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Abstract 
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Abstract  

With the rapid development of human society, the demand for energy is growing rapidly. 

Energy is the foundation of economic development and a material guarantee for improving the 

quality of human life. Since the industrial revolution, the transitional consumption of traditional 

fossil energy has brought about energy shortages and environmental pollution. Since the first oil 

crisis in 1973, people have paid more and more attention to the development of renewable resources. 

For the sustainable development of human beings, it is of importance to adjust the energy structure 

and discovery of renewable energy. In recent years, renewable energy sources, such as wind energy 

and solar energy, have been put into much attention, and related applications have also been 

promoted. Although wave energy is another form of renewable and clean energy, it has not been 

widely promoted like wind and solar energy. Wave energy is potential energy with the advantages 

of no pollution and wide distribution. As an excellent renewable energy, ocean energy is 

inexhaustible. Marine energy accounts for about 70% of the global total energy. If fully utilized, it 

will greatly alleviate current energy shortages. 

Due to its advantages, the high energy flux density, rarely limited by time, available to 

implement wave power for power generation and supply with smaller volume, wave energy has 

attracted more and more interest from scholars and researchers around the world. Waves energy 

extraction is achieved by using the device called Wave Energy Converters (WECs), which convert 

wave power into electricity. Over the last few decades, large number of WECs have been developed, 

tested and presented in publications. According to the working principle, the technologies could be 

classified into three main types: the oscillating water column, the over-topping and the oscillating 

bodies. One of the most typical oscillating bodies is point absorbers, which can harness incoming 

wave-energy from all directions with the normal function in most of the time and keep relatively 

small size and simple functional principles with relative lower cost.  

WECs technologies are still in its infant stage, which naturally confronts this renewable energy 

converters with lots of challenges, problems and barriers during its maturation. To maximize the 

waves energy, the oscillation characteristics of the floating device, such as point absorbers, should 

be optimized to the most frequent waves at the local site. However, the bandwidth of the frequency 

response is relatively narrow, and the natural frequency is much higher than the typical ocean wave 

frequencies. Therefore, several methods of phase-control have been proposed and carried out. 

Meanwhile, it is well known that the spar-type platform shows extreme heave motion at resonance. 

Moreover, parametric resonance of the pitch motion has been confirmed. When the frequency of 

the heave motion is approximately twice the pitch natural frequency, the very large amplitude 



Abstract 

II 

oscillatory motion will occur.  

By changing the viewpoint, a new concept was proposed to utilize the Mathieu-type instability 

for WECs. A subject was carried out and limited to pure heave motion of a spar-buoy type point 

absorber and utilized the Mathieu-type instability by the dynamic buoyancy control system. 

However, it was also revealed that the efficiency was far from practical applications. As the 

improvement of the study, the subject was focused on a coupled motion of heave and pitch.  

The research work of this thesis mainly consists of four parts, one part includes the 

experimental work and other three parts are the analysis work based on the experimental 

results. And the contents are organized as follows:  

In the first part, the experimental devices were designed and made. A ballast controlling 

system into the buoy was installed to change the natural frequency of the pitch motion. The free 

decay of buoy damping motion was carried out to make the buoy model satisfy the Mathieu 

instability condition (the natural frequency of heave is double the natural frequency of pitch motion). 

After that, the experiment was carried out with regular wave. Based on the experiment results, it is 

indicated that the large pitch motions occur suddenly and the heave amplitude shrinks just after the 

occurrence of larger pitch motion. 

In the second part, it aims to investigate existence of the energy transform of the buoy 

motions. The signals of the heave acceleration were integrated with high pass filtering in the 

frequency domain and the vertical velocities and displacements of the buoy were calculated. Base 

on the integrated data and the original measured data, the kinetic and potential energy of heave and 

pitch motions were calculated. The energy transform of the buoy motions is discussed in time 

domain. The total energy takes the maximum value around 16s and the first half of the peak is 

dominated by the heave energy and the latter half is replaced by the pitch energy. Therefore, this 

can be concluded that the energy was transferred from the heave mode to the pitch mode and 

shrunken by the pitch damping. On the other hand, the power to be taken off is closely related to 

the total energy. 

In the third part, in order to find some conditions in which the large pitch motion occurs 

suddenly by considering the theoretical condition of the Mathieu-type instability. The righting lever 

of the buoy model is calculated with assuming the free board is infinite. The relationship between 

the pitch angle and the righting lever under the Mathieu-type instability was theoretically discussed 

in the time domain. It was indicated that the experimental relationship between the pitch angle and 

the righting lever during the large pitch motions is similar to the theoretical characteristic of the 

Mathieu-type instability. The large pitch motion disappears just after the theoretical characteristic 

of the Mathieu-type instability is lost. 

In the last Part, the occurrence of the large pitch motion is investigated by the stability chart 
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of the Mathieu equation. The stability chart of Mathieu equation was plotted for the experiment 

with the method of the harmonic balance. It could be found that all the experimental results were in 

the unstable region before the large pitch motion disappeared, which induced the Mathieu-type 

instability of pitch motion. Before the large pitch motion decayed, the stability results were in the 

stable region of the stability chart of Mathieu equation. It was shown that the large pitch motions 

disappeared (decayed) at the timing when the condition of the Mathieu-type instability is lost. It has 

been shown stability results returned to the unstable region, and large pitch motion occurred again 

after large pitch motion disappeared, which is induced by the condition of Mathieu instability. 

