McElreath, 

2018). However, similar to the treatment of 𝑅2  for models estimated under the Bayesian 

framework, the entire posterior distribution is used to evaluate the log-probability score. Thus, 

the log-probability score for a Bayesian model called the log-pointwise-predictive density 

(𝑙𝑝𝑝𝑑̂) is defined as follows: 

𝑙𝑝𝑝𝑑̂ =∑log(
1

𝑆
∑𝑝(𝑦𝑖|𝜃

𝑠)

𝑆

𝑠=1

)

𝑛

𝑖=1

 

where S is the total number of samples from the posterior distribution and 𝜃𝑠 is the 𝑠𝑡ℎ set of 

parameters sampled from the posterior distribution. When comparing models estimated from 

the same dataset, a higher 𝑙𝑝𝑝𝑑̂ indicates a better predictive accuracy.  

A common methodology for assessing the predictive accuracy of statistical models is cross-

validation. Cross-validation is when we leave-out a small part of the data and test the 

performance of the statistical model on that small part of the data using the model estimated 
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from the rest of the data. A specific type of cross-validation is the leave-one-out (LOO) cross-

validation, which will be the basis of comparing the national FG models presented in this 

chapter. However, a known difficulty of implementing LOO cross-validation is that it can be 

time-consuming and heavy on resources, especially in the Bayesian framework, as for each 

observation, a posterior distribution must be estimated. A technique to estimate the LOO cross-

validation without the need to go through each sample is to use the relative importance provided 

by each sample in the posterior distribution (Vehtari et al., 2017). Vehtari et al. (2017) 

introduced a method and proved that the LOO cross-validation could be approximated with 

high accuracy without the need to conduct the actual LOO cross-validation. They showed that 

by using only the posterior distribution and the relative importance of each sample in the data, 

the LOO cross-validation is approximated by incorporating weights in the calculation of the 

𝑙𝑝𝑝𝑑̂. The weights for the importance sampling undergo a smoothing process using the pareto 

distribution so that the weights become more reliable (McElreath, 2018) hence it is called the 

Pareto-Smoothed Importance Sampling (PSIS-LOO) cross-validation and is referred here as 

𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂ . The 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  is defined as follows: 

𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂ =∑log (
∑ 𝑤𝑖

𝑠𝑝(𝑦𝑖|𝜃
𝑠)𝑆

𝑠=1

∑ 𝑤𝑖
𝑠𝑆

𝑠=1

)

𝑛

𝑖=1

 

where the terms are the same as the definition of 𝑙𝑝𝑝𝑑̂  above with the addition of the 

importance-sampling weights, 𝑤𝑖
𝑠 . The 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  will be the basis for assessing and 

comparing the predictive accuracy of the national FG models. Similar to the non-weighted 

version, a model with a higher 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  indicates a better out-of-sample predictive 

performance. 

In summary, the Bayesian R-squared will be the basis for measuring the fit of the models to 

the data, and the PSIS-LOO, an accurate approximation of the LOO cross-validation method, 

will be the basis for assessing the out-of-sample accuracy of the national FG models.  

 

3.7 Summary Results 
 

In this section, the results of the estimation of the national FG models are presented, followed 

by the assessment of model fit and out-of-sample prediction accuracy. As a reminder, the 

dependent variable is the log of the total volume of freight generated, log⁡(𝑦𝑖) , and the 
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independent variables are the population and GRP of the prefectures, the dummy for the 

prefecture, the dummy for the year, and the dummy for the goods type. The independent 

variables population and GRP are standardized to have a mean equal to zero and a standard 

deviation of one.  Fit1 to fit3 is the conventional linear regression model where categorical 

variables such as prefecture, year, and goods type are incorporated in the model as dummy 

variables. However, the parameter estimates for the dummy variables of the prefecture, year, 

and goods are not shown in this section. Please refer to the appendix for the complete estimation 

results. Fit4 to Fit24 are all varying-intercepts model will have additional parameters estimated. 

These parameters are the standard deviation (sd) of the varying-intercepts. The sd provides 

information on how much variation there is among the particular varying intercept variables. 

Higher sd of varying-intercepts indicates that there is more heterogeneity among the categories 

in a specific varying-intercept variable. 

Table 3.2 Estimated parameters of the national FG models 

(mean) intercept population GRP 
sd 

(prefecture) 

sd 

(year) 

sd 

(goods type) 

fit1* 14.7 0.77 0.07 
   

fit2* 14.71 0.82  

   

fit3* 14.78 
 

0.84 
   

fit4 14.9 0.96 -0.33 0.45 
  

fit5 14.91 0.65  0.48 
  

fit6 14.91 
 

0.54 0.62 
  

fit7 14.9 1.08 -0.45 
 

0.2 
 

fit8 14.89 0.67  

 

0.24 
 

fit9 14.9 
 

0.55 
 

0.18 
 

fit10 14.77 1.08 -0.45 
  

1.28 

fit11 14.77 0.67  

  

1.29 

fit12 14.78 
 

0.55 
  

1.29 

fit13 14.9 0.99 -0.36 0.45 0.21 
 

fit14 14.89 0.66  0.48 0.23 
 

fit15 14.89 
 

0.54 0.62 0.19 
 

fit16 14.75 0.75 -0.12 0.5 
 

1.29 

fit17 14.78 0.64  0.52 
 

1.27 

fit18 14.79 
 

0.55 0.65 
 

1.28 

fit19 14.76 1.08 -0.45 
 

0.24 1.28 

fit20 14.75 0.67  

 

0.22 1.3 

fit21 14.77 
 

0.55 
 

0.21 1.28 

fit22 14.76 0.86 -0.24 0.49 0.23 1.3 

fit23 14.74 0.64  0.51 0.23 1.28 

fit24 14.76 
 

0.52 0.65 0.22 1.27 
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Table 3.2 gives a summary of the estimated parameters of the 24 national FG models. Based 

on the results, a recurring observation is that, except for the Fit1, all model specification that 

only has population or GRP as the independent variable will have a positive coefficient. To be 

specific, all models that only have population as the independent variable, namely, fit2, fit5, 

fit8, fit11, fit14, fit17, fit20, and fit23, have a positive coefficient ranging from 0.64 to 0.82. 

Similarly, all models that only have GRP as the independent variable, namely, fit3, fit6, fit9, 

fit12, fit15, fit18, fit21, and fit24, have a positive coefficient ranging from 0.52 to 0.84. The 

results of these two types of models give reasonable results, especially regarding the signs of 

the coefficients. As the population increases, the volume of freight generated also increases on 

the order of 0.64 to 0.82 log tons for each 1 standard deviation increase in population. On a 

similar note, as the GRP of a prefecture increase, the volume of freight generated also increases 

on the order of 0.52 to 0.84 log tons for each 1 standard deviation increase in GRP. However, 

with the exception of fit1, looking at the FG models with both population and GRP as 

independent variables in their linear equations, while the sign of the coefficients for population 

remains positive, the sign of the coefficient for GRP becomes negative. A negative coefficient 

for GRP is contrary to the expected influence of GRP on the total freight volume generated. A 

negative coefficient for GRP implies that holding constant the population, as the GRP of a 

prefecture increase, the total volume of freight generated will decrease. To be specific, the 

models with both population and GRP as independent variables are fit4, fit7, fit10, fit13, fit16, 

fit19, and fit22.  

Table 3.3 Bayesian R-squared 
 

Estimate Est. Error Q2.5 Q97.5 

fit1 0.8258 0.0036 0.8185 0.8324 

fit2 0.8258 0.0035 0.8184 0.8323 

fit3 0.8254 0.0036 0.8180 0.8321 

fit24 0.8251 0.0037 0.8174 0.8320 

fit23 0.8250 0.0037 0.8174 0.8318 

fit22 0.8246 0.0037 0.8171 0.8315 

fit18 0.8206 0.0037 0.8129 0.8275 

fit17 0.8200 0.0038 0.8120 0.8270 

fit16 0.8198 0.0038 0.8118 0.8268 

fit19 0.7259 0.0064 0.7126 0.7376 

fit10 0.7208 0.0065 0.7075 0.7330 

fit20 0.7113 0.0068 0.6974 0.7241 

fit11 0.7066 0.0070 0.6922 0.7193 

fit21 0.6424 0.0089 0.6240 0.6587 

fit12 0.6385 0.0090 0.6204 0.6557 
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Estimate Est. Error Q2.5 Q97.5 

fit15 0.3108 0.0170 0.2766 0.3428 

fit14 0.3105 0.0170 0.2770 0.3431 

fit13 0.3104 0.0170 0.2762 0.3433 

fit6 0.3069 0.0171 0.2726 0.3394 

fit4 0.3060 0.0170 0.2724 0.3384 

fit5 0.3059 0.0175 0.2711 0.3393 

fit7 0.2266 0.0168 0.1930 0.2591 

fit8 0.2127 0.0161 0.1813 0.2444 

fit9 0.1443 0.0155 0.1145 0.1751 
 

Table 3.3 shows the tabulated Bayesian R-squared for all the fitted models. It can be observed 

that Fit1 to fit3, corresponding to the classical regression model formulations with the highest 

number of variables in the model, had the top 3 highest R-squared among all the 24 fitted 

models. Fit1, fit2, and fit3 all consist of intercepts or dummy variables for each factor in the 

variables prefecture, year, and goods. Fit1 considers both population and GRP as independent 

variables in the model, while fit2 only considers population, and fit3 only considers GRP. The 

implication of having the highest Bayesian R-squared among the fitted models is that the 

classical linear regression models describe the national freight volume generation data best in 

terms of goodness-of-fit. This is expected as among the 24 fitted models, fit1, fit2, and fit3 

have the highest number of independent variables in their respective linear models. Following 

the top three classical linear regression models are the fit24, fit23, and fit22, which are model 

fits with varying-intercepts for the prefecture, year, and goods type. While fit22 includes all 

categorical variables as varying-intercepts, namely, the prefecture, year, and goods type, and 

both the population and GRP as independent variables, fit24 and fit23, which both also 

considers all categorical variables as varying-intercepts, but only consider GRP and population, 

respectively, had a higher Bayesian R-squared than fit22. However, as we will see in the 

following table, which summarizes the LOO cross-validation as approximated by the 

𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  by taking the differences in the estimated 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  of each of the model fits 

from the highest 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂ , the model with the highest goodness-of-fit to the data, i.e., the 

model with the highest Bayesian R-squared, is not necessarily the best model for future 

predictions. 

Table 3.4 lppd PSIS-LOO differences 

Model comparisons:  
elpd_diff se_diff 

fit24 0 0 

fit23 -0.6 2.5 
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Model comparisons:  
elpd_diff se_diff 

fit22 -1.5 3.4 

fit3 -1.8 1.7 

fit2 -2.2 3 

fit1 -2.4 2.7 

fit18 -17.1 6.1 

fit17 -19.5 7 

fit16 -20.8 7.2 

fit19 -316.5 22.3 

fit10 -328.7 22.6 

fit20 -355 23.6 

fit11 -365.4 23.9 

fit21 -516.4 28 

fit12 -522.8 28.1 

fit14 -1025.4 31.9 

fit13 -1025.6 31.9 

fit15 -1026.4 32 

fit5 -1027.7 32.2 

fit4 -1028.5 32.2 

fit6 -1028.5 32.2 

fit7 -1092.4 32.6 

fit8 -1105.6 32.4 

fit9 -1168.7 32.8 
 

Table 3.4 shows the differences in LOO cross-validation as approximated by the 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  

that was defined in the previous section. Recall that a model with a higher 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  relative 

to other models indicates that the model will perform better in predicting out-of-sample data. 

In our context, the linear model with the highest 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  will be the best predictor of 

national freight volume generation. Based on Table 3.4, fit24 has the highest 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  as 

shown by the zero elpd_diff; the difference of the highest 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  with the highest 

𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂  (itself) is zero. Fit24 corresponds to the varying-intercepts model, with the 

prefecture, year, goods type as varying-intercepts, an only GRP as the independent variable as 

follows: 

Fit24: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓 + 𝛼𝑦𝑒𝑎𝑟 + 𝛼𝑔𝑜𝑜𝑑𝑠 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

 

Recall that the result of the Bayesian R-squared for the estimated models indicates that fit1 is 

the best model for national freight with a linear model formulation as follows: 
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Fit1: log⁡(𝑦𝑖) = 𝛼 + 𝛼𝑝𝑟𝑒𝑓1 +⋯+ 𝛼𝑝𝑟𝑒𝑓46 + 𝛼𝑦𝑒𝑎𝑟1 +⋯+ 𝛼𝑦𝑒𝑎𝑟3 + 𝛼𝑔𝑜𝑜𝑑𝑠1…𝛼𝑔𝑜𝑜𝑑𝑠7 +

𝛽𝑝𝑜𝑝𝑥𝑝𝑜𝑝 + 𝛽𝐺𝑅𝑃𝑥𝑔𝑟𝑝 

 

Fit1 is a classical linear regression formulation with dummy variables and continuous variables 

as independent variables with a total of 59 variables. This is in contrast to the best model for 

the out-of-sample prediction that is the varying-intercept model fit24, which only has 5 

variables in its linear model. As seen in the different best model between the Bayesian R-

squared and the LOO cross-validation as approximated by 𝑙𝑝𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜̂ , the overfitting that has 

resulted from including 59 independent variables did not produce a model that is best for 

predicting future national freight volume generation. Furthermore, with only 5 predictor 

variables, in contrast to 59 independent variables, a model that performs better for out-of-

sample predictions of national freight volume generation was estimated under a varying-

intercepts model construction.  

 

3.8 Summary and Conclusions 

 

In this chapter, models for the national freight volume generation in Japan were estimated. The 

national freight volume data used has a total of 1,504 samples with 6 variables, namely, year, 

prefecture, the population (in 1,000s), gross regional product (GRP), type of goods, and weight 

in tons of goods generated. Specifically, the classical linear regression model and the varying-

intercept model were compared. There was a total of 24 model specification used to estimate 

the national freight volume generation of Japan. The estimation of the classical linear 

regression model and the varying-intercept model were conducted under a Bayesian Inference 

framework because it can easily allow the estimation of complex models, such as those with 

varying-intercepts. The objective of this chapter is to demonstrate that a national freight 

generation model with a higher goodness-of-fit is not necessarily the best model for forecasting 

future freight volume generation.  

The most common measure of goodness-of-fit for linear regression models is the R-squared, 

which explains the amount of variation in the data explained by the model, hence a high R-

squared is desirable. However, in the Bayesian Inference setting of estimation, the traditional 

R-squared formula may be problematic because it can be greater than 1, whereas the estimated 

R-squared should be between 0 and 1 for it to be meaningful. Thus, a Bayesian version of R-
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squared was used to evaluate the goodness-of-fit of the estimated models. However, while the 

fit of a model to the data is measured by the R-squared, it does not provide any information on 

a model’s performance to predict future values from future data. In the context of the national 

freight volume generation in Japan, the R-squared of a model does not say anything the model’s 

performance on predicting future freight volume generation on future population and GRP.  

A common and established method of estimating the out-of-sample performance of a model is 

to conduct cross-validation. There are multiple ways to conduct cross-validation. For the 

national freight volume generation models, the Leave-One-Out (LOO) cross-validation is used 

to evaluate the out-of-sample performance of the models. The LOO cross-validation method 

leaves-out one sample and estimates the model using the rest of the samples in the data. For 

example, in the national freight volume generation data of Japan with 1,504 samples, 1,503 

samples are used to estimate the model and evaluated on the left-out sample regarding its 

predictive accuracy. The process is repeated a number of times equal to the total number of 

samples, and the results are averaged to get the average out-of-sample performance. However, 

there is a total of 24 national freight volume generation model specifications which means that 

the LOO cross-validation process would need to be done repeatedly for 24 times. This process 

will require the heavy use of computer resources, especially storage and memory, as well as 

long computation times. Thus, to evaluate the out-of-sample performance of the national 

freight volume models estimated in this chapter, a method that could approximate the LOO 

cross-validation with high accuracy and without the need to conduct the actual LOO cross-

validation was used. The method is called the Pareto-Smoothed Importance Sampling (PSIS-

LOO) cross-validation, which uses the relative importance of each sample in the data to the 

posterior distribution. The advantage of the PSIS-LOO cross-validation is that there is no need 

to repeatedly estimate the 24 models 1,504 times, once for each sample, using a training-test 

split, and averaging the errors to get the mean-squared-error of each model. The PSIS-LOO 

cross-validation only needs the posterior distribution of the models to approximate the LOO 

cross-validation; thus, it requires fewer computer resources and computation time. 

The estimation results show that the national freight volume generation models with the most 

number of independent variables, i.e., the classical regression models, had the highest Bayesian 

R-squares. This indicates that the classical regression models fit the national freight volume 

generation of Japan best. This is expected because the classical regression formulation of the 

national freight volume generation includes the most number of predictor variables. The three 

national freight volume generation models with the highest Bayesian R-squared are classical 
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regression models with 57 to 59 predictor variables; the variables are the population and GRP 

as continuous variables, the 47 prefectures as dummy variables, the 4 years as dummy variables, 

and the goods type as dummy variables. This implies that the classical regression model 

specification is the best model at describing the national freight volume generation of Japan. 

However, it was also shown that the models with the best goodness-of-fit to data were not the 

best at predicting out-of-sample data. 

As discussed previously, the PSIS-LOO cross-validation method was conducted to determine 

the out-of-sample performance of the estimated national freight volume generation models.  

The results were summarized by tabulating the differences of the PSIS-LOO cross-validation 

measures from the model with the best PSIS-LOO cross-validation. The results showed that 

the models that performed best at out-of-sample prediction were the varying-intercepts model 

while the best models with Bayesian R-squared only following behind. This implies that 

models that have the best fit to data do not necessarily mean that they are the best for out-of-

sample and future prediction. The best models based on the Bayesian R-squared not being the 

best for predicting future data demonstrates that the classical regression models with 57 to 59 

predictor variables overfit the national freight volume generation data of Japan. In contrast, the 

result of the PSIS-LOO cross-validation shows that out-of-sample prediction is improved and 

overfitting avoided by specifying a varying-intercepts model for the national freight volume 

generation of Japan. The national freight volume generation model with the best PSIS-LOO 

cross-validation is the model with an intercept, which represents the overall mean freight 

volume generation, the prefecture, year, and goods type as varying intercepts to represent their 

varying effects and the GRP of the prefecture as a continuous independent variable. There are 

a total of 5 predictors in the best performing model for out-of-sample prediction, which is 

significantly lower than the model with the best Bayesian R-squared, which had 59 total 

predictor variables. Thus, it was shown that for the national freight volume generation of Japan, 

a varying-intercepts model with only 5 predictor variables outperforms the classical linear 

regression model with 59 predictor variables in out-of-sample prediction. 