 

 

 

Keywords: Point absorbers; Coupled motions; Mathieu instability; Energy transfer; Righting 

lever; Stability analysis; Power generation efficiency   
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Chapter1 Introduction 

1.1 Background 

The energy services are necessary for all societies to satisfy basic human needs and to serve 

process of production. For over a century, most of the used electricity that has been generated in 

large power plants is from fossil fuels, nuclear reactor and hydroelectric turbine. Taking account of 

the climate change, environmental disruption, overconsumption of fossil fuel and risks of nuclear 

power, terms such as renewable, sustainable and carbon-free become a hot issue for considering 

the method of electricity generating. [1-3] The fossil fuels on earth is not inexhaustible. Most experts 

and politicians in every country across the world have advocated and made the concerned policies 

for the sustainable development, especially with regards to lose environmental impacts and low 

greenhouse gas (GHG) emissions. However, based on IPCC Fourth Assessment Report (AR4), it is 

shown that 85% of the total primary energy is provided by fossil fuels and 56.6% of all 

anthropogenic GHG emissions came from the combustion of fossil fuels accounted in 2004. [4,5] 

In the face the pressure of the shortage of non-renewable energy, countries around the world 

have begun to attach importance to the development of renewable energy and the rational use of 

non-renewable energy. On the one hand, people pay more attention to energy conservation and 

sustainable energy development; On the other hand, all countries attach great importance to the 

development and utilization of new energy sources, such as wind energy, ocean energy, ammonia 

energy, geothermal energy, and so on. As an excellent renewable energy, ocean energy is 

inexhaustible and has received widespread attention. Marine energy accounts for about 70% of the 

global total energy, and it will greatly alleviate the current energy shortage problem if being fully 

exploited. [6] 

The renewable marine (ocean) energy comes includes six distinct sources: waves, tidal range, 

tidal currents, ocean currents, ocean thermal energy conversion and salinity gradients. [7] According 

to statistics, the theoretical renewable power of global marine energy is about 7.66 x 1010 kW, but 

it cannot be fully developed and utilized by humans. In the actual marine energy that is available 

for humans, wave energy is the largest, about 3×108kW. The energy density of wind is 0.4~0.6 kw/m 

and the energy density of solar is 0.1~0.2 kw/m, compared with which, the energy density of wave 

energy is largest, up to 2~3kw/m. [8,9] Hence, wave energy is an intermittent energy source and 

widely considered as one of the most alternative renewable and sustainable energy. In the ocean 

engineering, it is one of the most attractive research to convert wave energy to the electricity and 

many types of the energy-extracting technologies have been developed and some full-scale devices 

were built. [8,10,11]  
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Now, however, harnessing of wave energy is far from being put into commercial application.  

Waves energy extraction is achieved by using the device called Wave Energy Converters (WEC). 

One of the most several challenges that WECs have to obstacle is that most of wave energy just can 

be captured and utilized offshore, which increases the costs of power transferred to the grid and 

maintenance. In addition, the tremendous potential of wave energy has increased the motivation for 

continued research. As offshore activities are almost inevitable, researchers take focus on studying 

and producing much more efficient wave energy extraction methods. [12] Optimization of WECs can 

realize much more economic waves energy conversion in the future. 

1.2 Wave energy technologies 

WECs can convert wave power into electricity, the technologies of which vary wildly in the 

mechanical and electrical principal of operation. Over the last few decades, large number of WECs 

have been developed, tested and presented in publications. [13] According to the working principle, 

in Figure 1.1, the technologies could be classified into three main type as shown: 

a. the oscillating water columns (OWC) 

OWC is a partially submerged enclosed structure, the upper part of which is above the water 

and is mainly composed of a closed air chamber. The incoming waves are emptied to the bottom 

part of the structure. With these waves coming through the structure, the water column that rises 

and falls in response to the pressure from the ocean waves, which drives air through a wind turbine 

and the turbine drives a generator for electricity production to converter the energy [14,15], see Figure 

1.1(a).  

b. the over-topping 

The principle of the over-topping wave energy generating device is to convert wave kinetic 

energy into water potential energy and then to electrical energy. Overtopping device is partially 

submerged. The wave crosses the top of the ramp into the device's reservoir and kinetic energy of 

the waves is converted into potential energy. The water backs into the ocean from the reservoir 

through water turbines, thus utilizing the potential difference between the ocean and the reservoir 

to generate electricity[15], see Figure 1.1(b). 

c. The oscillating bodies 

The WEC’s structure of oscillating bodies are floating or (more rarely) fully submerged. The 

devices produce the motion response to the ocean waves, and kinetic energy is harnessed and 

converted to electricity. [8, 17,18] One of the most typical is point absorbers, se Figure 1.1(c).  



Chapter1 Introduction 

3 

   

(a) The oscillating water column (b) The over-topping (c) The oscillating bodies 

Figure 1.1 Wave energy converters 

Point absorbers are usually smaller than other WECs. The classical point absorbers are 

equipped with floating parts which can capture the kinetic energy from wave-induced motions. 

Point absorbers are designed to be attached to the seabed via pillar or cable. A Power Take Off 

device (PTO) is placed somewhere between the seabed and the floater and it can convert the 

mechanics into electricity [19,20]. Compared with other types of WECs, point absorbers keep special 

advantages [12,21]:  

1) Point absorbers are capable of harness incoming wave-energy from all directions and keep the 

normal function in most of the time unless extreme wave conditions occur;   

2) The designment of point absorbers is not so difficult, and they keep relatively small size and 

simple functional principles. Hence, they could be more cost-effective, on account of 

manufacturing, installation and maintenance. 

Based on above advantages, this research on WECs focusses on point absorbers.  

1.3 Optimization of point absorbers 

To maximize the waves energy, the oscillation characteristics of the floating device, such as 

point absorbers, should be optimized to the most frequent waves at the local site. However, the 

bandwidth of the frequency response is relatively narrow, and the natural frequency is much higher 

than the typical ocean wave frequencies. Therefore, several methods of phase-control have been 

proposed and carried out. [22-29] One of the prominent measures to improve the efficiency is phase 

control by latching, and which optimization method already been analyzed and carried out in the 

practicality. [30-33]  

On the other hand, it is well known that the spar-type platform shows extreme heave motions 

at resonance. Moreover, parametric resonance of the pitch motion has been confirmed. When the 

frequency of the heave motion is approximately twice the pitch natural frequency, the very large 

amplitude oscillatory motion will occur. In this case, it is essential to analyze the motions from the 

viewpoint of Mathieu-type instability and the preventive measures should be investigated. [34~39] 

By changing the viewpoint, a new concept was proposed by Iseki[40,41] to utilize the Mathieu-
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type instability for WEC. As a first step, the subject was limited to pure heave motion of a spar-

buoy type point absorber. Theoretically, it is well known that the auto-parametrically excited 

oscillation based on the Mathieu equation can be induced by the fluctuating restoring force. A 

possible measure to control the restoring force is alteration of the water plane area. For that purpose, 

an investigated spar-buoy model was surrounded by outer cylinders which airtightness was 

controlled by axially sliding valves. Based on the numerical simulations, the possibility of 

utilization of auto-parametrically excited oscillation was shown but the subsequent model 

experiments revealed that the axial sliding valves were insufficient to induce an auto-parametrically 

excited oscillation.  

Iseki[42] developed another control system (axial sliding valves) that consists of movable 

floating columns and a step motor, which can realize the dynamic buoyancy control. Base on the 

result of model tests, it was confirmed that the dynamic buoyancy control system could utilize the 

Mathieu-type instability. However, it was also revealed that the efficiency was far from practical 

applications because the system required some amount of energy to drive itself. Therefore, it was 

concluded that the controlling energy haves to be supplied from the oscillating response itself like 

the parametric rolling in order to induce a real auto-parametrically excited oscillation.  

As the extension and continuation of the study, Xu and Iseki [43] proposed a subject that was 

focused on a coupled motion of heave and pitch. A new spar buoy model with innovative ballast 

control system was made. The system is installed in the buoy model and the vertical movement of 

the ballast produces a certain change of the pitch natural period. In this research, the system is not 

controlled dynamically but used to realize several initial conditions efficiently. Based on the 

conducted model experiments, it was shown that the large oscillatory motion based on the Mathieu-

type instability could be realized.   

Iseki and Xu [44] discussed the experimental relationship between the pitch angle and the 

righting lever during the large pitch motions, which is similar with the theoretical characteristic of 

the Mathieu-type instability. It also was shown that the large pitch motion disappeared just after the 

theoretical characteristic of the Mathieu-type instability is lost and the Mathieu-type instability can 

be induced by controlling the phase relation between the pitch and heave motions. 

During the experiment, it can be observed that the large pitch motion occurred suddenly and 

decayed at a short time, after which large pitch motion occurred again. In order to explain this 

phenomenon, Xu and Iseki[45] plotted the stability chart of Mathieu equation for experimental results 

with the method of the harmonic balance. It has been indicated that the large pitch motions 

disappeared (decayed) at the timing when the condition of the Mathieu-type instability is lost. It has 

been shown stability results returned to the unstable region, and large pitch motion occurred again 

after large pitch motion disappeared, which is induced by the condition of Mathieu instability. 
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1.4 The objectives of research 

Wave energy is an intermittent energy source, which is widely considered as one of the most 

alternative renewable and sustainable energy. WECs technologies are still in its infant stage, which 

naturally confronts this renewable energy converters with lots of challenges, problems and barriers 

during its maturation. To maximize the waves energy and realize the large oscillation of the buoy, 

the purpose of this research is to improve the efficiency by using parametric self-excited oscillation 

of WECs. The study focuses on the coupled motion of a spar-buoy type point absorber with coupled 

motion (heave and pitch), and the buoy is equipped with a ballast control system to generate 

parametric self-excited oscillation based on Matthew-type instability. A spar-buoy type was made 

of and the ballast control system was installed into the model. The ballast control system can control 

the natural period of pitch motion by the vertical moving of the ballast. With using this buoy model, 

the measurement experiment was carried out in a regular wave. As a result, a phenomenon that the 

large pitch motions occur suddenly. The kinetic energy of the large pitch motion seems to be 

supplied from the heave motion. Based the righting level in time domain and stability chart of 

Mathieu equation, the occurring of large coupled motions can be analyzed and proved with the 

theory of Mathieu instability.  