The results of the estimations of the different models the national freight volume generation of 

Japan and the evaluations of their respective Bayesian R-squared and LOO cross-validation as 

approximated by the PSIS-LOO method implies that a better national freight model that avoids 

overfitting and, correspondingly, performs better at prediction can be estimated by using a 

varying-intercepts model specification.  It is often the case that applied freight models in 

general result to overfitting by using a simple model formulation such as the classical linear 
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regression and incorporating as much independent variable. As seen in this chapter, predictive 

performance can be improved, and overfitting avoided by taking a step further in the model 

specification by incorporating varying effects in the form of varying intercepts into the linear 

model. 
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Chapter 4 LOGISTICS FACILITY ALLOCATION, SIZE, AND FREIGHT TRIP 

GENERATION OF TOKYO METROPOLITAN AREA 
 

4.1 Introduction 
 

Logistics and freight are seldom topics of research in transportation. This motivates more 

studies that focus on logistics and freight systems in the context of transportation research and 

its impacts on the built environment and quality of life of people. Impacts due to generation 

and attraction of traffic from logistics facilities need to be considered in future transportation 

plans or city plans. While the relationship between land-use and transportation has been a well-

known subject of research for person trip behavior, research that investigates together the 

relationship of allocation patterns of land-use and elements of logistics and freight networks 

such as the production of truck trips and location choice for logistics facilities are lacking. This 

chapter aims to analyze the relationship between logistics facilities and truck trip generation 

by utilizing the 4th and 5th Tokyo Metropolitan Area Urban Freight Survey (TMAUFS), which 

were conducted in 2003 and 2013, respectively. 

 

Specifically, we aim to relate land-use allocation and truck trip generation by formulating a 

Logistics Floor Area model and a Truck Trip Generation model using utility theory with land-

use variables and other area characteristics as inputs to both models. Ultimately, the estimated 

models will be used to conduct sensitivity analysis on the effects of infrastructure and policy 

changes on the total logistics floor area and truck trip generation. 

 

The structure of this chapter is as follows: in section 4.2, we briefly present the 4th (2003) and 

5th (2013) TMAUFS data and describe temporal changes from 2003 to 2013 with respect to the 

number of logistics facilities; section 4.3 presents the Truck Probe data portion of the 5th 

TMAUFS to give an overview of truck generation in Tokyo Metropolitan Area (TMA). In 

section 4.4 and 4.5, we formally develop and estimate the Logistics Floor Area model and the 

Truck Trip Generation model using TMAUFS data and relate both models together to 

demonstrate their practical application. Finally, section 4.6 concludes and summarizes this 

chapter. 
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4.2 Framework of Analysis 
 

The framework of analysis for the logistics facility allocation, size, and freight trip generation 

of the Tokyo Metropolitan Area is shown in Figure 4.1 below.  

 

 

Figure 4.1 Framework 

 

4.3 Data Abstract  
 

4.3.1 Basic Analysis using the 4th and 5th survey 
 

In this section, we briefly discuss the transition of the distribution of freight facilities in TMA 

from the 4th TMAUFS (2003) to the 5th TMAUFS (2013). The specific areas of analysis 

considered in the 5th survey are the areas of Tokyo, Kanagawa, Chiba, Saitama, and South 

Ibaraki so that a comparative analysis between the 4th and 5th survey can be conducted. This is 

because the survey areas covered in the 5th survey have been extended to South Gunma, South 

Tochigi, and Central Ibaraki, as shown in Figure 4.2 below. 
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The units of analyses are logistics centers, which is one of the facility types defined in the 

survey to establishments in TMA. The distribution of all facility types surveyed in TMA and 

the distribution of all logistics facility respondents in TMA are shown in Figure 4.3 below. 

 

 

The specific variables of analyses are Total Floor Area (m2), Number of Places with Outbound 

Trips, and Outbound Tonnage of Freight tallied from each type of establishment to represent 

the scale of facilities. Further, we focus on analyzing each secondary mesh unit, which is about 

10-km2 due to the 4th survey (Japan Geodetic System) and 5th survey (World Geodetic System) 

using different geodetic coordinate systems. Due to the difference in coordinate systems used, 

the longitude and the latitude of the two systems are different by about 460-m. However, we 

suppose that the 10-km2 secondary mesh could ease the differences. Furthermore, we define 

Central Ibaraki

South Ibaraki

East Chiba

North West 
Chiba

South 
West 
Chiba

Chiba City

South Tochigi

South Gunma

North Saitama

South Saitama

Saitama
City

Tokyo, Tama 
Region Tokyo Wards, 

Inland
Tokyo Wards, 
Coastal

Kanagawa

Sagamihara
City

Kawasaki
City

Yokohama
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Figure 4.2. TMA freight survey areas: (a) 4th TMA freight survey (left), and (b) 5th 

TMA freight survey (right) 

□: New areas added for 5th survey 

Total respondents: 44,000 Logistics facility respondents: 4,600 

Figure 4.3. Distribution of respondents from all facility types (left) and Logistics facilities 

(right) 
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the Number of Logistics Facilities as the sum of each establishment per mesh transformed by 

an expansion factor. We also define the Total Floor Area of Logistics Facilities, Number of 

Places with Outbound Trips, and the Outbound Tonnage of Freight as their respective averages 

considering an expansion factor to reflect relative magnitudes. 

 

Figure 4.4 below shows the increase and decrease in the Number of Logistics Facilities and the 

Total Floor Area of Logistics Facilities. The relative sizes of the circles indicate the maximum 

absolute value of their respective percentage changes; black circles indicate an increase, and 

red circles indicate a decrease from the 4th survey to the 5th survey. 

 

 

As seen in Figure 4.4, the Number of Logistics Facilities in Tokyo is observed to have 

decreased and, by contrast, has increased in the suburbs (e.g., North Saitama, South Ibaraki). 

We suppose that this is due to the improved network of highways during the 5th TMAUFS 

relative to when the 4th TMAUFS was conducted (e.g., the completion of the Metropolitan 

Inter-City Expressway). Furthermore, the Total Floor Area of Logistics Facilities is observed 

to have increased around Tokyo Bay and the Tohoku Expressway. We suppose that this is due 

to logistics facilities in Japan moving toward increasing in size due to the consolidation of 

functions and services, which, as a result, lead to the decrease in small-scale logistics facilities 

and an increase in large-scale logistics facilities. 

 

(a) The Number of Logistics Facilities (b)  Total Floor Area of Logistics Facilities 

Figure 4.4. Increase and Decrease of (a) Number of Logistics Facilities (left), and (b) Total 

Floor Area of Logistics Facilities 
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4.3.2 A Quantitative Understanding of the Increase and Decrease in the Specific Variables 

of Analysis using Multiple Regression 

 

In order to analyze factors that might have influenced the increase and decrease of the specific 

units of analysis, we illustrate the increase and decrease quantitatively using conventional 

multiple regression analysis. We let the dependent variable (𝑦𝑛
∗) be the difference between the 

4th and 5th surveys of each specific variables of analysis, namely the Number of Logistics 

Facilities, Total Floor Area of Logistics Facilities, Number of Places with Outbound Trips, and 

Outbound Tonnage of Freight as defined in equation (1) below:  

 𝑦𝑛
∗ = Δ𝑦𝑛 = 𝑦𝑛

5𝑡ℎ − 𝑦𝑛
4𝑡ℎ (1) 

Table 4.1 shows the result of the multiple regression analysis. 

 

Table 4.1. Estimation results of the multiple regression analysis 

  Units Estimate Std. error t-value Pr(> t) 

(Intercept)  -80.983 190.292 -0.4 6.71E-01 

Residential area km2 1.943 1.128 1.7 8.70E-02 

Commercial area km2 -46.055 3.296 -14.0 4.02E-29 

Quasi-Industrial area km2 -11.236 3.123 -3.6 4.34E-04 

Industrial area km2 -4.092 6.943 -0.6 5.57E-01 

Restricted-Industrial area  km2 7.359 1.958 3.8 2.42E-04 

Urbanization control areas  km2 0.059 0.604 0.1 9.23E-01 

Extramural city planning 

areas 
km2 0.444 1.079 0.4 

6.81E-01 

Uninhabitable areas  km2 -1.375 1.186 -1.2 2.48E-01 

Seaside area Dummy -62.266 39.352 -1.6 1.16E-01 

Metropolitan inter-city 

expressway 
Dummy 12.177 22.073 0.6 

5.82E-01 

Inland  Dummy -102.580 56.702 -1.8 7.24E-02 

Suburb Dummy -131.451 51.960 -2.5 1.24E-02 

Inhabitable land km2 -2.228 1.137 -2.0 5.17E-02 

ln(Population) 1,000's 20.509 18.191 1.1 2.61E-01 

ln(Working population in 

commuting distance) 
1000's 18.753 16.979 1.1 

2.71E-01 

Distance to expressway IC km 0.196 1.248 0.2 8.75E-01 

Distance to port km 0.243 0.401 0.6 5.46E-01 

ln(Land prices) 
1000 

yen/km2 
10.841 18.442 0.6 

5.58E-01 

Distance from Tokyo Station km 1.332 0.861 1.5 1.24E-01 

Adjusted R-squared 0.745 

Number of samples (secondary meshes) 173 
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The estimation results for the Number of Logistics Facilities as the dependent variable are 

convincing as reflected by its adjusted R-squared, which is higher than 0.7. By contrast, the 

other units of analysis, i.e., Total Floor Area of Logistics Facilities, Number of Places with 

Outbound Trips, and the Outbound Tonnage of Freight, as the dependent variables were not 

convincing due to their low adjusted R-squares (~0.2); the results of estimation for the 

aforementioned units of analysis were not shown here due space limitations. Therefore, we 

only consider the results of the estimation for the Number of Logistics Facilities. Figure 4.5 

below shows the share of the explanatory variables for (a) Quasi-Industrial areas and (b) 

Restricted-Industrial areas where larger circles indicate larger shares in the data. Noting the 

result of the multiple regression analysis, cross-examining Figure 4.4 above and Figure 4.5 

below reveals that the Number of Logistics Facilities tends to decrease in TMA, especially in 

areas where the share of Quasi-Industrial land-use is large. By contrast, in Restricted-Industrial 

areas, where residential buildings are restricted, the Number of Logistics Facilities is almost 

unchanged. This might be due to logistics facilities being built in more suitable places other 

than those in Quasi-Industrial areas. 

 

 

4.3.3 Truck Probe Data 
 

In this section, we describe and discuss the truck probe data from the 5th TMAUFS in terms of 

truck trip generation in TMA. Among three (3) sources of truck probe data from the 5th 

TMAUFS, we used the data collected for one (1) week, from October 6th (Monday) to October 

12th (Sunday), by an OBU (On-Board Unit) manufacturer because it has the most significant 

number of samples (22,995 samples), and use these data in estimating Truck Trip Generation 

Figure 4.5. Share of (a) Quasi-Industrial areas, and (b) Restricted-Industrial Areas 

(a) Quasi-Industrial areas (b) Restricted-Industrial areas 
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models in Section 4. The truck trip generation data is categorized into four (4) levels: small, 

medium, large, and tractor; each level is categorized based on the maximum gross weight in 

tons. The truck trip generation data is an aggregation of truck trips generated at the tertiary 

level mesh; one data point of truck trip generation represents truck trips generated per 1-km2 

area (tertiary level mesh). 

 

Figure 4.6 above shows the common logarithm1 of the one-week truck trip generation of small 

trucks and medium trucks. The truck trip generation of small trucks (left) shows that, generally, 

small truck trips are concentrated in the center of TMA. This is due to small trucks primarily 

serving or operating for businesses in the city center as well as residents living in the city center 

and around Central Business Districts (CBDs). On the other hand, the truck trip generation of 

medium trucks (right) is more spread-out across TMA relative to small trucks, especially in the 

suburbs, north-west to north-east of TMA. The spreading-out of medium truck generation 

could primarily be explained by the inter-logistics facility movement of freight wherein freight 

is temporarily stored in an intermediary location before being hauled to its destination outside 

or inside TMA. 

 

 
1 log10(x) = y 

Figure 4.6. Common logarithm of one-week truck trip generation in Tokyo Metropolitan Area of (a) 

Small Trucks (left), and (b) Medium Trucks (right) 
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Figure 4.7 shows the common logarithm of the one-week truck trip generation of large trucks 

and tractor trucks. It can be observed that for large trucks (left) and tractor trucks (right), there 

are large concentrations of trip generation along Tokyo Bay. This is expected because the Port 

of Tokyo and the Port of Yokohama are located along Tokyo Bay as well as logistics facilities 

servicing these ports. These ports cater to international shipping and container ships, and as 

such, their operations generate weak volumes of truck traffic inbound and outbound of Tokyo 

Bay. Furthermore, a large concentration of tractor trucks trips generation (right) can be 

observed in the eastern region of TMA, specifically in the areas of Kashima City and Kamisu 

City. This is due to Kashima City and Kamisu City being part of the Kashima Rinkai Industrial 

Zone, where about 1,500 factories of chemical, petrochemical, specialty chemical plants, steel, 

and oil refineries are located. Accompanying the Kashima Rinkai Industrial Zone is the Port of 

Kashima, which further contributes to tractor trucks trip generation from the eastern region of 

TMA due to inbound and outbound international shipping containers. 

 

Figure 4.7. Common logarithm of one-week truck trip generation in Tokyo Metropolitan Area of (a) 

Large Trucks (left), and (b) Tractor Trucks (right) 
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Considering the size and nature of freight being transported by large trucks and tractor trucks, 

we further aggregate their one-week truck trip generation by combining their respective one-

week trip generation. Figure 4.8 shows the combined one-week truck trip generation of large 

trucks and tractor trucks. We observe that large trucks and tractor trucks trip generation are 

concentrated around Tokyo Bay, where the Ports of Tokyo and Yokohama are located as well 

as within proximity of ring roads (circumferential highways) and radial roads in the suburbs 

where numerous logistics facilities, warehouses, and factories are located. It is important to 

note that there are residential areas located in high-concentration trip generation areas of large 

trucks and tractor trucks, especially along ring roads and radial roads; this exposes residents to 

safety risks. Furthermore, the high gross maximum weight of large trucks and tractor trucks 

exacerbates the deterioration and accelerate the wear-and-tear of roads, which increase road 

maintenance costs. Based on the scatterplot of truck trip generation against logistics facility 

count and total floor area in Figure 4.8 (b) above, we also observed a positive correlation 

between the trip generation of the tractor and large trucks with the number of logistics facilities 

and the total floor area of logistics facilities in an area. Given the observed positive correlation 

and the safety risks to residents and accelerating deterioration of roads caused by large trucks 

and tractor trucks, this chapter will specifically focus on the trip generation of large trucks and 

tractor trucks in analyzing the dynamics of logistics facility allocation and size, land-use, and 

truck trip generation in Section 4. 

Figure 4.8. (a) Aggregation of Large Trucks and Tractor Trucks’ one-week truck trip 

generation in Tokyo Metropolitan Area; (b) Scatterplot of truck trip generation against the 

number of logistics facilities and total logistics facility floor area 
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4.4 Logistics Facility Floor Area and Trip Generation Analysis 
 

4.4.1 Logistics facility floor area model 

 

As observed in the scatterplot in Figure 4.8 (b), we focus on the relationship of truck trip 

generation and logistics facility count and total floor area. Given that the total logistics facility 

floor area has a slightly higher correlation to truck trip generation than logistics facility counts, 

we deal with the former in developing the model, namely the Logistics Facility Floor Area 

(LFFA) model. In this section, we first develop an LFFA model to analyze factors that affect 

the total floor area of logistics facilities in an area, specifically in a 1-km2 mesh, before 

proceeding to Truck Trip Generation model formulation, which will be discussed in Section 

4.2. 

 

A conventional multiple regression model the  for the LFFA model, where we set the dependent 

variable (y*) as the natural logarithm of the total logistics facility floor area scaled to size 

(Log.areaE) plus one, [(y* = ln (Log.areaE + 1)], with the results shown in Table 4.2. However, 

due to the peculiarity of the data where numerous zero values were observed in the dependent 

variable, the estimated multiple regression model proved to be not a good fit for the data based 

on its low Adjusted R-squared (0.2744). Furthermore, using the estimation results in Table 4.2 

for the prediction of Total LFFA results in underestimated values, which are due to many zero 

values in the data. 