 The main intention of the research is how to continue and keep large kinetic energy occur 

continuously. According to the experimental results, the large pitch motions disappearing at the 

timing is regarded as the buoy losing the condition of the Mathieu-type instability. The concrete 

restoring coefficient δ depends on the natural frequency of pitch motion 𝜔𝑛𝑝  and the natural 

frequency of heave motion 𝜔𝑛ℎ . Before Mathieu instability condition disappears, it is possible 

increase the natural frequency of pitch motion or decrease the natural frequency of the heave motion 

to be capable of keeping the value of (δ, ε) always in the unstable region based on stability chart of 

Mathieu equation. Then the large motion of buoy will occur continuously. The continuous large 

kinetic energy can improve the kinetic energy up to 3-5 times with frequency control, compared 

with the no control of natural frequency. This is very useful to be applied to the designment of 

WECs. The large kinetic energy can be transformed to the electricity. Power generation efficiency 

of renewable energy can be improved, which contributes to the development of human society. 
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Chapter2 Theory 

2.1 Introduction 

In this section, in order to analyze the characteristic and buoy motions under Mathieu 

instability, for simplicity, the heave and pitch motion are expressed with considering the harmonic 

wave exciting. The natural frequency of heave and pitch motion are calculated in theory, which can 

prove the experiment design reference. In order to explain the occurring of large motion of the buoy 

in theory, the Mathieu equation of the pitch motion was expressed and the stability of the Mathieu 

equation was plotted. 

2.2 Buoy motion regular wave 

In this section, buoy motions are expressed by equations. And the parametric pitch resonance 

oscillation is also discussed from the viewpoint of the Mathieu-type instability. As shown in Figure 

2.1, the wave direction is defined to be X-axis positive direction. The vertical displacement of buoy 

is defined by 𝑧(𝑡). And the positive Z-axis is vertical down. The buoy fluctuating with wave level 

(effective wave slope) is assumed, and the incident wave height is  

                    ℎ(𝑡) = ℎ0 sin(𝜔𝑡 − 𝑘𝑥)                            (2.1) 

where 

ℎ0 : amplitude of the incident wave 

𝜔  : wave angular frequency 

𝑘   : wave number and equals to 𝜔2 𝑔⁄  

 

Figure 2.1 Coordinate diagram of the buoy and wave direction. 

For simplicity, wave exciting force is treated as a single harmonic. Base on Newton's second 

law, the linear differential equation of heave motion can be expressed as follows: 
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𝑚𝑧̈(𝑡) + 𝑅𝑧̇(𝑡) + 𝑆𝑧(𝑡) = 𝐹(𝑡)                        (2.2) 

Wave exciting force is 

𝐹(𝑡) = 𝐹𝑎 sin(𝜔𝑡 + 𝜑𝐹)                         (2.3) 

where 𝜑𝐹 is phase constant f and 𝐹𝑎 is amplitude for the exciting force 

Divide Equation (2.2) by m, the equation becomes 

𝑧̈(𝑡) + 2𝛿𝑧̇(𝑡) + 𝜔𝑛𝑧
2 𝑧(𝑡) =

𝐹(𝑡)

𝑚
                     (2.4) 

When considering non-exciting force 𝐹(𝑡) = 0 , the Equation (2.4) becomes  

𝑧̈(𝑡) + 2𝛿𝑧̇(𝑡) + 𝜔𝑛𝑧
2 𝑧(𝑡) = 0                       (2.5) 

where  

the damping coefficient 𝛿 = 𝑅/2𝑚     

the undamped nature angular frequency  𝜔nz = √𝑆/𝑚 

the damped angular frequency  𝜔𝑛𝑑 = √𝜔𝑛𝑧
2 − 𝛿2 

The particular solution of Equation (2.4) is expressed by  

z∗(𝑡) = 𝑍𝑎 sin(𝜔𝑡 + 𝜑𝑧)                      (2.6) 

where 𝜑𝑧 is phase constant for the heave displacement is and 𝑍𝑎 is the excursion amplitude. 

The heave velocity 𝑢(𝑡) and acceleration a(t) is obtained as follows: 

𝑢(𝑡) = 𝑧̇∗(t) = 𝜔𝑍𝑎 cos(𝜔𝑡 + 𝜑𝑧)                               (2.7) 

𝑎(𝑡) = 𝑧̈∗(t) = −𝑍𝑎𝜔2 sin(𝜔𝑡 + 𝜑𝑧)                             (2.8) 

Insert the Equation (2.7) and (2.8) into Equation (2.4), Equation (2.4) becomes 

𝑍𝑎√(𝜔2 − 𝜔𝑛ℎ
2 )2 + (4𝛿𝜔)2 cos(𝜔𝑡 + 𝜑𝑧 + 𝜑) = 𝐹a sin(𝜔𝑡 + 𝜑𝐹)         (2.9) 

Where phase constant for the heave velocity is 

𝜑 = 𝜑𝐹 − 𝜑𝑧 = tan−1 (
2𝛿𝜔

𝜔2−𝜔𝑛ℎ
2 )                    (2.10)  

 𝑍𝑎 =
𝐹a

𝜔√(𝑆 𝜔⁄ −𝑚𝜔)2+𝑅2
                          (2.11) 

Set Λℎ =
𝜔

𝜔𝑛ℎ
  is frequency ratio of heave motion, which is called as tuning factor of heave motion.  

And the phase difference between exciting force and heave velocity is  

𝜑ℎ = 𝜑𝐹 − 𝜑𝑢 = tan−1 (
Λℎ

2−1

2𝜈Λℎ
)                  (2.12) 

where 𝜈 =
𝛿

𝜔𝑛ℎ
 is damping factor. 
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The Equation (2.11) is rewritten by 

𝑍𝑎 =
𝐹𝑎

𝑆

1

√(1−Λℎ)2+(2𝜈Λℎ)2
                         (2.13) 

Based on Equation (2.13), the diagram of phase-frequency response of heave motion is plotted, as 

shown in Figure 2.2.  

The static excursion under the dynamic load with the amplitude F0 is defined by 𝑍𝑠𝑡 =
𝐹𝑎

𝑆
. 