 

Table 4.2. Estimation result of conventional multiple regression model 

  Estimate Std. Error t-value Pr(>|t|) 

(Intercept) -14.091 3.478 -4.05 5.3E-05 

Population -0.261 0.032 -8.10 9.2E-16 

Working Population 0.632 0.237 2.67 7.6E-03 

ACC.manuf 0.052 0.013 3.94 8.6E-05 

ACC.cbd 1.019 0.109 9.36 < 2e-16 

ICdistance -0.030 0.020 -1.50 1.3E-01 

TokyoPortDist -0.018 0.004 -4.17 3.1E-05 

landprice -0.103 0.160 -0.64 5.2E-01 

residence share -0.178 0.493 -0.36 7.2E-01 

commerical share -2.253 1.146 -1.97 4.9E-02 

quasiIndustrial share 5.096 0.760 6.70 2.6E-11 

industrial share 1.905 1.003 1.90 5.8E-02 

restricted industrial share 2.162 0.588 3.68 2.4E-04 

road area 3.467 2.555 1.36 1.8E-01 
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vacant area -1.224 0.828 -1.48 1.4E-01 

Adjusted R-squared 0.2744 

Number of samples 2150 

 

Because of the underestimation due to many zero values in the data, there is a need to 

effectively select data points that will be included in the estimation. We do this by applying the 

Sample Selection model (Heckman, 1979), also known as the Tobit Type II model (Amemiya, 

1984), which will be discussed and estimated in this section. The Tobit Type II model 

construction is as follows: 

 

 𝑦𝑖
𝑆∗ = 𝜷𝑆𝒙𝑖

𝑆 + 𝜀𝑖
𝑆          (Selection equation) (2) 

 

 𝑦𝑖
𝑆 = {

0⁡𝑖𝑓⁡𝑦𝑖
𝑆∗ < 0

1⁡𝑖𝑓⁡𝑦𝑖
𝑆∗ ≥ 0

, (3) 

 

where the dependent variable 𝑦𝑖
𝑆∗is the untransformed value of the total number of logistics 

facilities (Log.num) in the 1-km2 mesh in the observed data; 

 

 𝑦𝑖
𝑂∗
= 𝜷𝑂𝒙𝑖

𝑂 + 𝜀𝑖
𝑂         (Outcome equation)  (4) 

 

 𝑦𝑖
𝑂 = {

0⁡⁡⁡⁡⁡𝑖𝑓⁡𝑦𝑖
𝑆 = 0

𝑦𝑖
𝑂∗
⁡𝑖𝑓⁡𝑦𝑖

𝑆 = 1
, (5) 

 

where 𝑦𝑖
𝑂∗

is the natural logarithm of the total logistics floor area scaled to size plus one, [(𝑦𝑖
𝑂∗

 

= ln (Log.areaE + 1)]; and 

 

 (
𝜀𝑖
𝑆

𝜀𝑖
𝑂)~𝑁 ((

0
0
) , (

1 𝜌

𝜌 𝜎2
)), (6) 

 

where equations (2) and (4) are the Selection and Outcome equations, respectively. We only 

observe the value of the latent outcome 𝑦𝑖
𝑂∗

 in equation (4) only if the latent selection variable 

𝑦𝑖
𝑆∗is positive as described in the conditions in equations (3) and (5). Furthermore, it is assumed 
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that the error terms follow a bivariate normal distribution, as shown in equation (6) above. The 

Maximum-Likelihood (ML) method is used to estimate the Sample Selection model. Equation 

(7) shows the likelihood function to be maximized as follows: 

 𝐿∗ =∏𝚽(−𝜷𝑆𝒙𝑖
𝑆)

1−𝑦𝑖
𝑆

{𝚽(
𝜷𝑆𝒙𝑖

𝑆 +
𝜌
𝜎 (𝑦𝑖

𝑂∗
− 𝜷𝑂𝒙𝑖

𝑂)

√1 − 𝜌2
) ∙ 𝜙(𝑦𝑖

𝑂∗
− 𝜷𝑂𝒙𝑖

𝑂)}

𝑦𝑖
𝑆

𝑖

, (7) 

 

and the expected value of the outcome is shown in equation (8) as follows: 

 𝐸[𝑦𝑖
𝑂|𝑦𝑖

𝑆∗ ≥ 0] = 𝜷𝑂𝒙𝑖
𝑂 + 𝜌𝜎

𝜙(𝜷𝑆𝒙𝑖
𝑆)

𝚽(𝜷𝑆𝒙𝑖
𝑆)

 (8) 

The input variables for the Sample Selection model are described in  

. We emphasize here the inclusion of land-use variables as well as accessibility to 

manufacturing, CBDs, distance to the closest expressway interchange, and distance to the Port 

of Tokyo. 

Table 4.3. Description of variables used in the Sample Selection model 

Variable Description 

Population Population covered by the mesh 

Working Population Working population (daytime) covered by the mesh 

ACC.manuf2 Accessibility index to manufacturing sites 

ACC.cbd3 Accessibility index to CBDs 

ICdistance.km Distance of the mesh to the closest interchange 

TokyoPortDis.km Distance to the Port of Tokyo 

landprice.yen Average land price in the mesh 

roadArea.m2 Total road area in the mesh 

vacantArea.m2 Total vacant area in the mesh 

residence.rate Share of residence land-use 

commercial.rate Share of commercial land-use 

quasiIndustrial.rate Share of quasi-industrial land-use 

industrial.rate Share of industrial land-use 

r.industrial.rate Share of restricted industrial land-use 

 

 
2 ACC.manufi = ∑ 𝑀𝑗𝑒

−ln⁡(𝑑𝑖𝑗)𝐽
𝑗=1 , where Mj is the total value of industrial products in area j and dij is the shortest 

distance between area i and area j. 
3 ACC.cbdi = ∑ 𝐵𝑗𝑒

−0.5ln⁡(𝑑𝑖𝑗)𝐽
𝑗=1 , where Bj is the total working population in area j and dij is the shortest distance 

between area i and area j. 
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We utilize the Sample Selection package in the R programming language (Toomet and 

Henningsen, 2008) to estimate the model. Table 4.4 below shows the results of the Sample 

Selection model estimation for the LFFA model. Two other variations of the Sample Selection 

models were estimated, first of which include all variables in both the selection and outcome 

equations and the second, which is like Model 1 only that it includes all variables in the 

outcome equation. However, the estimation results showed parameter estimates that do not 

satisfy the conditions for utility maximization; thus, only Model 1 and Model 2 shown in Table 

4.4 are further discussed in this chapter. 

We highlight from the estimation results in Table 4.4 that in the selection equation results, 

accessibility to manufacturing areas (ACC.manuf), accessibility to CBDs (ACC.cbd), and 

distance to the Port of Tokyo are statistically significant and are consistent with utility 

maximization based on their parameter signs. This makes sense because logistics operations 

managers will strategically want to locate in areas where they will be able to minimize truck 

operating costs. Population is also statistically significant and satisfies parameter conditions 

based on its negative sign. This makes sense because when considering the large-scale 

operations of logistics facilities, developing logistics centers in highly populated areas is not 

ideal. Taking a look at land-use variables in the outcome equation results, the share of 

residential land-use (residence.rate) is consistent in sign (negative) and is statistically 

significant; this is line with population in the selection equation results and is interpreted the 

same way wherein high residential shares in an area is not ideal for locating logistics facilities 

more so for developing logistics facilities with large floor areas. Although the other land-use 

variables seem not significant except for quasi-industrial land-use (quasiIndustrial.rate), we left 

it as it is in the model to consider land-use in the model. The higher statistical significance of 

quasi-industrial land-use compared to industrial and restricted land-use could probably be due 

to logistics companies locating and building in more strategically located areas that have more 

accessibility to CBDs and manufacturing areas as well as areas closer to the Port of Tokyo 

which happen to be located and mixed with other less desirable structures for logistics facility 

operations such as residential and commercial structures. 
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Table 4.4. Result of Sample Selection (Tobit Type II) models 

 

We apply the formula for the expected value of the outcome as in equation (8) above using the 

estimated parameters in Table 4.4 and the averages of the dependent variables to compute the 

calibrated average LFFA. Table 4.5 below shows the average calibrated values of LFFA, 

including the expected values from the conventional multiple regression previously mentioned. 

Furthermore, we included sensitivity analysis in the form of policy changes and infrastructure 

improvements such as decreasing the distance to the closest expressway interchange and 

increasing the share of quasi-industrial, industrial, and restricted industrial land-use.  

Estimate Std. error t value Pr(> t) Estimate Std. error t value Pr(> t)

(Intercept) -5.0562 1.1394 -4.438 9.09E-06 *** -5.626 1.184 -4.750 0.000 ***

Population -0.0787 0.0087 -9.067 < 2e-16 *** -0.078 0.010 -7.877 0.000 ***

Working Population 0.1191 0.0731 1.629 0.1034 0.163 0.076 2.147 0.032 *

ACC.manuf 0.0172 0.0038 4.514 6.35E-06 *** 0.013 0.004 3.147 0.002 **

ACC.cbd 0.3770 0.0341 11.052 < 2e-16 *** 0.326 0.041 7.981 0.000 ***

ICdistance.km -0.0149 0.0068 -2.209 0.0272 * -0.014 0.007 -2.088 0.037 *

TokyoPortDis.km -0.0062 0.0014 -4.395 1.11E-05 *** -0.006 0.001 -3.867 0.000 ***

Landprice.yen -0.0391 0.0508 -0.771 0.4408 -0.021 0.052 -0.409 0.683

residence.rate 0.225 0.153 1.468 0.142

commercial.rate -0.445 0.388 -1.147 0.251

quasiIndustrial.rate 1.237 0.258 4.801 0.000 ***

industrial.rate 0.478 0.328 1.455 0.146

r.industrial.rate 0.529 0.197 2.681 0.007 **

roadArea.m2 0.6471 0.7594 0.852 0.3941 0.668 0.804 0.831 0.406

vacantArea.m2 -0.5159 0.2539 -2.032 0.0422 * -0.290 0.268 -1.080 0.280

Estimate Std. error t value Pr(> t) Estimate Std. error t value Pr(> t)

(Intercept) 10.795 0.271 39.880 < 2e-16 *** 10.913 0.334 32.703 < 2e-16 ***

residence.rate -1.498 0.233 -6.441 1.19E-10 *** -1.603 0.250 -6.419 0.000 ***

commercial.rate -0.149 0.495 -0.301 0.76342 0.160 0.510 0.314 0.754

quasiIndustrial.rate 1.251 0.404 3.099 0.00194 ** 0.601 0.530 1.134 0.257

industrial.rate -0.045 0.561 -0.081 0.9356 -0.194 0.633 -0.307 0.759

r.industrial.rate 0.846 0.353 2.400 0.01641 * 0.594 0.406 1.462 0.144

Estimate Std. error t value Pr(> t) Estimate Std. error t value Pr(> t)

sigma 2.009 0.087 23.041 < 2e-16 *** 2.016 0.099 20.442 < 2e-16 ***

rho -0.635 0.084 -7.575 3.58E-14 *** -0.642 0.097 -6.582 0.000 ***

Log-Likelihood: 

AIC: 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’  0.1 ‘ ’ 1

23 free parameters (df = 2127)

Tobit Type II Model 1

18 free parameters (df = 2132)

-2811.753

5669.506

Outcome equation:

Error terms:

Tobit Type II Model 2

2150 observations (1310 censored and 840 observed)

Probit selection 

equation:

-2830.29

5696.58
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As shown in Table 4.5, as we decrease the accessibility distance of a 1-km2 mesh to the closest 

expressway interchange by 5-km, Model 1 and Model 2 results in an 8% and 7.8% increase in 

the Logistics Facility Floor Area, respectively. Furthermore, as the share of quasi-industrial, 

industrial, restricted industrial land-use are increased by 5%, Model 1 and Model 2 result in 

increases of 19.7% and 13.3%, respectively. This is invaluable information, especially to city 

planners and road infrastructure managers, because the impacts of such improvements or policy 

changes are quantified.  

We can also observe from the rightmost column of Table 4.5 the expected values from the 

results of the conventional multiple regression, which clearly underestimate values for the 

average LFFA (~3-m2). The difference between the Sample Selection model and the 

conventional multiple regression model is evident. This is because of the feature of the Sample 

Selection Model that can better deal with zero values statistically. 

 

Table 4.5. Sensitivity analysis of the Expected Values of the Outcome 

 

 

Instead of the average increase in total floor area, we were also able to evaluate the increase in 

total floor area for each 1-km2 mesh, this time, considering the completion of all the planned 

and under-construction ring (loop) roads of the “Three Loop Roads of the National Capital 

Region” illustrated in Figure 4.9 and visualize the percentage increase in Total Floor Area as 

shown in Figure 4.10 below. These are reflected as Future Level of Service (LOS), that is, the 

changes in the variables of accessibility index for manufacturing areas and CBDs (ACC.manuf 

and ACC.cbd) as well as the distance to the closest expressway interchange (ICdistance.km) 

when all the ring roads are completed and operational. 

 

m
2

% increase m
2

% increase m
2

% increase

Average Area of Logistics Facilities       4,922       5,035 2.89    

Distance to closest IC decreased by 5 km       5,317 8.0%       5,426 7.8% 3.29    13.9%

Share of quasi.Ind, Ind, res.Ind increased by 5%       5,891 19.7%       5,704 13.3% 3.61    25.1%

Tobit Type II

Model 1 Model 2
Multiple Regression

Sensitivity Analysis
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Figure 4.9. Three Loop Roads of the National Capital Region 

Source: Tokyo Bureau of Construction 

 

At a glance, we can see that there will be significant increases in Total LFFA in the north and 

north-eastern region of TMA. The completion of the remaining sections of the Ken-O road4 

 
4  Ken-O road is also known as the Metropolitan Inter-City Expressways/National Capital 

Region Central Loop Road 

Figure 4.10. Percentage increase in Total Floor Area 

(a) Model 1 (b) Model 2 
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(Figure 4.9) in the north to north-eastern regions of the TMA results in the total LFFA to 

increase in surrounding areas. 

Although the percentage increase in total floor area of Model 1 and Model 2 in Figure 4.10 are 

almost similar, Model 2 can be considered relatively better given its higher Log-Likelihood of 

-2811.753 compared to the Log-likelihood of Model 1 of -2830.29. Furthermore, the Akaike 

Information Criterion (AIC), which determines the level of predictive error of the model, is 

lower for Model 2, hence the better model overall especially for out-of-sample predictions; this 

can be attributed to the inclusion of land-use variables in the Selection portion Model 2 which 

contributes to a better-estimated model. 

 

4.5 Truck trip generation model 

 

In this section, we formulate truck trip generation models, specifically for tractor trucks and 

large trucks. We emphasize in the model formulation the relationship of land-use composition 

and allocation in an area to its truck trip generation by including the corresponding shares of 

different land-use classifications in an area as inputs to the truck trip generation model.  

Furthermore, we also take into consideration the relationship of the establishment of logistics 

facilities in an area to its truck trip generation by including as inputs to the model the total 

number of logistics facilities and the total floor area occupied by logistics facilities in the area.  

A conventional multiple linear regression model was initially estimated for truck trip 

generation with the dependent variable (y*) as the natural logarithm of the total truck trips 

generated (y) plus one in a 1-km2 mesh, [(y* = ln(y + 1)]. However, the estimation results 

proved to be a poor fit to the data due to their low adjusted R-squares shown in Table 4.6 below.  
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Table 4.6. Estimation results of conventional multiple regression analysis 

 

Moreover, the conventional multiple linear regression underestimates predictions of truck trip 

generation (almost 0 generation). This is due to the numerous zero truck trip generation values 

in the 1-km2 mesh data.  

To consider the peculiarity in the data, we estimate a more appropriate model, namely the Tobit 

regression model. Tobit regressions can handle numerous zero generation values in the data 

better. The Tobit model construction is as follows: 

 𝑦𝑖
∗ = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜀𝑖~𝑁(0, 𝜎

2), (9) 

where the latent variable 𝑦𝑖
∗ is the natural logarithm of the total truck trips generated plus one 

[(𝑦𝑖
∗= ln(yi + 1)]; and 

 𝑦𝑖 = {
𝑦𝑖
∗,⁡⁡⁡𝑖𝑓⁡𝑦𝑖

∗ > 0

0,⁡⁡⁡⁡⁡𝑖𝑓⁡𝑦𝑖
∗ ≤ 0,

 (10) 

where the (k = 9) input variables are the same as in  

 of the Sample Selection model above. Also, included is an independent and normally 

distributed error term, 𝜖𝑖, with mean 0 and standard deviation, 𝜎, in the latent formulation. 

Instead of observing 𝑦𝑖
∗ directly, which in this case, is truck trip generation (zero or non-zero), 

we observe 𝑦𝑖 as in equation (10) above; we observe the truck trip generation 𝑦𝑖
∗ if it is positive, 

and 0, otherwise. It is clearly seen here that the1-km2 mesh data that have zero generation are 

appropriately considered in the Tobit model with the “potential” truck trip generated as a 

Estimate Std. Error t-value Pr(>|t|) Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.489 0.315 7.89 3.5E-15 1.319 0.158 8.35 < 2e-16

Log.numE 0.058 0.041 1.42 1.6E-01 0.017 0.030 0.56 5.7E-01

Log.areaE 0.040 0.009 4.36 1.3E-05 0.070 0.007 10.27 < 2e-16

Population -0.053 0.004 -11.88 < 2e-16 -0.046 0.003 -15.49 < 2e-16

ICdistance.km -0.060 0.014 -4.37 1.3E-05 -0.118 0.008 -15.56 < 2e-16

portDistance.km -0.320 0.030 -10.53 < 2e-16 -0.244 0.017 -14.36 < 2e-16

Landprice.yen 0.087 0.019 4.53 6.1E-06 0.118 0.010 12.06 < 2e-16

residence.rate -0.052 0.059 -0.87 3.8E-01 0.093 0.035 2.62 8.8E-03

commercial.rate -0.247 0.145 -1.71 8.7E-02 0.172 0.100 1.73 8.4E-02

quasiIndustrial.rate 0.757 0.115 6.59 4.9E-11 1.460 0.084 17.44 < 2e-16

industrial.rate 1.053 0.164 6.43 1.3E-10 2.146 0.128 16.75 < 2e-16

r.industrial.rate 1.456 0.090 16.15 < 2e-16 2.336 0.070 33.62 < 2e-16

Adjusted R-squared

Number of samples

0.2257

5840

0.2938

18077

Including Zero GenerationExluding Zero Generation
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function of the input variables. To estimate coefficients 𝛽𝑘 , we maximize the likelihood 

function of equations (9) and (10), as shown in equation (11) below. 

 𝐿 =∏[
1

𝜎
𝜙 (

𝑦𝑖 − 𝑋𝑖𝛽

𝜎
)]

𝑑𝑖
𝑁

𝑖

[1 − 𝚽(
𝑋𝑖𝛽

𝜎
)]

1−𝑑𝑖

 (11) 

Table 4.7 below shows the estimation results of the Tobit regression model for truck trip 

generation. 

Table 4.7. Estimation results of the Tobit Model (Tractor & Large Trucks) 

  Estimate Std. Error z-value 

(Intercept):1 4.59 0.22 20.64 *** 

(Intercept):2 0.63 0.01 61.12 *** 

Log.areaE 0.13 0.01 22.53 *** 

Population -0.06 0.01 -8.33 *** 

ICdistance.km -0.38 0.02 -18.36 *** 

portDistance.km -0.55 0.04 -13.07 *** 

residence.rate 0.82 0.09 9.25 *** 

commercial.rate 0.87 0.25 3.53 *** 

quasiIndustrial.rate 2.79 0.20 13.74 *** 

industrial.rate 4.21 0.31 13.71 *** 

r.industrial.rate 4.23 0.17 25.49 *** 

Log-likelihood: -17,539.39     

AIC:   35,098.78     

No. of samples       18,077     
Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Based on the results of Table 4.7, we can see that all estimates are statistically significant and 

satisfy the conditions for utility maximization; in other words, the signs (positive or negative) 

of the estimates/parameters are consistent with the conditions for utility maximization. We 

specifically note that the estimate for the total land area of logistics facilities (Log.areaE) is 

highly statistically significant. This is consistent with the findings that historically, in TMA, 

the number of logistics facilities is generally decreasing, and the average land area of logistics 

facilities is increasing due to the consolidation of functions and diversification of business 

operations of logistics facilities. This means that as the total land area of logistics facilities in 

an area increases, the trip generation of the tractor and large trucks also increases. The increase 

in truck trip generation, especially for tractor and large trucks, as the total land area of logistics 

facilities increase can possibly be attributed to the increase in allowable parking space for 

trucks of all types in the logistics centers. Hence allowing for a larger fleet of trucks and 
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generally a larger scale of logistics operations. Furthermore, as the distance to the closest 

expressway interchange (ICdistance.km) and the distance to the Port of Tokyo 

(portDistance.km) decreases, the generation of tractor and large trucks increases; this is 

consistent with the findings in the LFFA model that the closer an area is to an expressway 

interchange and to the Port of Tokyo, the higher the likelihood that a logistics facility will 

locate in that area. 

All land-use classifications are statistically significant and positively affect the trip generation 

of the tractor and large trucks. It is not surprising that the three types of industrial land-use (i.e., 

quasi, industrial, and restricted) increase the truck trip generation of the tractor and large trucks 

because these are areas where logistics facilities are built and are being operated. On the other 

hand, although the estimate for commercial land-use is positive and statistically significant for 

tractor and large trucks, the magnitude is relatively low compared to the three industrial land-

uses. This is probably due to narrow roads and the presence of many pedestrians and shoppers 

as well as private cars in commercial areas, making it difficult for tractor and large trucks to 

maneuver, especially during time-constrained operations. However, we note that the share of 

residence land-use is statistically significant and positively affects the trip generation of the 

tractor and large trucks. This is most likely due to the prevalence of logistics facilities, factories, 

and warehouses in the suburbs where a lot of residential areas are also located. Furthermore, 

the existence of mixed land-use patterns (e.g., quasi-industrial land-use) wherein residential 

and industrial structures are mixed in an area might contribute to the significance of the 

residential share to the trip generation of the tractor and larger trucks. 

Finally, in order to link the results of the LFFA model to the Truck Trip Generation model, 

we evaluate the average truck trip generation per day from the calibrated average LFFA in 

Section 4.1 and the estimated parameter for total logistics facility floor area (0.13) from the 

Truck Trip Generation model in Table 4.7. The equation for the average trip generation per 

day is as follows: 

 

 𝑡𝑟𝑖𝑝⁡𝑔𝑒𝑛⁡𝑝𝑒𝑟⁡𝑑𝑎𝑦 = 𝑓𝑙𝑜𝑜𝑟⁡𝑎𝑟𝑒𝑎⁡ ×
𝑟𝑎𝑡𝑒

𝑛𝑜.⁡⁡𝑜𝑓⁡𝑑𝑎𝑦𝑠⁡𝑖𝑛⁡𝑎⁡𝑤𝑒𝑒𝑘
⁡× 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛⁡𝑓𝑎𝑐𝑡𝑜𝑟,⁡ (12) 

 

where: 
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trip gen per day: is the average Tractor and Large Truck trips generated per day per 

   Logistics Facility with “floor area”; 

floor area: is the average floor area (in 1,000’s m2) of Logistics Facilities 

evaluated    from the Logistics Facilities Floor Area model in Section 4.1; 

rate:  is the parameter estimate for the Logistics Floor Area (Log.areaE)  

   variable in the  Truck Trip Generation Model; 

 

expansion factor: 1/(share of Tractor and Large Trucks) in the data = 1/0.017; 

no. of days in a week: the total number of days the data was collected in a week (7 

days) 

Table 4.8. The sensitivity of Average Truck Trip Generation per Day 

 

Table 4.8 shows the sensitivity analysis of average truck generation per day for a logistics 

facility with average floor area based on the estimation results of both the LFFA model and the 

Truck Trip Generation model. Again, we can see that the conventional multiple linear 

regression analysis gave underestimated results. In contrast, we observe realistic output from 

the combined LFFA model and Truck Trip Generation model.  

4.6 Summary 
 

We were able to show the transition and dynamics of logistics facility development from the 

4th TMAUFS (2003) to the 5th TMAUFS (2013), focusing on the total number of logistics 

facilities and total floor area of logistics facilities in an area. The results of the analysis showed 
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that the total number of logistics facilities is decreasing, especially in central TMA. 

Furthermore, the total number of logistics facilities decreased in quasi-industrial land-use areas 

along with little to no changes in restricted-industrial land-use areas. These observations 

indicate that there might be other suitable areas and factors being considered by logistics 

managers where logistics facilities would be developed. The decrease in the number of logistics 

facilities might also be due to the consolidation of functions and services of different logistics 

facilities, which lead to logistics facilities with larger floor areas. We also presented the Truck 

Probe data portion of the TMAUFS and observed that there are areas where truck trip 

generation is concentrated depending on the category of trucks. For instance, small and medium 

trucks generation are mostly clustered around the center of TMA, where most CBDs are located. 

On the other hand, large and tractor trucks are mostly concentrated around Tokyo Bay, around 

ports, as well as along the periphery of expressways in the suburbs. The general difference 

observed as to where truck trips are generated indicates that the location of logistics facilities 

might have an influence on where trucks are originating primarily for large and tractor trucks. 

Hence, we formulated the LFFA model and the Truck Trip Generation model focusing on the 

tractor and large trucks due to safety risks that they impose on the environment, especially to 

people and road infrastructure. 

We were able to show in the LFFA model that accessibility to CBDs and manufacturing areas 

increases the probability of logistics facilities locating in an area. Also, decreasing the distance 

to expressways interchanges and to Port of Tokyo through infrastructure improvements such 

as the completion of the Ken-O expressway at the western area of TMA, increases the 

probability that logistics facilities will be located and developed in an area. In terms of land-

use allocation in an area, the results showed that the share of residential land-use in a 1-km2 

area is significant in decreasing the total floor area of logistics facilities in that area. The 

negative effect of the share of residential land-use makes sense, especially for tractor and large 

trucks considering their relative size with medium and small trucks. This is supported by the 

negative effect of the population on the probability of logistics facilities being developed in an 

area.  This is because the large volume and surface area of the tractor and large trucks make it 

more challenging for truck drivers to maneuver in highly populated areas such as in residential 

areas. Moreover, we were able to estimate the average Total Logistics Floor area from the 

estimated model as well as to conduct policy sensitivity analysis for infrastructure 

improvements such as shortening the distance to expressway interchanges and increasing the 

share of the three types of industrial land-uses. 
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Regarding the trip generation of tractors and large trucks, the results of the Truck Trip 

Generation model showed that the total floor area of logistics facilities positively affects the 

trip generation of tractors and large trucks in an area. Furthermore, the share for all land-use 

classifications is highly statistically significant and positively affects the trip generation of 

tractor and large trucks, especially on the share quasi-industrial, industrial, and restricted-

industrial land-use. The results of the Truck Trip Generation model also showed that the 

distance of an area to the closest expressway interchange and to the Port of Tokyo negatively 

affect tractor and large trucks trip generation; meaning, as areas become further away from an 

expressway interchange and Port of Tokyo, the fewer the trips for tractor and large trucks 

generated. These are essential findings, especially for city planners and road managers because 

the development of logistics facilities, land-use allocation as well as the development of 

expressways and expressways interchanges will have an impact on the trip generation of 

tractors and large Trucks.  

Finally, we were able to link the LFFA model and Truck Trip Generation model by evaluating 

truck trips generated using the estimation results of the Truck Trip Generation model and 

average logistics facility floor area from the LFFA model, as shown in Table 4.8 in Section 4. 

This chapter contributes to the research of logistics and freight movements by developing a 

modeling framework that could be used to analyze the effects of land-use policy changes and 

infrastructure improvements to logistics facility size and truck trip generation by estimating 

separate models for total floor area of facilities and for truck trip generation and linking them 

together to forecast travel demand of trucks. Lastly, the modeling framework that we have 

demonstrated can be replicated in other cities. This is because we have simply applied statistical 

methods using data from an urban freight survey in modeling logistics land-use location choice 

and floor area in conjunction with truck trip generation. However, we stress the importance of 

a well-conducted urban freight survey such as the TMAUFS that include surveys to logistics 

firms and truck probe data as well as a cohesive database of land-use allocation. These are the 

keys to implementing statistical models that are not only for theoretical applications but also 

for practical purposes such as sensitivity analysis of specific policy changes. 
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Chapter 5 SPARSE REGRESSION AS A METHOD FOR TRIP GENERATION 

MODELING IN KANTO, JAPAN 
 

5.1 Introduction 

 

The rapid development of information technology has revolutionized methods in collecting and 

storing data. There are now numerous methods for data collection and storage, which result in 

datasets that are not only large in sample size but also have many variables. Such datasets are 

typically referred to as Big Data (Fosso Wamba et al., 2015), and the challenge is to utilize such 

large datasets and determine which variables are necessary for the objective of the researcher. 

In this chapter, such data will be dealt with within the context of Truck Trip Generation (TTG) 

in the Tokyo Metropolitan Area (TMA). 

 

Logistics facilities in the central areas of TMA are decreasing and relocating to the outskirts of 

TMA (Lidasan et al., 2017). Furthermore, with the completion of the Ken-Ō Expressway, which 

is the outermost ring-road of TMA, logistics facilities have been relocating in areas near 

expressway interchanges, increasing the number of logistics areas in the suburbs and outskirts 

of TMA (Lidasan et al., 2017). This consequently increases TTG in the outskirts of TMA, and 

it is of interest to investigate areas with noticeable increases in TTG. 

 

5.2 Framework of Analysis 

 

The framework of analysis is as follows: first the two methods for selecting variables in a 

regression context were compared, namely, the stepwise multiple regression, and a sparse 

regression method. The stepwise multiple regression method utilizes the R-squared and Akaike 

Information Criterion (AIC) while the sparse regression utilizes the Mean-Squared-Error 

(MSE) and k-fold cross-validation to evaluate models. These two measures are essentially 

different because they measure different things: the R-squared measures model fit to data while 

the MSE and cross-validation measures out-of-sample performance. Because of the differences 

in model evaluation of the two models, there needs to be a common measure for them to be 

comparable. But in the sparse regression context, the R-squared cannot be calculated because 

it utilizes cross-validation which is mainly for measuring out-of-sample performance. Thus, to 

compare the two methods, the MSE of the stepwise multiple regression method is also 

computed and compared to the results of the sparse regression results. Furthermore, a 
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generalization of the sparse regression method is used to calibrate truck trip generation values 

across years to make them directly comparable. This method is useful for scaling the truck trip 

generation when there is uncertainly on whether the increase in truck trip generation is due to 

the actual increase in the number of trucks or from the increase in the number of tacographs, 

equipment that measures various data regarding movement of truck. 

5.3 Data Abstract and Methodology 
 

Truck probe data was acquired through a digital tachometer manufacturer in Japan. Digital 

tachometers installed in trucks collected data about its movement, i.e., they recorded the year, 

month, and time of departure from origin and arrival to the destination as well as the total travel 

time (in seconds) and total travel distance. It also recorded whether the truck is moving or at a 

stop during the data gathering period. The data was collected every day for three months (April 

to June) each year from 2015 to 2017.  

 

Economic census data, land-use distribution data, and accessibility data of TMA were also 

acquired. The economic census data survey items can be classified into four major categories, 

namely, number of establishments, the number of establishments by employee size, total 

number of workers, and the number of companies by capital class. These four survey items are 

disaggregated further to different industries and business classifications. The land-use 

distribution data contains shares of different land-use classification while the accessibility data 

contains accessibility measures indices such as accessibility to CBDs, accessibility to 

commercial areas, accessibility to manufacturing areas, and similar indices to other points-of-

interests. 

 

The acquired truck probe data was then combined with the economic census data, land-use 

distribution data, and accessibility data of TMA, all of which are stored in the tertiary 

mesh/grid5 units based on Japanese standards. The final dataset has 521 independent variables, 

495 of which are from the economic census data with the other 26 from the land-use distribution 

and accessibility data. The total number of samples is 13,822.  

 

 
5 Tertiary mesh/grid unit refers to a 1-km2 spatial unit; the truck probe data is organized based on this 

spatial reference 
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The truck trip generation modeling in this chapter focuses on extra-large and large trucks based 

on Japanese standards for truck sizes because previous studies showed that the distribution of 

TTG of these two truck sizes is similar in TMA. Figure 1 below shows the 2017 distribution of 

TTG in TMA for extra-large trucks and large trucks. 

 

Figure 5.1 2017 Distribution of Truck Trip Generation in TMA for Extra-large trucks (left) 

and Large trucks (right) 

5.4 Model Estimation of Truck Trip Generation in the Tokyo Metropolitan Area 

 

The final dataset has 521 independent variables, with a total of 13,822 samples. Given this 

large dataset, an efficient statistical model is required to analyze the TTG and select the 

independent variables that have predictive value. Two statistical modeling frameworks were 

used to estimate TTG, namely Stepwise Multiple Regression and Sparse Regression. Stepwise 

Multiple Regression removes (backward elimination/selection) independent variables along 

the estimation process starting from a model that includes all independent variables and ends 

up with a final model that maximizes the log-likelihood with the minimum AIC. On the other 

hand, Sparse Regression utilizes the Lasso penalty in the objective function and estimates a 

regression model where some of the coefficients of the independent variables are zero in the 

final model, indicating that they do not have any influence on the dependent variable (Hastie 

et al., 2015). Furthermore, as an extension of the Sparse Regression framework used in this 

chapter, the application of Fused Lasso is explored, which is a generalization of the Lasso 

penalty. The advantage of the two modeling frameworks is that the final estimated model will 

only contain the relevant independent variables. 
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5.4.1 Stepwise Multiple Regression 

 

The stepwise regression model estimated in this chapter utilized the backward 

elimination/selection procedure. The backward selection model starts with all candidate 

variables in the model, and at each step, the variable that is the least significant is removed. 

This process continues until no nonsignificant variables remain (James et al., 2013). The 

significance level at which variables can be removed from the model can be specified by the 

researcher. However, the default setting in the R programming environment (R Development 

Core Team 2018) was used. Variable selection was conducted based on minimizing the Akaike-

Information-Criterion (AIC) while maximizing the log-likelihood function. The AIC is defined 

as AIC = 2𝑘⁡ − ⁡2 ln(𝐿̂) where k is the total number of independent variables in the linear 

model and 𝐿̂  is the final log-likelihood. The model definition for the stepwise multiple 

regression is follows a log-linear construction as follows: 

 ln(𝑇𝑇𝐺) = 𝛽0 +∑ 𝛽𝑘𝓍𝑘
𝒌

𝟏
 (13) 

 ln(𝑇𝑇𝐺): natural logarithm of TTG 

 𝛽0: intercept 

 𝛽𝑘: parameter of the independent variable to be estimated 

 𝓍𝑘: independent variable k 

 

Due to the limitation in space, only the Multiple R-squared, Adjusted R-squared, and the total 

number of coefficients is presented. 

 

Table 5.1. Stepwise Multiple Regression 

Year 
Multiple 

R-squared 

Adjusted 

R-squared 

Total No. of 

Coefficients 

2015 0.3814 0.3655 177 

2016 0.3691 0.3556 153 

2017 0.3852 0.3734 147 

 

From the results shown in Table 1 above, it is noted that the R-squared values are relatively 

low and may indicate that the model is not a good fit to the data. Nevertheless, the Stepwise 

Regression model has successfully reduced the total number of coefficients to significantly half 

of the total initial number of independent variables. 
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5.4.2 Sparse Regression (Lasso) 

 

Sparse Regression is a linear regression that utilizes the lasso penalty to regularize the 

regression coefficients by adding a constraint to the least-squares regression’s objective 

function. Regression coefficients are shrunk to zero, and coefficients shrunk to zero can be 

interpreted as not having any influence on the dependent variable, i.e., on the TTG. The final 

model will then effectively have a smaller number of non-zero coefficients in the final model 

than the total number of independent variables in the dataset. The objective function to be 

minimized for the Sparse Regression model is as follows (Friedman et al., 2010; Hastie et al., 

2015): 

 

 min
𝛽∈ℝ𝑝

{
1

2𝑁
∑(𝑦𝑖 −∑𝓍𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑝

𝑗=1

} (14) 

 

 N: total number of samples 

 𝑦𝑖: Total Truck Trip Generation 

 𝓍𝑖𝑗: independent variable j of sample i 

 𝛽𝑗: coefficients to the estimated 

 𝜆: tuning parameter to be estimated by cross-validation 

 

The second term in the objective function is the lasso constraint, which regularizes the 

coefficients during the estimation process. This constraint is also known as the L1 norm. The 𝜆 

to be estimated by cross-validation determines the strength of the lasso constraint. The higher 

the 𝜆 is, the stronger the coefficients are constrained and shrunk to zero, and the lower the 𝜆 is, 

the weaker the constraint is and allows for non-zero coefficients. Estimation of the coefficients 

of the Sparse Regression model by minimizing equation 2 above was done using the “glmnet’ 

package (Friedman et al., 2010) in R. Figure 2 to 4 below shows the estimation path for the 

sparse regression model and its corresponding cross-validation plot for years 2015 to 2017, 

respectively. 
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Figure 5.2 2015 coefficient estimation path (left) and cross-validation plot (right) 

 

 

 

Figure 5.3 2016 coefficient estimation path (left) and cross-validation plot (right) 
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Figure 5.4 2017 coefficient estimation path (left) and cross-validation plot (right) 

 

As shown in the figures above, different values of the lasso constraint yield different values of 

the coefficients, with some coefficients regularized to zero. The path of each coefficient can be 

seen, and at which value of the lasso constraint has a specific coefficient started to be non-zero. 

On the other hand, the cross-validation plots (right plot of each figure) shows the different 𝜆 

tuning parameter and their corresponding Mean-Squared-Error (MSE). Two lines are marked 

in the plot: 𝜆 with the minimum MSE (dotted), and the largest 𝜆 with MSE within 1 standard 

error (SE) from the minimum MSE. Table 2 below shows the summary of sparse regression 

estimation results for the years 2015 to 2017. 

Table 5.2. Sparse Regression Results Summary 

 Year 

Total number 

of Non-zero 

Coefficients 

Minimum 

MSE 𝜆 
MSE SE 

2015 136 0.01015336 2.7124 0.0279 

2016 117 0.01251322 2.8462 0.0302 

2017 122 0.01102266 2.9412 0.0200 

 

It can be observed from Table 5.2. Sparse Regression Results Summary that Sparse Regression 

has reduced the number of coefficients from the original 521 independent variables 

significantly. The corresponding tuning parameter 𝜆 with the lowest MSE is also presented. 

The estimated non-zero coefficients from the minimum MSE 𝜆  could then be used for 
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forecasting purposes. Due to space constraints, only the 2017 TTG Sparse Regression 

estimation is shown in Appendix 1. 

 

5.5 Comparative Analysis of the Examined Models 

 

The Stepwise Multiple Regression model and the Sparse Regression model use different 

methods of model evaluation. In order to compare the two models, a similar measure must be 

used. Because the multiple R-squared and adjusted R-squared for Sparse Regression cannot be 

computed, the MSE and SE of the Stepwise Multiple Regression model are computed by 

conducting model validation using a training and test set split. Before estimating the Stepwise 

Multiple Regression for each year, as in the previous section, and calculating the MSE and SE 

for each year through model validation, an initial estimation using all years is conducted to 

determine the appropriate training-test split as shown in Table 5.3 below.  