𝜉 is the nondimensionalized excursion ratio and called by dynamical magnification factor of heave 

motion, which means the ratio of 𝑍𝑎 to 𝑍𝑠𝑡. Equation (2.13) becomes 

𝜉 =
𝑍𝑎

𝑍𝑠𝑡
=

1

√(1−Λℎ
2)

2
+(2𝜈Λℎ)2

                    (2.14) 

Based on Equation (2.14), amplitude-frequency response of heave motion is plotted in Figure 2.3. 

For the different ratio 𝜈, the corresponding oscillation curves are different. By means of varying 

the value of 𝛬ℎ, the oscillation response of the system can be controlled to some extent. 

 

Figure 2.2 Phase-frequency response of heave motion. 

 

 

Figure 2.3 Amplitude-frequency response of heave motion. 
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For simplicity, the pitch motion is considered as a single harmonic oscillation without wave 

exciting moment and express the pitch angle by  𝜑 . According to the principle of dynamic 

equilibrium, the total moment ∑𝑀 = 0, the equation of pitch motion can be expressed as follows: 

𝑀(𝜑̈) + 𝑀(𝜑̇) + 𝑀(𝜑) + 𝑀𝑤ave = 0 

(𝐼 + 𝐼′)𝜑̈(𝑡) + 𝑁𝜑𝜑̇ + ∆𝐺𝑀̅̅̅̅̅𝜑(𝑡) − ∆𝐺𝑀̅̅̅̅̅𝑘ℎ0 cos𝜔𝑡 = 0        (2.15) 

 

Where  

𝐼 —— the inertia moment of the buoy 

𝐼′ —— the added inertia moment  

𝑁𝜑 —— the damping coefficient  

𝐺𝑀̅̅̅̅̅ —— the metacentric height 

∆ —— the displacement 

Divided both sides of Equation (2.15) by inertia moment 𝐼 + 𝐼′, the equation can be rewritten as 

follows: 

𝜑̈(𝑡) + 2𝜈𝜑𝜔𝑛𝜑̇(𝑡) + 𝜔𝑛
2𝜑(𝑡) − 𝜔𝑛𝑝

2 𝑘ℎ0 cos𝜔𝑡 =0             (2.16) 

where  

𝜔𝑛 —— the natural frequency of pitch motion   𝜔𝑛𝑝 = √
∆𝐺𝑀̅̅ ̅̅ ̅

𝐼+𝐼′
 

𝜈𝜑 —— the damping ratio   𝜈𝜑 =
𝑁𝜑

2√∆𝐺𝑀̅̅ ̅̅ ̅(𝐼+𝐼′)
 

The particular solution of Equation (2.16) is assumed as follows: 

 𝜑∗(𝑡) = 𝜑𝑎 𝑠𝑖𝑛(𝜔𝑡 − 𝜀𝜑)                      (2.17)  

where 𝜀𝜑 is constant phase for the pitch motion.                       

The differential and second differential of Equation (2.17) are  

𝜑̇ = 𝜔𝜑𝑎 𝑐𝑜𝑠(𝜔𝑡 − 𝜀𝜑)                       (2.18) 

𝜑̈ = −𝜔2𝜑𝑎 𝑠𝑖𝑛(𝜔𝑡 − 𝜀𝜑)                     (2.19) 

Substituting the Equation (2.17) (2.18) and (2.19) into the Equation (2.16), Equation (2.16) becomes 

−𝜔2𝜑𝑎 𝑠𝑖𝑛(𝜔𝑡 − 𝜀𝜑) + 2𝜈𝜑𝜔𝑛𝑝𝜔𝜑𝑎 𝑐𝑜𝑠(𝜔𝑡 − 𝜀𝜑) + 𝜔𝑛𝑝
2 𝜑𝑎 𝑠𝑖𝑛(𝜔𝑡 − 𝜀𝜑) − 𝜔𝑛𝑝

2 𝑘ℎ0 cos𝜔𝑡 = 0 

−𝜔2𝜑𝑎 𝑠𝑖𝑛 𝜔𝑡 cos 𝜀𝜑 + 𝜔2𝜑𝑎 cos𝜔𝑡 sin 𝜀𝜑 + 2𝜈𝜑𝜔𝑛𝜔𝜑𝑎 cos𝜔𝑡 cos 𝜀𝜑

+ 2𝜈𝜑𝜔𝑛𝑝𝜔𝜑𝑎 sin𝜔𝑡 sin 𝜀𝜑 + 𝜔𝑛𝑝
2 𝜑𝑎 𝑠𝑖𝑛𝜔𝑡 cos 𝜀𝜑 − 𝜔𝑛𝑝

2 𝜑𝑎 cos𝜔𝑡 sin 𝜀𝜑

− 𝜔𝑛𝑝
2 𝑘ℎ0 cos𝜔𝑡 = 0                                                                                             (2.20) 

Dividing in the sin and cosine terms, the following equation is obtained 

[−𝜔2𝜑𝑎 cos 𝜀𝜑 + 2𝜈𝜑𝜔𝑛𝑝𝜔𝜑𝑎 sin 𝜀𝜑 + 𝜔𝑛𝑝
2 𝜑𝑎 cos 𝜀𝜑] 𝑠𝑖𝑛(𝜔𝑡) + 

[𝜔2𝜑𝑎 sin 𝜀𝜑 + 2𝜈𝜑𝜔𝑛𝑝𝜔𝜑𝑎 cos 𝜀𝜑 − 𝜔𝑛𝑝
2 𝜑𝑎 sin 𝜀𝜑 − 𝜔𝑛𝑝

2 𝑘ℎ0] 𝑐𝑜𝑠(𝜔𝑡) = 0     (2.21)      
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The coefficient of the sine and cosine term should be zero, the equation becomes 