 

Table 5.3. Training-Test Split Estimate 

MSE Training-Test Split 

4.078533 50%-50% 

3.433448 60%-40% 

3.552372 70%-30% 

3.803803 80%-20% 

3.944834 90%-10% 

The appropriate training-test split was 60% training set and 40% test set of the dataset and from 

this split based on the split with the lowest MSE. The Stepwise Multiple Regression model was 

estimated using 60% of the data for each year and validated using the remaining 50% test set. 

Table 5.4 and Table 5.5 below show the summaries for Stepwise Multiple Regression and 

Sparse Regression, respectively.  

 

Table 5.4. Stepwise Multiple Regression 60%-40% Split Validation 

 Year 
Number of 

Coefficients 
MSE SE 

2015 177 3.2111 0.0191 

2016 153 3.1587 0.0199 

2017 147 3.3632 0.0209 
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Total estimation time (sec) 114,809 sec 

Total estimation time (min) 1,913 min 

Total estimation time (hr) 31.8 hr 

 

Table 5.5. Sparse Regression Summary 

 Year 
Number of 

Coefficients 
MSE SE 

2015 136 2.7124 0.0279 

2016 117 2.8462 0.0302 

2017 122 2.9412 0.02 

Total estimation time (sec) 97 sec 

Total estimation time (min) 1.61 min 

 

Sparse regression had a fewer number of coefficients in the final model compared to stepwise 

multiple regression. Furthermore, sparse regression had a lower MSE than the stepwise model 

for all years. This shows that even with fewer coefficients in the model, sparse regression had 

better predictive power than the stepwise model. The relatively higher MSE of the stepwise 

model is a confirmation of the low adjusted R-squared from the estimation results of the 

stepwise model. Also, considering the estimation times of both models, the Stepwise Multiple 

Regression model took 31.8 hours, while it only took 1.61 minutes to estimate the Sparse 

Regression model. This shows that the Sparse Regression model is a better model overall. 

5.6 Fused Lasso 

 

Establishing from the previous section that the Sparse Regression model with the lasso penalty 

is a better overall model than the stepwise multiple regression model, the application of Fused 

Lasso (Arnold and Tibshirani, 2014; Hastie et al., 2015), a generalization of the lasso penalty, 

to analyze the changes in TTG in TMA is explored. The Fused Lasso solves the following 

optimization problem: 

 

 min
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The second term in the objective function is the original lasso penalty which shrinks the 

parameters 𝜃𝑗  to zero. The Fused Lasso objective function adds a second penalty, i.e., the third 

term in the objective function, which encourages neighboring coefficients to be similar. In a 2-

dimensional graph, neighboring coefficients are defined as coefficients adjacent to each other. 

The Fused Lasso allows the researcher to highlight the critical areas in a noisy graph by 

smoothing.  

 

In the context of TTG of TMA, the changes in TTG 2015 through 2017 cannot be directly 

compared because 1) the number of trucks installed with a digital tachometer is increasing 

throughout the years and may lead to misleading results, and 2) it will be challenging to 

highlight changes as well as concentration areas of TTG because of the noisy nature of the TTG 

plot. However, a comparison can be made by estimating a Fused Lasso model of the TTG. 

Because the 2015 TTG data was known to be collected under different conditions from the 

2016 and 2017 data, only the 2016 and 2017 TTG Fused Lasso models will be estimated. Figure 

5.5 shows the original TTG for 2016 and 2017 in grayscale. Changes from 2016 to 2017 is 

almost indiscernible. 

 

Figure 5.5 Original Truck Trip Generation for 2016 (left) and 2017 (right) 

The original TTG graphs shown above were the inputs in estimating the Fused Lasso model. 

Unlike the Stepwise Multiple Regression model and Sparse Regression model in the previous 

section, only the intercept is estimated, that is, the TTG is estimated directly from the TTG 

graphs; hence, the resulting parameter vectors are itself TTG calibrated by the Fused Lasso 

model. Figure 5.6 below shows the sum of estimated TTG coefficients plotted against their 
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respective λ. It is noted that the sum is constant through all the λ’s for each year, meaning the 

coefficients only get redistributed depending on the tuning parameter λ but not change the sum. 

The Fused Lasso model for TTG was estimated through the “genlasso” package (Arnold and 

Tibshirani, 2014) in R. 

 

 

Figure 5.6 Plot (Wickham, 2009) of the sum of estimated 

The sum of estimated coefficients allows the conversion of 2017 TTG estimates to be 

comparable to the 2016 TTG, as shown by the arrow in Figure 5.6, by multiplying a conversion 

factor which is the ratio of the sum of coefficients of 2016 to 2017 (2520.201/2784.156) as 

shown in equation (4) below: 

 

 𝑇𝑇𝐺2017𝑐𝑜𝑛𝑣 ⁡= ⁡𝑇𝑇𝐺2017𝑜𝑟𝑖𝑔 × 𝐶𝐹 = 𝑇𝑇𝐺2017𝑜𝑟𝑖𝑔 ×
2520.201

2784.156
 (16) 

 

The conversion of 2017 TTG coefficients now allows the comparison of 2017 TTG and 2016 

TTG. Three (3) tuning parameter 𝜆’s at different levels where chosen, and their corresponding 

coefficients were plotted, as shown in Figure 5.7 to Figure 5.9 below. It can be clearly seen 

that different levels of the tuning parameter λ, represent different strengths of the additional 

penalty in the Fused Lasso model: higher 𝜆 means stronger regularization and vice versa. 
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Figure 5.7 Calibrated Truck Trip Generation for 2016 (left) and 2017 (right) (λ=0.4806 ) 

 

 

Figure 5.8 Calibrated Truck Trip Generation for 2016 (left) and 2017 (right) (λ=0.2777 ) 



65 

 

 

Figure 5.9 Calibrated Truck Trip Generation for 2016 (left) and 2017 (right) (λ=0.1696 ) 

 

The lighter pixels in the calibrated TTG graphs indicate higher TTG than the darker pixels. 

Changes in TTG from 2016 to 2017 may not be obvious, but the calibrated and converted 2017 

TTG can now be directly compared with 2016 TTG by taking the difference of their 

coefficients. Figure 5.10 to Figure 5.12 below show the difference between the 2017 TTG and 

the 2016 TTG. It can be seen from the figures that there are apparent increases in TTG from 

2016 to 2017. Figure 5.12, with the lower λ tuning parameter, shows only a slight difference 

in TTG indicated by the relatively lighter pixel areas. However, examining Figure 5.10 with 

the higher 𝜆 tuning parameter, the difference becomes more apparent. Lighter pixels on the 

western regions of TMA are observed, which means that was an increase in 2017 TTG from 

2016 TTG. This can be explained by 1) the relocation of logistics facilities from central TMA 

to the outskirts of TMA, and 2) the construction of logistics facilities near the Ken-O 

Expressway interchanges. 
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Figure 5.10 Difference between 2017 and 2016 TTG (λ=0.4806 ) 

 

Figure 5.11 Difference between 2017 and 2016 TTG (λ=0.2777 ) 
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Figure 5.12 Difference between 2017 and 2016 TTG (λ=0.1696 ) 

 

5.7 Summary 
 

Truck probe data collected from digital tachometers were combined with economic census data, 

land-use distribution data, and accessibility data to create one dataset for modeling TTG. Two 

modeling frameworks for variable selection were compared, namely, Stepwise Multiple 

Regression, and Sparse Regression. Stepwise Multiple Regression estimates the coefficients of 

a model and does a model selection with varying combinations of independent variables by 

evaluating the AIC. On the other hand, Sparse Regression utilizes the lasso penalty to regularize 

estimated coefficients by encouraging shrinkage to zero. It was shown that the Sparse 

Regression framework is the better overall model for modeling TTG in TMA in terms of the 

number of parameters estimated, the MSE, and the computation time. The application of Fused 

Lasso as an extension of the Sparse Regression Modeling framework was also explored in 

comparing the TTG of 2016 and 2017. Because the number of trucks installed with digital 

tachometers is increasing through the years, a direct comparison cannot be made. However, it 

was shown that the Fused Lasso model could estimate the calibrated TTG coefficients for both 

years and convert the 2017 TTG to be comparable to the 2016 TTG. Thus, the difference in 

TTG from 2017 to 2016 was highlighted, and it was confirmed that there was an increase in 

TTG, especially in the western regions of TMA. 
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Chapter 6 TRUCK TRIP GENERATION MODELING CONSIDERING SPATIAL 

AUTO-CORRELATION IN KANTO AND KANSAI JAPAN USING SPATIAL 

REGRESSION 
 

6.1 Introduction 
 

Freight transport and logistics is currently an active area in applied transportation research not 

only for its significance in economic development but also due to the externalities that it brings 

to society and the environment. For instance, trucks in Asia constitute only 9% of the 

transportation shares but emit 54% of the total 𝐶𝑂2 (Clean Air Asia, 2010). The transportation 

sector in the United States produces 29% of its total greenhouse gas (GHG) emissions, and 

82% of which are from light-duty vehicles (which includes light-duty trucks) and 

medium/heavy-duty trucks (EPA, 2019). In Japan, the transportation sector constitutes 18% of 

the 𝐶𝑂2 emissions, of which about 35% are from trucks (Japan Automobile Manufacturers 

Association Inc., 2018). While efforts are being made to reduce GHG emissions from the 

transportation sector through hybridization and electrification, vehicles related to freight and 

logistics are posing a challenge, particularly medium and heavy-duty trucks, because of their 

high ton-kilometer demand for goods transport. For these reasons, there is a push to improve 

the understanding and description of freight and logistics systems, which, however, are 

hindered by issues and challenges regarding its complexity and data availability. In particular, 

the availability of data and tools for freight transport forecasting is a recurrent issue mentioned 

when it comes to modeling freight systems. Government departments responsible for transport 

policy have increasingly become concerned about the lack of availability of operational tools 

to forecast freight transport and understand possible effects of policy measures (Tavasszy and 

de Jong, 2014). Also, despite the abundance of data in logistics and transport operations, data 

is often proprietary and difficult to access (Tavasszy and de Jong, 2014). Given the complexity 

of freight systems and the difficulty of obtaining and lack of readily available data to develop 

practical models of freight systems, freight transport modeling is highly dependent on data that 

is within reach of researchers and analysts. Furthermore, the underlying spatial distribution and 

correlation in freight systems and networks, particularly in terms of activity and location of 

freight and logistics related facilities, when not considered, will result in inaccurate forecasts. 

 

Japan has relatively an abundance of publicly available freight and logistics related data. These 

data are collected and maintained by the Japanese Government through its respective ministries 

and bureaus. The private sector also has its own data, if not richer, due to the need to assess 
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performance, which affects their bottom line, albeit more difficult to access. The challenge is 

how to make use of such data for observing changes in freight systems and modeling freight 

transport and conducting rapid screening of variables as well as considering the spatial nature 

of freight systems. In this chapter, it is the aim to present a two-step framework for conducting 

rapid screening and selection of variables, then modeling the freight trip generation that 

accounts for the spatial relations in the system. 

 

6.2 Framework of Analysis 

 

The framework of analysis is shown in Table 6.1. A two-step approach is proposed: first is to 

conduct variable selection using penalized regression in order to lessen the number of 

independent variables that will be used for in the spatial regression. The reason for this is to 

aid in preventing overfitting and speed up the computation time of the spatial regression. This 

will be followed by two spatial regression methods: a spatial lag model and a spatial error 

model. Then the impacts are calculated because the regression coefficients of spatial regression 

cannot be directly interpreted due to the feedback effects of the spatial associations. Finally, a 

forecasting case is conducted. 

 

Table 6.1 Framework of analysis for spatial autocorrelation regression 
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6.3 Data Abstract 
 

6.3.1 Economic Census for Business Frame in Japan 
 

Pursuant to the Japan Statistics Act (Act No. 53 of 2007), Japan conducts an economic census 

that aims to identify the current state of business activities of establishments and enterprises 

and to have a comprehensive overview of the industrial structure of Japan. It consists of two 

surveys, namely, the “Economic Census for Business Frame” and the “Economic Census for 

Business Activity.” The primary difference between the two economic census is the former 

aims to identify the basic structure of establishments and enterprises of all industries in Japan 

such as total number of companies for each industry classification as well as the corresponding 

total number of employees in each industry classification while the latter aims to further 

identify the situation of economic activities of establishments and enterprises by 

comprehensively surveying and investigating accounting items such as sales (income) and 

costs in all the industrial classifications. For our purposes, we only utilize the “Economic 

Census for Business Frame,” hereafter referred to as the “Economic Census,” specifically data 

on the number of companies and the number of employees for each industry classification with 

18 total industry classifications. We also limit our scope of analysis to East Japan (Kanto) and 

West Japan (Kansai) because these regions are the two contiguous areas with the largest 

economic activities that both have a major sea container port. The Economic Census of East 

and West Japan consists of 330 variables. The variables are classified into two (2) main 

categories: a) the number of companies and b) the number of workers for each industry 

classification (Table 6.2).  

 

Table 6.2 Economic Census Industry Classification of Japan 

A  Agriculture and Forestry 

B  Fisheries 

C  Mining and Quarrying of Stone and Gravel 

D  Construction  

E  Manufacturing 

F  Electricity, Gas, Heat Supply and Water  

G  Information and Communications 

H  Transport and Postal Services 

I  Wholesale and Retail Trade 

J  Finance and Insurance  

K  Real Estate and Goods Rental and Leasing 
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L  Scientific Research, Professional and Technical Services 

M  Accommodations, Eating and Drinking Services 

N  Living-Related and Personal Services and Amusement Services 

O  Education, Learning Support 

P  Medical, Health Care and Welfare 

Q  Compound Services 

R  Services, N.E.C. 

 

 

6.3.2 Truck Probe Data 
 

Truck probe data for trucks were acquired from a Japanese digital tachograph manufacturer 

that outfits digital tachographs to trucks.  Data on the movement of trucks such as the date and 

time of departure from origin and arrival to the destination, as well as total travel time (in 

seconds) and total travel distance recorded by the digital tachograph, are remotely sent to the 

manufacturer’s server for maintenance and monitoring. Truck classification in the probe data 

follows the standards used by Japanese expressway companies managing electronic tollways 

and expressways, which classify trucks as small, regular, medium, large, and extra-large. We 

limit our analysis to large and extra-large trucks because these two are found to exhibit similar 

spatial distributions in terms of truck trip generation (Lidasan et al., 2017) and are similar in 

size and weight. 

The truck probe data for large and extra-large trucks acquired were collected every day 

for three months (April to June) each year from 2016 to 2018. Inspection of the distribution of 

truck trip generation for East and West Japan would seem that trucks are increasing year-by-

year. However, there is a caveat that the number of trucks that are outfitted with digital 

tachographs is also increasing, which means that previously unaccounted trucks through data 

collected from the digital tachograph could lead to an erroneous conclusion that truck trip 

generation is increasing through the years. In order to appropriately confirm the increase (or 

decrease) in the truck trips generated, here we introduce a method to determine and visually 

confirm the increase in generation by estimating a Fused Lasso model (Arnold and Tibshirani, 

2014; Hastie et al., 2015) to calibrate the truck trip generation per cell so that they become 

comparable. The Fused Lasso model is a generalization of the lasso penalty in penalized 

regression methods which solves the optimization problem shown in equation (1): 
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min
(𝜽∈ℝ𝑁)

{
1

2
∑(𝑦𝑖 − 𝜃𝑖)

2

𝑁

𝑖=1

+ 𝜆1∑|𝜃𝑗|

𝑁

𝑖=1

+ 𝜆2∑|𝜃𝑖 − 𝜃𝑖′|

𝑁

𝑖~𝑖′

} (17) 

 

 

min
(𝜽∈ℝ𝑁)

{
1

2
∑(𝑦𝑖 − 𝜃𝑖)

2

𝑁

𝑖=1

+ 𝜆∑|𝜃𝑖 − 𝜃𝑖′|

𝑁

𝑖~𝑖′

} 
(18) 

 

where 𝑦𝑖  is the natural logarithm of total truck trip generation of cell i, 𝜃𝑗  the estimated 

parameter, in this case, a constant term, and 𝜆1  and 𝜆2  are tuning parameters estimated by 

cross-validation. The second term is a lasso penalty which regularizes the parameters 𝜃𝑗 , and 

as  𝜆1 increases, the stronger the constraint is, and parameters are shrunk to zero. The third term 

in the objective function encourages neighboring coefficients to be similar. We only need to 

estimate one tuning parameter for Fused Lasso based on Lemma 4.1 (Hastie et al., 2015), as 

shown in equation (2). In a 2-dimensional graph, neighboring coefficients are those adjacent to 

one another. The truck trip generation values were rescaled so that a greyscale graph of the 

truck trip generation can be plotted and serve as input to the Fused Lasso model. We estimate 

the model and sum the estimated coefficients of each year. The sum of the coefficients for a 

series of tuning parameter values is constant, as shown in the graph for East Japan in Figure 

6.1 (plot for West Japan is not shown due to space limitations). 
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Figure 6.1 Kanto Fused Lasso coefficients sum plotted against tunning parameter 

𝒍𝒐𝒈(𝝀) 

For the purpose of visualizing the change in truck trip generation, we consider the difference 

between 2016 and 2018. We do this by converting the Fused Lasso coefficients of 2018 to be 

comparable to 2016 by multiplying a conversion factor which is the ratio of the sum of 

coefficients of 2016 to 2018 (2784.156/3165.971) as shown in equation 2 below: 

 𝜃′𝑖
2018 ⁡= ⁡ 𝜃𝑖

2018 × 𝑐𝑓 (19) 

where 𝜃𝑖
2018 is the original calibrated truck trip generation for cell i, cf is the conversion factor, 

𝜃′𝑖
2018 is the converted truck trip generation for comparison purposes. This scales down the 

2018 sum of coefficients line (solid line) to the 2016 sum of coefficients line (short-long dashed 

line) in Figure 1. The same process was done for West Japan calibrated values. Conditional on 

the tuning parameter 𝜆 , the greyscale plot of the estimated parameters will have varying 

degrees of regularization, with higher 𝜆’s having stronger regularization on the parameters than 

lower 𝜆’s. A plot with relatively high regularization would highlight areas where truck trip 

generation is high, which are shown in lighter-colored cells. Now that the 2016 and the 2018 

truck trip generation have been calibrated by the Fused Lasso model, their differences were 

computed conditional on a chosen tuning parameter 𝜆. The differences were plotted to highlight 
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areas with significant changes in truck trip generated visually. Figure 6.2 and Figure 6.3 show 

the difference between 2016 and 2018 truck trip generation. 