−𝜔2𝜑𝑎 cos 𝜀𝜑 + 2𝜈𝜑𝜔𝑛𝜔𝜑𝑎 sin 𝜀𝜑 + 𝜔𝑛
2𝜑𝑎 cos 𝜀𝜑 = 0           (2.22) 

𝜔2𝜑𝑎 sin 𝜀𝜑 + 2𝜈𝜑𝜔𝑛𝜔𝜑𝑎 cos 𝜀𝜑 − 𝜔𝑛
2𝜑𝑎 sin 𝜀𝜑 + 𝜔𝑛

2𝑘ℎ0 = 0           (2.23) 

Solve the Equation (2.23), 𝜀𝜑 can be obtained as follows: 

tan 𝜀𝜑 =
𝜔2−𝜔𝑛𝑝

2

2𝜈𝜑𝜔𝑛𝑝𝜔
                                  (2.24) 

sin 𝜀𝜑 =
𝜔2−𝜔𝑛𝑝

2

√(𝜔2−𝜔𝑛𝑝
2 )

2
+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2

                        (2.25) 

cos 𝜀𝜑 =
2𝜈𝜑𝜔𝑛𝑝𝜔

√(𝜔2−𝜔𝑛𝑝
2 )

2
+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2

                        (2.26) 

From Equation (2.24), the phase difference between exciting force and pitch angle velocity is  

𝜑𝑝 = 𝜀𝜑 and is solved as follows: 

𝜑𝑝 = tan−1 (
𝜔2−𝜔𝑛𝑝

2

2𝜈𝜑𝜔𝑛𝑝𝜔
) = tan−1 (

Λ𝑝
2−1

2𝜈𝜑Λ𝑝
)               (2.27) 

where Λ𝑝 =
𝜔

𝜔𝑛𝑝
 is frequency ratio between frequency of exciting force and natural frequency of 

pitch motion, which is also called as tuning factor for pitch motion. 

The phase difference of excited force and pitch angular velocity 𝜑𝑝
′ is shown as follows: 

𝜑𝑝
′ = 𝜑𝑝 +

𝜋

2
= tan−1 (

1−Λ𝑝
2

2𝜈𝜑
) +

𝜋

2
                 (2.28) 

Based on Equation (2.28), the phase-frequency response of pitch motion is plotted in Figure 2.4. 

 

Figure 2.4 Phase-frequency response of pitch motion. 
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Substitute the Equation (2.25) and Equation (2.26) into Equation (2.23), the equation becomes  

[
𝜔4+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2+𝜔𝑛𝑝

4 −2𝜔𝑛𝑝
2 𝜔2

√(𝜔2−𝜔𝑛𝑝
2 )

2
+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2

]𝜑𝑎 = 𝜔𝑛𝑝
2 𝑘ℎ0                (2.29) 

𝜉𝑝 =
𝜑𝑎

𝑘ℎ0
 is the nondimensionalized excursion ratio and called by dynamical magnification factor 

of pitch motion, Equation (2.29) becomes 

𝜉𝑝 =
𝜑𝑎

𝑘ℎ0
=

𝜔𝑛𝑝
2 √(𝜔2−𝜔𝑛𝑝

2 )
2
+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2

𝜔4+4𝜈𝜑
2𝜔𝑛𝑝

2 𝜔2+𝜔𝑛𝑝
4 −2𝜔𝑛𝑝

2 𝜔2 =
𝜔𝑛𝑝

2

√(𝜔2−𝜔𝑛𝑝
2 )

2
+4𝜈𝜑

2𝜔𝑛𝑝
2 𝜔2

   =
1

√(Λ𝑝
2−1)

2
+4𝜈𝜑

2Λ𝑝
2
     (2.30)    

Based on Equation (2.30), the amplitude-frequency response of pitch motion is plotted in Figure 2.5. 

 

Figure 2.5 Amplitude-frequency response of pitch motion. 

                      

2.3 Mathieu equation 

The resonant condition of heave oscillation of a buoy is assumed. The vertical displacement 

of the buoy can be expressed as follows: 

𝑧(𝑡) =
ℎ0

2𝜈𝑧
sin (𝜔𝑛ℎ𝑡 −

𝜋

2
),    𝜔𝑛ℎ = √

𝜌𝑔𝐴𝑊

𝑚+𝑚′
              (2.31) 

where, 

𝜌 : density of water 

𝑔 : gravitational acceleration 

𝐴𝑤 ∶ water plane area of the buoy 

𝑚 + 𝑚′ : virtual mass of the buoy 
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Then the relative water level is defined as follows: 

   𝜁(𝑡) = 𝑧(𝑡) − ℎ(𝑡) = −𝜁0 𝑠𝑖𝑛(𝜔𝑛ℎ𝑡 + 𝜀𝜁)                  (2.32) 

where 

𝜁0 =
ℎ0

2𝜈𝑛ℎ
√1 + 4𝜈𝑧

2,      𝜀𝜁 = 𝑡𝑎𝑛−1 (
1

2𝜈𝑛ℎ
)                   (2.33) 

In Equation (2.16), according to the relative water level, the ∆𝐺𝑀̅̅̅̅̅ becomes functions of time and 

can be written as follows: 

∆(𝑡) = ∆0 + 𝜌𝑔𝐴𝑊𝜁(𝑡)                             (2.34) 