 

Figure 6.2 East Japan Fused Lasso calibrated 

generation difference (𝜆 = 0.4802) 

 

Figure 6.3 West Japan Fused Lasso 

calibrated generation difference (𝜆 =

0.3785) 

We confirm that there are regions where large and extra-large trucks trips increased in both 

East and West Japan since 2016. East Japan (Figure 6.2) had a noticeable increase in the 

western region, which is an indication of decentralization to the suburbs, and along ring roads 

and consolidation of functions of freight transport and logistics-related facilities (Sakai et al., 

2016), There are also increases along the eastern side of Tokyo Bay. West Japan (Figure 6.3) 

also had a noticeable increase in truck trips generated since 2016, especially along the coastline 

of Osaka Bay. It can also be seen that there are increases going inland which, upon verification 

on a map, are expressways and, based on previous studies, areas surrounding expressways are 

found to be where freight and logistics related facilities tend to locate (Lidasan et al., 2017; 

Sakai et al., 2016). 

 

6.3.3 Spatial Referencing of Data 
 

A feature of surveys and data collected by the Japanese government is the use of a standardized 

spatial referencing system that makes it easy to georeference collected data from both a national 

and regional perspective. This makes it possible to identify the spatial distribution of survey 

items in Japan. There are three main levels of resolution (primary, secondary, and tertiary) in 
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the said Japanese spatial referencing standard that is based on a grid of the Japanese national 

territory. Each cell in the grid has a corresponding code (referred locally as a “mesh code”), 

which represents a transformation of the longitude and latitude of the centroid of a cell for 

easier encoding. Although the two datasets mentioned above are taken from different sources, 

the standardized spatial referencing system of the Japanese government easily allows the 

combination of the two datasets to form a potentially more information-rich dataset. The 

resolution we used for our analysis is the tertiary level grid, which consists of 1-km by 1-km 

cells, i.e., one cell is a 1-km by 1-km data point in the data set. Based on this feature of the 

dataset, there is an inherent spatial relationship among the truck trip generation for each cell in 

the grid. In the following sections, we introduce a framework for the rapid screening of 

variables combined with truck trip generation modeling that accounts for the inherent spatial 

relations in the data. 

 

6.4 Lasso Regression of Truck Trip Generation of East and West Japan 
 

There is a total of 330 variables in each dataset of East and West Japan. However, using all 330 

variables as inputs for spatial regression would be inefficient as not only would it a significant 

time estimation time too long, but not all variables may be relevant in modeling truck trip 

generation. Before estimating the spatial regression model of truck trip generation, we first 

estimate a penalized regression model for variable selection. To determine the penalty to be 

used for variable selection, we estimated penalized regression models with different penalties 

for each year and for number of companies, number of workers, and a combination of number 

of companies and number of workers and compared their Mean-Squared-Errors (MSE) as well 

as their coefficients of determination (R2). Truck Trip Generation was log-transformed, and the 

variables were standardized by subtracting their mean and dividing by their standard deviation. 

The penalized regression models were estimated using the “oem” library in the R programming 

language (Huling and Qian, 2018). The summary of the results of penalized regression (Table 

6.3) shows that for both East and West Japan, the Lasso penalty combined with variables of 

the number of companies and the number of workers has the lowest MSE. It can also be seen 

that from an initial number of 330 variables, all results show that the number of nonzero 

parameters estimated, i.e., the number of parameters that contribute to truck trip generation is 

below 330 variables. This will be the basis for selecting the variables that will be included in 

estimating the spatial regression model in the following section. 
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Table 6.3 Summary Results of Penalized Regression of Truck Trip Generation 

    West Japan (Kansai) East Japan (Kanto) 

  
year 

best 

model 
MSE R2 

No. of 

nonzero 

best 

model 
MSE R2 

No. of 

nonzero 

co
m

p
an

y
 2016 SCAD 3.2217 0.232 35 Lasso 3.273 0.244 93 

2017 SCAD 3.368 0.251 51 Lasso 3.455 0.257 97 

2018 MCP 3.2597 0.274 51 Lasso 3.195 0.288 101 

w
o
rk

er
s 

2016 Lasso 3.2761 0.224 59 Lasso 3.375 0.228 67 

2017 Lasso 3.4432 0.239 69 Lasso 3.566 0.240 75 

2018 Lasso 3.3582 0.259 74 Lasso 3.347 0.261 70 

co
m

p
an

y
 &

 

w
o
rk

er
s 

2016 Lasso 3.1349 0.262 129 Lasso 3.214 0.267 133 

2017 Lasso 3.2829 0.276 143 Lasso 3.389 0.280 147 

2018 Lasso 3.1876 0.298 144 Lasso 3.139 0.308 144 

 

We have determined that the Lasso penalty will be used for variable selection and both the 

number of companies and the number of workers as variables for estimating the spatial 

regression model. The objective of this step is to conduct a rapid screening of variables for 

spatial regression estimation, and thus, the estimated coefficients won’t be analyzed. 

Nevertheless, the forest plot of the standardized coefficients of the Lasso regression results for 

both East (Kanto) and West (Kansai) Japan is shown in Figure 6.4. The number of companies 

in the road freight industry has the largest effect on truck trip generation, followed by 

machinery and equipment retail and warehousing. In terms of the number of workers, the 

manufacturing industry tends to have the biggest influence on the truck trips generated. While 

the number of workers in different manufacturing industries tends to increase truck trip 

generation, the same cannot be said of the number of companies because they tend to even out. 

However, these results do not consider the spatial relationship in the data. 
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Figure 6.4 Estimated Coefficients of Lasso Regression (2018) 

6.5 Spatial Regression 
 

In this section, we finally model the spatial relationship after selecting the variables from the 

datasets of both East and West Japan in terms of truck trip generation of large and extra-large 

trucks. To estimate the spatial regression model, we need to define the neighborhood list and 

the corresponding weights matrix that will determine their spatial relationship. We defined 

neighbors using k-nearest neighbors and tested five (5) different k-nearest neighbors (KNNB) 

where 𝑘 ∈ {4,8,12,16,20,24}. Based on the neighborhood lists, we also tested two definitions 

of weights matrix, a binary weights matrix, and an inverse-distance weights matrix defined as 

follows: 

 𝑤𝑖𝑗 = 1     ∀     𝑗 ∈ 𝑛𝑏𝑖                       (binary) (20) 

 

 𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
     ∀     𝑗 ∈ 𝑛𝑏𝑖             (inverse distance) (21) 

 

where 𝑤𝑖𝑗 is the weight of cell i to neighbor j, and 𝑑𝑖𝑗 is the distance of cell i to neighbor j for 

all j included in the neighbor list of i. The binary weights matrix assigns a weight of one (1) to 
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all neighbors of cell i while the invers0e distance matrix assigns the inverse of the distance of 

cell i to cell j. Two spatial regression models have also been tested: a spatial lag model (SLM) 

and a spatial error model (SEM). The SLM model includes the spatial lag of the dependent 

variable, as shown in equations (6) and (7). 

 

 𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷+ 𝜺 (22) 

 

 𝒚 = (𝑰𝑛 − 𝜌𝑾)−1𝑿𝜷+ (𝑰𝑛 − 𝜌𝑾)−1𝜺 (23) 

 

where 𝒚 is the log-transformed truck trip generation, 𝜌𝑾𝒚 is the spatially lag term of the 

dependent variable where 𝜌 is a parameter to be estimated determining the strength of influence 

of the spatial lag, and W is the weights matrix with elements 𝑤𝑖𝑗⁡as defined in equations (4) 

and (5) above, and ⁡𝜀  is a normally distributed error term. On the other hand, the SEM model 

includes a spatially lagged error terms in addition to the normally distributed error term 𝜀, as 

shown in equations (8) and (9). 

 

 𝒚 = 𝑿𝜷 + 𝒖 (24) 

 

 𝒖 = 𝜌𝑾𝒖 + 𝜺 (25) 

 

where 𝒚 is the log-transformed truck trip generation, u is the spatially lag error term which is 

composed of the spatial lag error term 𝜌𝑾𝒖  where 𝜌  is a parameter to be estimated 

determining the strength of influence of the spatially  lagged error term u, and W is the weights 

matrix with elements 𝑤𝑖𝑗⁡as defined in equations (4) and (5) above, and ⁡𝜺  is a normally 

distributed error term. SLM and SEM models were estimated by maximum likelihood using 

the “spdep” and “spatialreg” frameworks in the R programming language (Bivand et al., 2009) 

for the six (6) neighborhood definitions (KNNB where 𝑘 ∈ {4,8,12,16,20,24}) and the two (2) 

weights matrix definitions (inverse distance and binary) for both East and West Japan. 
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Table 6.4 Summary of SLM and SEM models for West and East Japan 

    West Japan (Kansai) East Japan (Kanto) 

    
Weights: 

Inverse Distance 

Weights: 

Binary 

Weights: 

Inverse Distance 

Weights: 

Binary 

Type knnb R2 Adj. R2  R2 Adj. R2  R2 Adj. R2  R2 Adj. R2  

Lag 4 0.390 0.385 0.293 0.287 0.385 0.379 0.297 0.290 

Error 4 0.258 0.252 0.280 0.275 0.270 0.263 0.271 0.264 

Lag 8 0.417 0.412 0.288 0.282 0.423 0.418 0.301 0.294 

Error 8 0.115 0.108 0.273 0.267 0.223 0.215 0.260 0.253 

Lag 12 0.425 0.420 0.316 0.310 0.447 0.441 0.373 0.367 

Error 12 -0.086 -0.095 0.262 0.256 0.015 0.005 0.248 0.241 

Lag 16 0.421 0.416 0.249 0.244 0.439 0.434 0.291 0.284 

Error 16 -0.181 -0.190 0.268 0.262 -0.067 -0.078 0.256 0.249 

Lag 20 0.419 0.415 0.180 0.174 0.442 0.436 0.272 0.265 

Error 20 -0.225 -0.234 0.267 0.261 -0.250 -0.262 0.253 0.246 

Lag 24 0.418 0.414 0.130 0.123 0.445 0.439 0.305 0.299 

Error 24 -0.238 -0.248 0.265 0.259 -0.376 -0.389 0.252 0.245 

 

The summary shows that for both East and West Japan and both weights matrix definition, the 

SLM model (type: lag) with neighborhood definition of 12 nearest neighbors (knnb: 12) had 

the highest adjusted R2. It can also be seen that for SEM models with inverse distance weights 

matrix for KNNB ≥ 8, the coefficient of determination is negative, suggesting the models are 

worse than the mean of the data. Based on the estimation results, the SLM model using a 

neighborhood structure of 12 nearest neighbors with inverse distance weights matrix seems the 

appropriate model for both East and West Japan. A change in a single observation associated 

with any given explanatory variable in a spatial regression model will affect the cell itself 

(direct impacts) and potentially affect all other regions indirectly (indirect impacts) (LeSage 

and Pace, 2010). Average impacts are calculated from equations 10 to 12 (LeSage and Pace, 

2010): 

 

 𝑀(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑛−1𝑡𝑟(𝑆𝑟(𝑊)) (26) 

  

 𝑀(𝑟)𝑡𝑜𝑡𝑎𝑙 = 𝑛−1𝜄′𝑛𝑆𝑟(𝑊)𝜄𝑛 (27) 

 

 𝑀(𝑟)𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑀(𝑟)𝑡𝑜𝑡𝑎𝑙 −𝑀(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡 (28) 
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where 𝑀(𝑟)𝑑𝑖𝑟𝑒𝑐𝑡 are the average direct impacts of the independent variables, 𝑀(𝑟)𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 are 

the average indirect impacts of the independent variables, 𝑀(𝑟)𝑡𝑜𝑡𝑎𝑙⁡ is the average total 

impacts of the independent variables, and  𝑆𝑟(𝑊) = (𝐼𝑛 − 𝜌𝑊)−1𝐼𝑛𝛽𝑟. Table 6.5 shows the 

ten (10) highest positive and negative impacts to truck trip generation in East Japan, and Table 

6.6 shows ten (10) highest positive and negative impacts to truck trip generation in West Japan 

for the SLM model using a neighborhood structure of 12 nearest neighbors with inverse 

distance weights matrix. Because independent variables are standardized by subtracting the 

mean and dividing by one standard deviation, the impact measures are on the same scale; thus, 

their relative magnitudes can be compared. The absolute value of the indirect impacts of the 

independent variables is larger than their direct impacts suggesting that not taking account of 

the spatial nature of truck trip generation in East and West Japan would lead to erroneous 

estimates of the parameters. Most of the independent variables with the highest (both positive 

and negative) impacts are from the retailing, road freight forwarding, manufacturing, and 

wholesale. 

 

Table 6.5 Ten (10) Highest Impacts in East Japan 

East Japan (Kanto) 

    Independent Variable Type Direct Indirect Total 

1
0

 H
ig

h
es

t 
P

o
si

ti
v

e 
Im

p
ac

ts
 

1 I59 machinery and equipment retailing company 0.194 0.316 0.509 

2 I58 retail trade in food and beverage workers 0.174 0.283 0.457 

3 I60 other retail business workers 0.170 0.278 0.448 

4 H44 road freight forwarding industry company 0.168 0.275 0.443 

5 E manufacturing industry workers 0.159 0.260 0.419 

6 M75 accommodation industry workers 0.109 0.179 0.288 

7 E16 chemical industry company 0.095 0.156 0.251 

8 
E18 plastic product manufacturing 

industry (excluding others) 
company 0.086 0.140 0.226 

9 H47 warehouse industry company 0.080 0.131 0.211 

10 
K702 industrial machinery and 

equipment rental business 
company 0.068 0.110 0.178 

1
0

 

H
ig

h
es

t 

N
eg

at
iv

e 

Im
p

ac
ts

 

1 I54 machine tool wholesale business company -0.198 -0.323 -0.521 

2 N8063 mahjong club company -0.103 -0.169 -0.272 
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3 
E26 machine tool manufacturing 

industry for production 
company -0.100 -0.163 -0.263 

4 P832 general clinic company -0.097 -0.158 -0.254 

5 
E24 metal product manufacturing 

industry 
company -0.090 -0.147 -0.237 

6 I2 retail trade workers -0.090 -0.146 -0.236 

7 K68 real estate business company -0.078 -0.128 -0.206 

8 

E30 information and communication 

machinery and equipment 

manufacturing industry 

workers -0.075 -0.122 -0.197 

9 P833 dental clinic company -0.062 -0.101 -0.163 

10 H45 water transportation industry company -0.058 -0.095 -0.153 

 

Table 6.6 Ten (10) Highest Impacts in West Japan 

West Japan (Kansai) 

    Independent Variable Type Direct Indirect Total 

1
0

 H
ig

h
es

t 
P

o
si

ti
v

e 
Im

p
ac

ts
 

1 I50 ~ 55 wholesale company 0.209 0.302 0.511 

2 I561 department stores, supermarkets company 0.150 0.216 0.366 

3 
I569 and various other goods retailers 

(employees less than 50 people) 
company 0.144 0.208 0.353 

4 H44 road freight industry company 0.141 0.203 0.343 

5 I59 machinery and equipment retail company 0.119 0.172 0.292 

6 I60 other retailers workers 0.113 0.163 0.276 

7 I50 ~ 55 Wholesale workers 0.109 0.157 0.266 

8 E manufacturing industry workers 0.108 0.156 0.264 

9 
H48 service industries incidental to 

transportation 
company 0.090 0.130 0.219 

10 I58 food and beverage retail workers 0.089 0.129 0.219 

1
0

 H
ig

h
es

t 
N

eg
at

iv
e 

Im
p

ac
ts

 

1 I56 various goods retail company -0.183 -0.265 -0.448 

2 I55 other wholesale company -0.118 -0.170 -0.289 

3 P835 medical treatment industry company -0.093 -0.134 -0.227 

4 
I54 machinery and equipment 

wholesaling 
workers -0.093 -0.134 -0.227 

5 I52 food and beverage wholesale company -0.087 -0.125 -0.212 

6 
E26 production machinery and 

equipment manufacturing industry 
company -0.084 -0.121 -0.204 

7 N804 sports provides industry workers -0.078 -0.113 -0.191 
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West Japan (Kansai) 

    Independent Variable Type Direct Indirect Total 

8 

I53 building materials, mineral and 

metal material, such as wholesale 

trade 

workers -0.076 -0.110 -0.187 

9 
E24 metal products manufacturing 

industry 
company -0.069 -0.100 -0.169 

10 G39 information services industry workers -0.051 -0.074 -0.125 

 

6.6 Forecasting Truck Trip Generation: East Japan Case 
 

To visualize the effect of not considering the spatial relations of truck trip generation in the 

data, we forecast truck trip generation in East Japan from the population projections released 

by the National Institute of Population and Social Security Research (IPSS) of Japan. This 

requires re-estimating the SLM mode with the 12-nearest-neighbor-structure and inverse 

distance matrix, which now includes the 2018 population for each cell in East Japan. The 

population projection of IPSS for 2030 was used to forecast the 2030 truck trip generation in 

East Japan. When considering only the direct impacts (without the effects of spatial lags), the 

truck trip generation is underestimated, as shown in Figure 6.5. The forecasts using direct 

impacts is equivalent to an ordinary least squares (OLS) regression. However, when forecasting 

the 2030 truck trip generation considering the spatial lags of truck trip generation, we get a 

more realistic forecast which appropriately models the areas with a concentration of truck trip 

generation especially near the coast of Tokyo Bay and to the western area of East Japan as 

shown in Figure 6.6.  
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Figure 6.5 Truck Trip Generation Forecast 

for 2030 (Direct Impacts) 

 

Figure 6.6 Truck Trip Generation Forecast 

for 2030 (Total Impacts) 

 

6.7 Summary 

 

A two-step approach to modeling truck trip generation was presented, particularly in the two 

regions with the highest economic activity in Japan. The most common issue with modeling 

freight transport is the lack of accessible data and the complexity of freight systems. Japan 

conducts an economic census that aims to identify the basic structure of establishments and 

enterprises of all industries in Japan, such as the total number of companies and the total 

number of employees in each industry classification. We utilize these publicly available data 

to model truck trip generation in East and West Japan. The truck trip generation data from a 

digital tachograph manufacturer that outfits digital tachographs in trucks was combined with 

the economic census data, and because both are encoded using the Japanese standard on spatial 

referencing data, the final dataset will have inherent spatial relations and allows for spatial 

regression modeling. Both the East and West Japan datasets consist of 330 independent 

variables, 165 of which are the total number of companies, and the remaining 165 representing 

the total number of employees for each industry classification. In order to efficiently estimate 

the spatial regression model, we first select the variables that will be used as input variables by 

estimating a penalized regression model. The penalized regression model results showed that 

the Lasso penalty was the best model and was used as the basis for variable selection. The 

results also showed that utilizing the total number of companies and the total number of 
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employees provides a better model, and thus, both types of variables are used. From a total of 

330 independent variables, the penalized regression (Lasso) has estimated 144 nonzero 

coefficients for both East and West Japan for the year 2018 which is less than half of the 

original 330 independent variables. This indicates that only less than half of the independent 

variables influence truck trip generation for both East and West Japan. However, the penalized 

regression model does not account for the spatial relations in the data. So, using the nonzero 

coefficients estimated as the basis for selecting the independent variables that influence the 

truck trips generated, we estimate a spatial regression model. Different neighborhood structures 

and weights matrices were tested in estimating the spatial regression models. Two specific 

model formulation was estimated; namely, the spatial lag model (SLM) and the spatial error 

model (SEM) were estimated. The results show that for both East and West Japan, an SLM 

with a neighborhood structure of 12 nearest neighbors and an inverse distance weights matrix 

had the highest adjusted coefficient of determination. However, estimated coefficients cannot 

be directly interpreted due to the feedback effects of the spatial lags of the dependent variable 

in the model, so total impacts must be calculated. Finally, we showed that using total impacts 

to forecast the 2030 truck trip generation for the East Japan case would result in more realistic 

values as compared to only considering direct impacts, which is akin to forecasting truck trip 

generation using ordinary least squares (OLS) model. 
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Chapter 7 SUMMARY, CONCLUSIONS, AND IMPLICATIONS 
 

7.1 Summary and Conclusion 
 

Freight volume generation and freight trip generation have known to be modeled using the 

classical method of regression with the desired output such as freight volume or freight vehicle 

volume as the dependent variable, and socio-economic variables as independent variables. 

Practical models that exist mainly differ in the functional structure of the linear model, such as 

whether there is an intercept or not and the type of socio-economic variables that are included 

in the linear equation. However, they mostly still follow the classical linear regression method. 

This poses problems of underfitting and mostly of overfitting. Underfitting is when the model 

doesn’t get enough information from the data in order to properly represent the relations of the 

socio-economic variables to freight volume and freight trip generation. On the other hand, 

overfitting, is when the model learns too much from the data and becomes too sensitive that it 

poorly performs when it comes to forecasting. The overfitting problem is more common in 

freight models because practitioners tend to want to include as many variables as they can to 

improve the fit of the model to the data, but too much fit to the data comes at the price of the 

model poorly performing in prediction. A method of estimating the national freight volume 

generation in Japan as a varying-intercept model was presented in chapter 3, which deals with 

the overfitting issue. The varying intercept models had the best out-of-sample cross-validation 

performance, which shows that a varying intercept model is better for prediction than a model 

with a lot of independent variables. 

Another issue with modeling freight trip generation is that freight trip generation is not 

independent of other factors such as the location of freight-related facilities. In the context of 

determining where and how much freight trips are produced; freight trips are a product of the 

decision of where logistics facilities are located and the socio-economic and locational 

variables. In addition, due to the limitations posed to where logistics facilities can locate, the 

natural spatial distribution of logistics facilities occurs. In the case of the Tokyo Metropolitan 

Area, logistics facilities are relocating to the suburbs, near expressway interchanges in the 

fringes of the Tokyo Metropolitan Area, or around Tokyo Bay. In the Kansai region, a similar 

observation can be seen of freight trips being concentrated around Osaka Bay. This has 

implications for freight trip generation as the spatial distribution of logistics facilities have now 

an effect on freight trips generated, especially when trying to determine where freight trips are 
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generated. Modeling freight trip generation through simple linear regression will fail to 

consider the unobserved effects of the spatial distribution of logistics facilities and will lead to 

poor forecasts. For the issues of spatial factors in freight trip generation modeling, chapter 4 

showed how to consider the location choice of logistics facilities in estimating freight trip 

generation. Chapter 4 presented a two-step approach of first modeling location choice and floor 

area, and using the estimated parameter for the logistics floor area, the truck trips generated 

can be estimated. Chapter 5 compared the lasso penalty for sparse regression and stepwise 

regression for variable selection. It was shown that the sparse regression framework is the better 

overall model for modeling freight trip generation in Tokyo Metropolitan Area in terms of the 

number of parameters estimated, the MSE, and the computation time. The application of Fused 

Lasso was also explored in comparing the freight trip generation of 2016 and 2017. Because 

the number of trucks installed with digital tachometers is increasing through the years, a direct 

comparison cannot be made. However, it was shown that the Fused Lasso model could estimate 

the calibrated coefficients for both years and convert 2017 to be comparable to 2016. Thus, the 

difference in freight trip generation from 2017 to 2016 was highlighted, and it was confirmed 

that there was an increase, especially in the western regions of the Tokyo Metropolitan Area.  

In chapter 6, a two-step approach to modeling truck trip generation was presented. To 

efficiently estimate the spatial regression model, variables that will be used as input variables 

by estimating a penalized regression model. The penalized regression model results showed 

that the Lasso penalty provided that best model and was used as basis for variable selection. 

From a total of 330 independent variables, the penalized regression (Lasso) has estimated 144 

nonzero coefficients for both East and West Japan for the year 2018, which is less than half of 

the original 330 independent variables. This indicates that only less than half of the independent 

variables influence the truck trips generated. The results show that for both East and West Japan, 

an SLM with a neighborhood structure of 12 nearest neighbors and an inverse distance weights 

matrix had the highest adjusted coefficient of determination. However, the estimated 

coefficients cannot be directly interpreted due to the feedback effects of the spatial lags of the 

dependent variable in the model, so the total impacts must be calculated. Finally, the total 

impacts were used to forecast the 2030 truck trip generation of East Japan, which resulted in 

more realistic values. 
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7.2 Recommendation 

 

More studies should be done in testing the application of models for freight transportation 

modeling that do not overfit the data especially in the growing availability of sources of data 

other than surveys. Practitioners should start moving away from bad practices, like adding more 

variables just to improve the fit of the model. The reason is freight transportation models are 

used for forecasting, and improving fit will not necessarily improve forecasts but can be 

detrimental. Finally, the spatial aspects and spatial dependencies in the freight transport system 

should be considered by default because transportation and land-use are intertwined, and land-

use has a spatial aspect to it inherently.  

 

7.3 Implications 

 

The implication for freight transport modeling is that we can do better by avoiding overfitting 

through including a lot of variables. Not only will the model take longer to estimate but it will 

perform poorer when it comes to forecasting because the model will learn too much from the 

current freight transport data that when future conditions are doesn’t look like the data the 

model was trained with, the predictions will not be reliable. A degree of flexibility through a 

more skeptic set of model parameters, i.e., regularized parameters that are often smaller than 

the unbiased parameters from the classical regression model are needed. Also, better forecasts 

can be conducted by being able to consider the spatial aspects dependencies in the freight 

transport system. 

 

7.4 Issues for Further Study 
 

Other issues that need further study is the consideration of varying effects in the predictors 

themselves (as opposed to varying-intercepts) through varying coefficients. In the case of the 

national freight volume generation, these are the varying effects in population and GRP. The 

reason varying coefficients must be considered is that different areas have different levels of 

economic activity as well as different consumption patterns. 
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APPENDIX 

 

2017 TTG Sparse Regression Estimation Results 

Variable Variable Sub-label Coef. 

(Intercept) 1.9546 

(Number of establishments) A to R All industries, A~R 0 

C to E secondary industry, C~E 0 

C05 Mining, quarrying, gravel sampling C05 0 

(Number of establishments) D Construction industry, D 0 

D 06 Comprehensive construction industry, D06 0 

D07 Construction work by job (excluding facility construction work) D07 0 

(Number of establishments) D 08 Equipment construction industry, D08 0 

E Manufacturing industry, E 0 

E09 Foodstuff manufacturing industry E09 0.0058 

(Number of establishments) E10 Beverages · Tobacco · Feed manufacturing industry, E10 0.0569 

E11 Textile industry, E11 0 

E12 Wood and wood product manufacturing industry (excluding furniture) E12 0.0009 

(Number of establishments) E13 Furniture / Fittings Manufacturing industry, E13 -0.0461 

E14 Manufacture of pulp, paper, and paper processed goods, E14 0 

E15 Printing and related business E15 -0.0049 
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(Number of establishments) E16 Chemical industry, E16 0 

E17 Petroleum products / coal product manufacturing industry, E17 0.0097 

E 18 Plastic product manufacturing industry (excluding others) E18 0.0184 

(Number of establishments) E 19 Rubber product manufacturing industry, E19 0 

E20 Leather, same product / fur manufacturing industry, E20 0.0002 

E21 Ceramic · Soil product manufacturing industry E21 0 

(Number of establishments) E22 Steel industry, E22 0 

E23 Nonferrous metals manufacturing industry, E23 -0.0199 

E24 Metal product manufacturing industry E24 -0.0004 

(Number of establishments) E25 Machinery and equipment for manufacturing machinery, E25 0 

E 26 Production machinery and equipment manufacturing industry, E26 -0.0066 

E 27 Industrial machinery and equipment manufacturing industry E27 0 

(Number of establishments) E28 Electronic parts / devices · E28 0 

Electronic circuit manufacturing industry, E29 Electrical machinery, and equipment manufacturing 

industry, 
E29 -0.0026 

E 30 Information and communication machinery and equipment manufacturing industry E30 0 

(Number of establishments) E31 Transportation machinery and equipment manufacturing industry, E31 0.0064 

E32 Other manufacturing industry, E32 0 

F to R tertiary industry F~R 0 

(Number of establishments) F Electricity, gas, heat supply, water supply industry, F 0 

F33 Electric industry, F33 0 

F34 gas industry F34 0 

(Number of establishments) F35 heat supply industry, F35 0 

F36 water industry, F36 0.0694 

G information communication industry G 0 

(Number of establishments) G 37 Communications industry, G37 0 

G38 Broadcasting business, G38 0 

G39 Information service industry G39 0 

(Number of establishments) G40 Internet accompanying service industry, G40 0 

G41 Video / voice / text information system work, G41 0 

H Transportation industry, postal service H 0 

(Number of establishments) H42 Railway industry, H42 -0.0209 

H43 road passenger transportation business, H43 -0.0092 

H44 Road Freight Forwarding Industry H44 0.0595 

(Number of establishments) H45 Water transport industry, H45 -0.0758 

H46 Air Transport Industry, H46 0.0265 

H47 warehouse industry H47 0.0434 

(Number of establishments) H48 Service industry incidental to transportation, H48 0 

H49 Postal business (including credit facilities business), H49 0.0625 

I Wholesale and retail trade I 0 

(Number of establishments) I1 Wholesale business, I1 0 

I50 Various goods Wholesale business, I50 0 

I 51 Pharmaceuticals, clothing, etc. wholesale business I51 0 

(Number of establishments) I 52 Food and beverage wholesale business, I52 0 

I53 Building materials, wholesale industry such as mineral and metallic materials, I53 0 

I54 Machine tool wholesale business I54 -0.0011 

(Number of establishments) I55 Other wholesale business, I55 0 

I2 retail industry, I2 0 

I 56 Various product retailers I56 0.0075 

(Number of establishments) I561 Department store, general supermarket, I561 0 

I569 Various other merchandise retailers (employees are always 50 I569 0 

, I57 Textile, clothing, personal belongings retailing I57 0 

(Number of establishments) I 58 Retail trade in food and beverage, I58 0 

I 581 Various grocery retailers, I581 -0.0005 

I585 liquor retail trade I585 -0.0118 
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(Number of establishments) I59 Machinery and equipment retailing, I59 0.0144 

I60 Other retail business, I60 0 

I 603 Pharmaceuticals and cosmetics retail trade I603 0 

(Number of establishments) I 606 Book · stationery retailing, I606 0 

J Financial industry, insurance industry, J 0 

J62 Banking business J62 0 

(Number of establishments) J 622 Bank (excluding Central Bank), J622 0 

J63 Cooperative organization Finance industry, J63 0 

J631 Small business etc. Finance industry J631 0 

(Number of establishments) K Real estate industry, rental goods business, K 0 

K68 Real Estate Business, K68 0 

K69 Real estate leasing industry · Management industry K69 0 

(Number of establishments) K 70 Goods rental business, K70 0 

K701 Various goods rental business, K701 0.0665 

K702 Industrial machinery and equipment rental business K702 0.0817 

(Number of establishments) K 703 Office equipment leasing business, K703 0 

K 704 Automobile rental business, K704 0 

K705 Sports / entertainment equipment rental business K705 0 

(Number of establishments) K 709 Other goods Leasing business, K709 0 

K7092 Music and video record leasing business (excluding others), K7092 -0.0265 

K 7099 Goods not classified as other leasing business K7099 -0.0011 

(Number of establishments) L academic research, specialized / technical service industry, L 0 

L71 Academic and development research institution, L71 0 

L 72 Professional service industry (not classified elsewhere) L72 0 

(Number of establishments) L 73 Advertising business, L73 0 

L 74 technical service industry (not classified elsewhere), L74 0 

M accommodation industry, food service business M 0 

(Number of establishments) M75 Accommodation, M75 0 

M751 Ryokan, Hotel, M751 0.0233 

M7591 Company / group accommodation M7591 0 

(Number of establishments) M76 restaurant, M76 0 

M77 Takeaway / food delivery service, M77 0 

N Living related service industry, the entertainment industry N 0 

(Number of establishments) N 78 Laundry · Barber · Beauty · Bathroom business, N78 0 

N79 Other life-related services industry, N79 0 

N80 entertainment industry N80 0 

(Number of establishments) N801 Movie Theater, N801 0 

N802 entertainment venue (excluding others), entertainer team, N802 0 

N804 sports facilities offering business N804 0 

(Number of establishments) N8041 0.0797 

N8041 Sports facility offering (excluding others), N8042 0 

N8042 gymnasium, N8043 golf course N8043 -0.1601 

(Number of establishments) N8044 Golf practice range, N8044 0 

N8045 Bowling alley, N8045 0 

N8046 Tennis court N8046 0 

(Number of establishments) N8047 Batting / tennis practice range, N8047 0.1063 

N8048 fitness club, N8048 0 

N806 game room N806 0 

(Number of establishments) N8063 Mahjong Club, N8063 -0.0349 

N8064 Pachinko hall, N8064 0.0417 

N8065 game center N8065 0 

(Number of establishments) N 8069 Other play area, N8069 0 

O education, learning support industry, O 0 

O81 School Education O81 0 

(Number of establishments) O 811 Kindergarten, O811 -0.0704 
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O 812 Elementary school, O812 0 

O 813 Middle School O813 0 

(Number of establishments) O 814 High school, Secondary school, O814 0 

O 815 special support school, O815 0 

O 816 Higher education institution O816 -0.0154 

(Number of establishments) O 817 vocational schools, various schools, O817 0 

O 82 Other education, learning support industry, O82 0 

O 8213 museum, museum O8213 0 

(Number of establishments) O 82 14 Zoo, botanical garden, aquarium, O8214 0.1577 

O823 Learning cram school, O823 0 

O8241 Music teaching work O8241 -0.0316 

(Number of establishments) O 824 Foreign language conversation teaching business, O8245 0 

O8246 Sports / health teaching professor, O8246 0 

P Medical, welfare P 0 

(Number of establishments) P83 Medical industry, P83 0 

P831 Hospital, P831 0.0001 

P832 general clinic P832 -0.0136 

(Number of establishments) P833 Dental clinic, P833 0 

P835 Therapeutic industry, P835 0 

P84 Health sanitation P84 0 

(Number of establishments) P85 Social insurance / social welfare / nursing care business, P85 0 

P853 Child Welfare Project, P853 0 

P8531 nursery school P8531 0 

(Number of establishments) P8539 Other child welfare projects, P8539 0 

P854 Welfare and long-term care business for the elderly, P854 -0.0038 

P855 Welfare service for people with disabilities P855 0 

(Number of establishments) P859 0.0040 

P859 Other social insurance · social welfare · nursing care business, Q 0 

Q combined service business, Q86 post office Q86 -0.0736 

(Number of establishments) Q 87 Cooperative associations (not classified elsewhere), Q87 0.0659 

R service industry (not classified elsewhere), R 0 

R88 Waste disposal industry R88 0.0385 

(Number of establishments) R 89 Automobile maintenance industry, R89 0.0433 

R90 Machine etc. Repair work (excluding others), R90 0 

R91 Employment placement / worker dispatch business R91 0 

(Number of establishments) R 911 Employment introduction industry, R911 0 

R 92 Other business services industry, R92 0 

R93 Political, Economic and Cultural Organizations R93 0 

(Number of establishments) R 933 Academic / Cultural Organization, R933 0 

R 94 Religion, R94 0 

R 95 Other service industry R95 0 

(Number of establishments By employee size) 1 to 4 people 0 

A to R all industries (1) 5-9 people 0 

 10 to 19 people 0 

(Number of establishments By employee size) 20 to 29 people 0 

A to R all industries (2) 30 - 49 people 0 

 50 to 99 people 0 

(Number of establishments By employee size) 100 to 299 people 0 

A to R all industries (3) Over 300 people 0 

 (Repeat) Over 100 people 0 

(Number of establishments By employee size) Less than 20 people 0 

A to R all industries 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

C Mining, quarrying, gravel sampling 20 or more 0.0541 

(Number of establishments By employee size) Less than 20 people 0 
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D Construction industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

E Manufacturing industry 20 or more 0.0448 

(Number of establishments By employee size) Less than 20 people 0 

F Electricity, gas, heat supply, water supply industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

G information communication industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

H Transportation industry, postal service 20 or more 0.0620 

(Number of establishments By employee size) Less than 20 people 0 

I Wholesale and retail trade 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

J Financial industry, the insurance industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

K real estate industry, goods rental business 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

L academic research 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

M accommodation industry, food service business 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

N Living related service industry, the entertainment industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

O education, learning support industry 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