𝐺𝑀̅̅̅̅̅(𝑡) = 𝐵𝑀̅̅ ̅̅̅(𝑡) − 𝑂𝐵̅̅ ̅̅ (𝑡) + 𝑂𝐺̅̅ ̅̅ (𝑡)                    (2.35) 

∆(𝑡)𝐺𝑀̅̅̅̅̅(𝑡) ≅ ∆0𝐺𝑀0
̅̅ ̅̅ ̅̅ {1 − 𝑆𝜙 sin(𝜔𝑛ℎ𝑡 + 𝜀𝜁)}            (2.36) 

where  

𝑆𝜙 =
𝜌𝑔𝐴𝑊𝜁0𝑂𝐺̅̅ ̅̅ 0

∆0𝐺𝑀̅̅ ̅̅ ̅0
                            (2.37) 

𝑂𝐺̅̅ ̅̅
0, ∆0 and  𝐺𝑀̅̅̅̅̅

0 show the centre of gravity, the displacement and the metacentric height in still 

water. 

Substitute Equation (2.36) into Equation (2.16) and divided both sides by 𝐼 + 𝐼′, the equation of 

motion can be rewritten as follows: 

𝜑̈(𝑡) + 2𝜈𝜑𝜔𝑛𝑝𝜑̇(𝑡) + 𝜔𝜙𝑛
2 {1 − 𝑆𝜙 sin(𝜔𝑛ℎ𝑡 + 𝜀𝜁)}𝜑 = 0           (2.38) 

where the pitch natural frequency 𝜔𝑝𝑛 and the damping ratio 𝜈𝜑 are expressed as follows. 

𝜔𝑛𝑝 = √
∆0𝐺𝑀0̅̅ ̅̅ ̅̅

𝐼+𝐼′
 ,  𝜈𝜑 =

𝑁𝜙

2√∆0𝐺𝑀0̅̅ ̅̅ ̅̅ (𝐼+𝐼′)
                (2.39) 

Here, a new variable is introduced to remove the damping component and transform Equation 

(2.38) into the Mathieu equation. 

𝜑(𝑡) = 𝜙(𝑡) ∙ 𝑒−𝜈𝜑𝜔𝑛𝑝𝑡                         (2.40) 

Substitute Equation (2.40) for 𝜙  in Equation (2.38), the Mathieu equation can be obtained as 

follows: 

𝜙̈(𝑡) + {𝜔𝑛
2 − 𝑎 sin(𝜔𝑛ℎ𝑡 + 𝜀𝜁)}𝜙(𝑡) = 0                 (2.41) 
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where   

  𝜔𝑛
2 = 𝜔𝑛𝑝

2 (1 − 𝜈𝜑
2)                        (2.42) 

  𝑎 =
𝑆𝜙𝜔𝑛

2

1−𝜈𝜑
2                                (2.43) 

As is well known, the fluctuating restoring moment term, which is expressed by the sine function 

in Equation (2.41), is the source of the instability (hereafter called “fluctuating coefficient”). The 

solution becomes unstable when 𝜔𝑛ℎ = 2𝜔𝑛 and can be approximated by the following form. 

𝜙(𝑡) = −𝐶𝑒
𝑎

2𝜔𝑛ℎ
𝑡
𝑠𝑖𝑛 (

𝜔𝑛ℎ

2
𝑡 +

𝜀𝜁

2
)                      (2.44) 

𝜑(𝑡) = −𝐶𝑒
(

𝑎

2𝜔𝑛ℎ
−𝜈𝜑𝜔𝑛𝑝)𝑡

𝑠𝑖𝑛 (
𝜔𝑛ℎ

2
𝑡 +

𝜀𝜁

2
)               (2.45) 

where C is a positive constant to be determined by the initial conditions. 

Therefore, if the condition expressed by 

𝑎

2𝜔𝑛ℎ
> 𝜈𝜑𝜔𝑛𝑝                                (2.46) 

is satisfied, the pitch amplitude becomes larger and larger as time proceeds. 

 

Figure 2.6 shows the phase relationship among the heave motion expressed by Equations 

(2.31), the fluctuating coefficient of Equation (2.41) and the pitch angle expressed by Equation 

(2.44) to observe the actual timing of each signal under the Mathieu-type instability. For simplicity, 

amplitudes of the signals are indicated by unit amplitudes in the graph. Looking at the phase 

relationship between the pitch motion (blue line) and the fluctuating coefficient (green line), it can 

be observed that the fluctuating coefficient takes positive value during the pitch motion is returning 

to the equilibrium position. On the contrary, the fluctuating coefficient takes negative value when 

the pitch motion is leaving to the equilibrium position. That is the physical explanation of the 

Mathieu-type instability. On the other hand, looking at the relationship between the pitch angle 

(blue curve) and the heave acceleration (red curve), it can be observed that the heave acceleration 

takes negative value during the pitch motion is returning to the equilibrium position. This can be 

understood easily because negative value of the relative water level, which is defined by Equation 

(2.32), can reduce the pitch stability as shown by Equation (2.36). 
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Figure 2.6 The history of coefficient of the pitch motion, heave acceleration and the restoring 

force coefficient. 

 

2.4 Mathieu stability chart 

A new variable is introduced to remove the damping component 

𝜙̈(𝜏) + {𝛿 + 𝜀 𝑐𝑜𝑠(𝜏)}𝜙(𝑡) = 0                        (2.47) 

where  

𝛿 =
𝜔𝑛𝑝

2

𝜔𝑛ℎ
2 (1 − 𝜈𝜙

2), 𝜀 =
𝜔𝑛𝑝

2 𝑆𝜙

𝜔𝑛ℎ
2 , 𝜏 = 𝜔𝑧𝑡 + 𝜃𝜁 +

𝜋

2
                (2.48) 

Based on the method of the Hill’s infinite determinants [46, 47], the parametric curves about 𝛿 and 

𝜀 can be obtained by four set of algebraic equation. Here, 𝛿 is called as the constant restoring 

coefficient and 𝜀 is called as the fluctuating restoring coefficient. It should be noted that 𝜏 in the 

Equation (2.49) was defined by Equation (2.50) and it is a new variable, which is different from the 

time t. The solution of the Equation (2.49) is given with the form of a Fourier series as follows. 

𝜙(𝑡) = ∑ {𝑎𝑛 cos (
𝑛𝜏

2
) + 𝑏𝑛 sin (

𝑛𝜏

2
)}𝑛

0                  (2.49) 

Substitute Equation (2.49) into Equation (2.47) to calculate eigenvalues of the matrix, which is 

called as harmonic balance method. The sinusoidal and cosinoidal coefficients parts can be 

organized sinusoidal even part called as 𝐴𝐴𝑒𝑣𝑒𝑛, sinusoidal odd part called as 𝐴𝐴𝑜𝑑𝑑, cosinoidal even 

part called as 𝐵𝐵𝑒𝑣𝑒𝑛 and cosinoidal odd part called as 𝐵𝐵𝑜𝑑𝑑, which are transferred by elementary 

and shown as follows: 

AAeven＝

[
 
 
 
 
 
0 𝜀/2 0         0

𝜀 −1 𝜀/2      0

0
0

𝜀/2
0

−4
𝜀/2
⋮

𝜀/2 ⋯

−9
⋱ 𝜀/2

𝜀/2 −592]
 
 
 
 
 

~

[
 
 
 
 
 
0 −𝜀/2 0         0

−𝜀 1 −𝜀/2      0

0
0

−𝜀/2
0

4
−𝜀/2

⋮

−𝜀/2 ⋯

9
⋱ −𝜀/2

−𝜀/2 592]
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BBeven＝

[
 
 
 
 
 
−1 𝜀/2 0         0

𝜀/2 −4 𝜀/2      0

0
0

𝜀/2
0

−9
𝜀/2
⋮

𝜀/2 ⋯

−16
⋱ 𝜀/2

𝜀/2 −302]
 
 
 
 
 

~

[
 
 
 
 
 

1 −𝜀/2 0         0

−𝜀/2 4 −𝜀/2      0

0
0

−𝜀/2
0

9
−𝜀/2

⋮

−𝜀/2 ⋯

16
⋱ −𝜀/2

−𝜀/2 302]
 
 
 
 
 

         

AAodd＝

[
 
 
 
 
 
 
−1/4 + 𝜀/2 𝜀/2 0                0

𝜀/2 −9/4 𝜀/2             0

0
0

𝜀/2
0

−25/4
𝜀/2
⋮

 

   𝜀/2    ⋯

      −49/4
⋱ 𝜀/2

𝜀/2 −
592

4 ]
 
 
 
 
 
 

~

[
 
 
 
 
 
 
1

4
− 𝜀/2 −𝜀/2 0                0

−𝜀/2 9/4 −𝜀/2             0

0
0

−𝜀/2
0

25/4
−𝜀/2

⋮
 

   −𝜀/2    ⋯

      49/4
⋱ −𝜀/2

−𝜀/2
592

4 ]
 
 
 
 
 
 

      

BBodd＝

[
 
 
 
 
 
 −

1

4
− 𝜀/2 𝜀/2 0                0

𝜀/2 −9/4 𝜀/2             0

0
0

𝜀/2
0

−25/4
𝜀/2
⋮

      𝜀/2      ⋯

−49/4
⋱

𝜀/2

𝜀/2

−
592

4 ]
 
 
 
 
 
 

~

[
 
 
 
 
 
 
1

4
+ 𝜀/2 −𝜀/2 0                0

−𝜀/2 9/4 −𝜀/2             0

0
0

−𝜀/2
0

25/4
−𝜀/2

⋮

      −𝜀/2      ⋯

49/4
⋱

−𝜀/2

−𝜀/2
592

4 ]
 
 
 
 
 
 

      

(2.50) 

Equation (2.50) are rewritten by relative homogeneous linear equations, determinant matrix values 

of which are set to zero. The determinants are shown as follows: 

𝑎even: |

𝛿 𝜀/2 0         0
𝜀 𝛿 − 1 𝜀/2      0
0 𝜀/2 𝛿 − 4

⋮
𝜀/2 …

| = 0                              (2.51) 

𝑏even: |

𝛿 − 1 0 0         0
𝜀/2 𝛿 − 4 𝜀/2      0
0 𝜀/2 𝛿 − 9

⋮
𝜀/2 …

| = 0                           (2.52) 

𝑎𝑜𝑑𝑑 : |

𝛿 − 1/4 + 𝜀/2 𝜀/2 0          0
𝜀/2 𝛿 − 9/4 𝜀/2      0
0 𝜀/2 𝛿 − 25/4

⋮
 
𝜀/2 …  

| = 0           (2.53) 

𝑏𝑜𝑑𝑑: ||

𝛿 −
1

4
− 𝜀/2 𝜀/2 0                0

𝜀/2 𝛿 − 9/4 𝜀/2             0
0 𝜀/2 𝛿 − 25/4

⋮
 𝜀/2 ⋯

|| = 0                (2.54) 

Finally, the stable and unstable regions of the