P Medical, welfare 20 or more 0 

(Number of establishments By employee size) Less than 20 people 0 

Q combined service business 20 or more 0.0245 

(Number of establishments By employee size) Less than 20 people 0 

R service industry (not classified elsewhere) 20 or more 0 

(Number of establishments By employee size) 1 to 4 people 0 

E Manufacturing industry (1) 5-9 people -0.0029 

 10 to 19 people 0 

(Number of establishments By employee size) 20 to 29 people 0 

E Manufacturing industry (2) 30 - 49 people 0 

 50 to 99 people 0.0409 

(Number of establishments By employee size) 100 to 299 people 0.0070 

E Manufacturing industry (3) Over 300 people 0 

 (Repeat) Over 100 people 0.0264 

(Number of establishments By employee size) 1 to 4 people 0 

I Wholesale and retail trade (1) 5-9 people 0 

 10 to 19 people 0 

(Number of establishments By employee size) 20 to 29 people 0 

I Wholesale and retail trade (2) 30 - 49 people 0 

 50 to 99 people 0 

(Number of establishments By employee size) 100 to 299 people 0 

I Wholesale and retail trade (3) Over 300 people 0 

 (Repeat) Over 100 people 0 

(Number of establishments By employee size) 1 to 4 people 0 

R service industry (not classified elsewhere) (1) 5-9 people 0 

 10 to 19 people 0 

(Number of establishments By employee size) 20 to 29 people 0 

R service industry (not classified elsewhere) (2) 30 - 49 people 0 

 50 to 99 people 0 

(Number of establishments By employee size) 100 to 299 people 0 

R service industry (not classified elsewhere) (3) Over 300 people 0 



97 

 

 (Repeat) Over 100 people 0 

(Number of establishments by opening time) All industries Established before 1985 -0.0009 

(Number of establishments by opening time) All industries 1985 - 1994 established 0 

(Number of establishments by opening time) All industries Established in 1995 - 2004 0 

(Number of establishments by opening time) All industries Established in 2005-2009 0 

(Number of establishments by opening time) All industries Established after 2010 0 

A to R all industries Total number of workers 0 

C to E secondary industry Total number of workers 0 

C05 Mining, quarrying, gravel sampling Total number of workers 0 

D Construction industry Total number of workers 0 

D 06 Comprehensive construction work Total number of workers 0 

D07 Construction work by job (excluding facility construction work) Total number of workers 0 

D08 Equipment construction industry Total number of workers 0 

E Manufacturing industry Total number of workers 0 

E09 Foodstuff manufacturing industry Total number of workers 0.0001 

E10 Beverages · Tobacco · Feed manufacturing industry Total number of workers 0.0007 

E 11 Textile Industry Total number of workers 0 

E12 Wood and wood product manufacturing industry (excluding furniture) Total number of workers 0.0044 

E13 Furniture and accessories manufacturing industry Total number of workers 0 

E14 Manufacturer of pulp, paper, and paper processed goods Total number of workers 9.2E-04 

E15 Printing and related business Total number of workers -9.6E-05 

E16 Chemical industry Total number of workers 0 

E17 Manufacturing of petroleum products and coal products Total number of workers 0 

E 18 Plastic product manufacturing industry (excluding others) Total number of workers 0.0003 

E19 Rubber product manufacturing industry Total number of workers 0 

E20 Leather, same product, fur manufacturing industry Total number of workers 0 

E21 Ceramic · Soil product manufacturing industry Total number of workers 0.0010 

E22 Iron and Steel Industry Total number of workers 0 

E23 Nonferrous metal manufacturing industry Total number of workers 0 

E24 Metal product manufacturing industry Total number of workers 0 

E25 Manufacturer of machinery and equipment for general-purpose machinery Total number of workers 0.0002 

E26 Machine tool manufacturing industry for the production Total number of workers 4.3E-05 

E 27 Industrial machinery and equipment manufacturing industry Total number of workers 0 

E28 Electronic parts / devices / electronic circuit manufacturing industry Total number of workers 0 

E29 Electrical machinery and equipment manufacturing industry Total number of workers -0.0001 

E 30 Information and communication machinery and equipment manufacturing industry Total number of workers 0 

E31 Transportation machinery and equipment manufacturing industry Total number of workers 0.0002 

E32 Other manufacturing industry Total number of workers 0 

F to R tertiary industry Total number of workers 0 

F Electricity, gas, heat supply, water supply industry Total number of workers 0 

F33 Electric Industry Total number of workers 0 

F34 gas industry Total number of workers 0 

F35 Heat Supply Industry Total number of workers 0 

F36 water service industry Total number of workers 0 

G information communication industry Total number of workers 0 

G37 Telecommunications industry Total number of workers 0 

G38 Broadcasting industry Total number of workers 0 

G39 Information service industry Total number of workers -7.2E-06 

G40 Internet accompanying service industry Total number of workers 0 

G41 Video / voice / text information system work Total number of workers 0 

H Transportation industry, postal service Total number of workers 0 

H42 railway industry Total number of workers -3.0E-05 

H43 road passenger transportation business Total number of workers -0.0007 

H44 Road Freight Forwarding Industry Total number of workers 0 

H45 water transportation industry Total number of workers 0 
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H46 Air Transport Industry Total number of workers 0 

H47 warehouse industry Total number of workers 0.0005 

H48 Service industry incidental to transportation Total number of workers 0 

H49 Postal business (including credit facilities business) Total number of workers 0 

I Wholesale and retail trade Total number of workers 0 

I1 Wholesale trade Total number of workers 0 

I 50 Various goods Wholesale business Total number of workers 0 

I 51 Pharmaceuticals, clothing, etc. wholesale business Total number of workers 0 

I 52 Food and beverage wholesale business Total number of workers 0 

I53 Wholesale of building materials, mineral and metal materials, etc. Total number of workers 0 

I54 Machine tool wholesale business Total number of workers -4.8E-05 

I55 Other wholesale business Total number of workers 0 

I2 Retail trade Total number of workers 7.1E-05 

I 56 Various product retailers Total number of workers 0 

I561 department store, general supermarket Total number of workers 0 

I569 Various other commodities Retail trade Total number of workers 0 

I 57 cloth, clothes, personal belongings retail Total number of workers 0 

I 58 Retail trade in food and beverage Total number of workers 0.0001 

I 581 Various grocery retailers Total number of workers 0 

I585 liquor retail trade Total number of workers 0 

I59 Machinery and equipment retailing Total number of workers 0 

I60 Other retail business Total number of workers 0.0003 

I 603 Pharmaceuticals and cosmetics retail trade Total number of workers 0 

I606 Book · stationery retailing Total number of workers 0 

J Financial industry, the insurance industry Total number of workers 0 

J62 Banking business Total number of workers 0 

J 622 Bank (excluding Central Bank) Total number of workers 0 

J63 Cooperative organization finance industry Total number of workers 0 

J631 Small business etc. Finance industry Total number of workers 0 

K real estate industry, goods rental business Total number of workers 0 

K68 Real Estate Business Total number of workers 0 

K69 Real estate leasing industry · Management industry Total number of workers -0.0003 

K 70 Goods rental business Total number of workers -0.0006 

K701 various goods rental business Total number of workers -2.8E-05 

K702 Industrial machinery and equipment rental business Total number of workers 0 

K 703 Office equipment rental business Total number of workers -0.0008 

K 704 Automobile rental business Total number of workers -0.0010 

K705 Sports / entertainment equipment rental business Total number of workers 0 

K709 Other goods rental business Total number of workers 0 

K7092 Music and video record leasing business (excluding the separate document) Total number of workers 0 

K 7099 Goods not classified as other leasing business Total number of workers -0.0040 

L academic research, professional and technical service industry Total number of workers 0 

L71 academic and development research institution Total number of workers 0 

L 72 Professional service industry (not classified elsewhere) Total number of workers 0 

L 73 Advertisement Total number of workers 0 

L 74 Technical service industry (not classified elsewhere) Total number of workers 0 

M accommodation industry, food service business Total number of workers 0 

M75 accommodation industry Total number of workers 0.0001 

M751 Ryokan, Hotel Total number of workers 0 

M7591 Company / group accommodation Total number of workers 0 

M76 restaurant Total number of workers 0 

M77 Takeaway / food delivery service Total number of workers 0 

N Living related service industry, the entertainment industry Total number of workers 0 

N 78 Laundry · barber · beauty · bathroom industry Total number of workers 0 

N79 Other life-related services Total number of workers 0 
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N80 entertainment industry Total number of workers 0 

N801 Movie Theater Total number of workers 0 

N802 entertainment venue (excluding others), box office Total number of workers 0 

N804 sports facilities offering business Total number of workers 0 

N8041 Sports facilities offering (excluding others) Total number of workers 0.0006 

N8042 gymnasium Total number of workers 0.0016 

N8043 golf course Total number of workers -0.0006 

N8044 Golf Driving Range Total number of workers 0 

N8045 Bowling alley Total number of workers -0.0011 

N8046 Tennis court Total number of workers 0 

N8047 Batting / Tennis Practice Area Total number of workers 0 

N8048 fitness club Total number of workers -0.0004 

N806 game room Total number of workers 0 

N8063 Mahjong club Total number of workers 0 

N8064 Pachinko hall Total number of workers 0 

N8065 game center Total number of workers 0 

N8069 Other playgrounds Total number of workers 0 

O education, learning support industry Total number of workers 0 

O81 School Education Total number of workers 0 

O811 Kindergarten Total number of workers 0 

O 812 elementary school Total number of workers 0 

O 813 Middle School Total number of workers 0 

O 814 High school, Secondary school Total number of workers 0 

O815 special support school Total number of workers 0 

O 816 Higher education institution Total number of workers 0 

O 817 vocational school, various schools Total number of workers 0 

O 82 Other education, learning support industry Total number of workers 0 

O 8213 museum, museum Total number of workers 0.0001 

O8214 Zoo, Botanical Gardens, Aquarium Total number of workers 0.0028 

O823 Learning cram school Total number of workers 0 

O8241 Music teaching work Total number of workers 0 

O 8245 Foreign language conversation teaching work Total number of workers 0 

O 8246 Sports · Health teaching work Total number of workers 0 

P Medical, welfare Total number of workers 0 

P83 Medical service Total number of workers 0 

P831 Hospital Total number of workers 3.0E-05 

P832 general clinic Total number of workers 0 

P833 Dental clinic Total number of workers 0 

P835 Therapeutic business Total number of workers 0 

P84 Health sanitation Total number of workers 0 

P85 Social insurance · social welfare · nursing care business Total number of workers 0 

P853 Child Welfare Project Total number of workers 0 

P8531 nursery school Total number of workers 0 

P8539 Other child welfare business Total number of workers 0 

P854 Welfare and long-term care business for the elderly Total number of workers -6.2E-05 

P855 Welfare service for people with disabilities Total number of workers 0 

P859 Other social insurance · social welfare · nursing care business Total number of workers 0 

Q combined service business Total number of workers 0 

Q86 Post office Total number of workers 0 

Q 87 Cooperative association (not classified elsewhere) Total number of workers 0.0002 

R service industry (not classified elsewhere) Total number of workers 0 

R88 Waste disposal industry Total number of workers 0.0002 

R89 Automobile maintenance service Total number of workers 0 

R90 Machine etc. Repair work (excluding others) Total number of workers 0 

R91 Employment placement / worker dispatch business Total number of workers 0 
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R 911 Employment placement business Total number of workers -0.0001 

R 92 Other business services Total number of workers 0 

R93 Political, Economic and Cultural Organizations Total number of workers 0 

R933 Academic / Cultural Organization Total number of workers 0 

R 94 religion Total number of workers 0.0002 

R 95 Other service industry Total number of workers 0 

(By employee sizes) A to R whole industry 1 to 4 people Total number of workers 0 

(By employee sizes) A to R all industries 5 to 9 people Total number of workers 0 

(By employee sizes) A to R all industries 10 to 19 people Total number of workers 0 

(By employee sizes) A to R all industries 20 to 29 people Total number of workers 0 

(By employee sizes) A to R all industries 30 to 49 people Total number of workers 0 

(By employee sizes) A to R all industries 50 to 99 people Total number of workers 0 

(By employee sizes) A to R all industries 100 to 299 people Total number of workers 0 

(By employee sizes) A to R All industries over 300 people Total number of workers 0 

(By employee size) A to R all industries Total number of workers 0 

(By employee sizes) A to R all less than 20 people Total number of workers 0 

(By employee size) A to R All industries 20 or more Total number of workers 0 

(By employee sizes) C Mining, quarrying, gravel sampling, -19 Total number of workers 0 

(By employee sizes) C Mining, quarrying, gravel sampling 20+ Total number of workers 0 

(By employee sizes) D Construction industry less than 20 people Total number of workers 0 

(By employee size) D Construction industry 20 or more Total number of workers 0 

(By employee size) E Manufacturer less than 20 people Total number of workers 0 

(By employee size) E Manufacturing industry 20 or more Total number of workers 0 

(By employee size) F Electricity, gas, heat supply, water supply industry, -19 Total number of workers 0 

(By employee size) F Electricity, gas, heat supply, water supply industry, 20+ Total number of workers 0 

(By employee size) G Information and telecommunications industry less than 20 people Total number of workers 0 

(By employee size) G Information and telecommunications industry 20 or more Total number of workers 0 

(By employee sizes) H Transportation industry, postal work less than 20 people Total number of workers 0 

(By employee sizes) H Transportation industry, postal business 20 or more Total number of workers 0 

(By employee size) I Wholesale and retailing less than 20 people Total number of workers 0 

(By employee size) I Wholesale and retail business 20 or more Total number of workers 0 

(By employee sizes) J Finance industry, insurance industry Less than 20 people Total number of workers 0 

(By employee sizes) J Finance industry, insurance industry 20 or more Total number of workers 0 

(By employee size) K Real estate industry, goods rental business, -19 Total number of workers 0 

(By employee size) K Real estate industry, goods rental business, 20+ Total number of workers 0 

(By employee size) L academic research, specialized / technical service industry, -19 Total number of workers 0 

(By employee size) L academic research, specialized / technical service industry, 20+ Total number of workers 0 

(By employee size) M accommodation industry, food service business, -19 Total number of workers 0 

(By employee size) M accommodation industry, food service business, 20+ Total number of workers 0 

(By employee size) N Living related service industry, entertainment industry, -19 Total number of workers 0 

(By employee size) N Living related service industry, entertainment industry, 20+ Total number of workers 0 

(By employee size) O Education, learning support industry, -19 Total number of workers 0 

(By employee size) O Education, learning support industry, 20+ Total number of workers 0 

(By employee size) P Medical, welfare Less than 20 Total number of workers 0 

(By employee size) P Medical, welfare 20 or more Total number of workers 0 

(By employee size) Q combined service business, -19 Total number of workers 0 

(By employee size) Q combined service business, 20+ Total number of workers 0 

(By employee size) E Manufacturing industry 1 to 4 people Total number of workers 0 

(By employee size) E Manufacturing 5-9 people Total number of workers 0 

(By employee size) E Manufacturing industry 10 to 19 people Total number of workers 0 

(By employee size) E Manufacturing industry 20 to 29 people Total number of workers 0 

(By employee size) E Manufacturing industry 30 to 49 people Total number of workers 5.6E-05 

(By employee size) E Manufacturing industry 50 to 99 people Total number of workers 0.0002 

(By employee size) E Manufacturing industry 100 to 299 people Total number of workers 0 

(By employee size) E Manufacturing industry 300 or more Total number of workers 0 
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(By opening time) A to R All industries · Established before 1984 Total number of workers 0 

(By opening time) A to R All industries · Established in 1985 and 1994 Total number of workers 0 

(By opening time) A to R All industries · Established in 1995 - 2004 Total number of workers 0 

(By opening time) A to R all industries · Established 2005 - 2009 years Total number of workers 0 

(By opening time) A to R All industries · Opened after 2010 Total number of workers 0 

(Number of companies by capital class) Less than 3 million yen 0 

A to R all industries (1) Below 300 ~ 5 million yen 0 

 Less than 500 ~ 10 million yen 0 

(Number of companies by capital class) Less than 1,000 ~ 30 million yen 0 

A to R all industries (2) Less than 3,000 ~ 50 million yen 0 

 Less than 5,000 to 100 million yen 0 

(Number of companies by capital class) Less than 1 billion yen 0 

A to R all industries (3) Less than 10 to 5 billion yen 0 

 5 billion yen or more 0 

(Number of companies by capital class) Less than 3 million yen 0 

E Manufacturing industry (1) Below 300 ~ 5 million yen 0 

 Less than 500 ~ 10 million yen 0 

(Number of companies by capital class) Less than 1,000 ~ 30 million yen -0.0107 

E Manufacturing industry (2) Less than 3,000 ~ 50 million yen -0.0281 

 Less than 5,000 to 100 million yen 0 

(Number of companies by capital class) Less than 1 billion yen 0 

E Manufacturing industry (3) Less than 10 to 5 billion yen 0 

 5 billion yen or more -0.0698 

(Number of companies by capital class) Less than 3 million yen 0 

I Wholesale and retail trade (1) Below 300 ~ 5 million yen 0 

 Less than 500 ~ 10 million yen 0.0043 

(Number of companies by capital class) Less than 1,000 ~ 30 million yen 0 

I Wholesale and retail trade (2) Less than 3,000 ~ 50 million yen 0 

 Less than 5,000 to 100 million yen -0.0172 

(Number of companies by capital class) Less than 1 billion yen 0 

I Wholesale and retail trade (3) Less than 10 to 5 billion yen 0 

 5 billion yen or more 0 

(Number of companies by capital class) Less than 3 million yen 0 

R service industry (not classified elsewhere) (1) Below 300 ~ 5 million yen 0 

 Less than 500 ~ 10 million yen 0 

(Number of companies by capital class) Less than 1,000 ~ 30 million yen 0 

R service industry (not classified elsewhere) (2) Less than 3,000 ~ 50 million yen -0.0024 

 Less than 5,000 to 100 million yen 0 

(Number of companies by capital class) Less than 1 billion yen 0 

R service industry (not classified elsewhere) (3) Less than 10 to 5 billion yen 0 

 5 billion yen or more 0 

Residential.area.km2  1.0374 

population  -4.4E-05 

num.of.workers  3.2E-07 

acc.material  0 

acc.assembly  0 

acc.HHDgoods  -5.8E-09 

acc.manufact  -1.4E-14 

acc.market  0 

acc.CBD  0 

acc.nightPOP  0 

acc.goodsSales  0 

distance.to.nearest.IC  -1.2E-05 

length.of.roads.over.13m.width  1.3E-05 

length.of.roads  2.2E-07 
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num.of.roads.over.13m.width  0.05756 

num.of.roads  0.00251 

land.price..omit.negative.value.mesh.  0 

residencial.area.rate  0.1792 

commercial.area.rate  1.2520 

quisi.industrial.area.rate  1.6457 

Industrial.area.rate  2.5599 

Exclusive.industrial.area.rate  3.7407 

Urbanization.adjustment.area.rate  0 

others.rate  -0.4472 

out.of.city.plan.rate  -0.8758 

Indiscriminate.place.rate  -0.0122 

 


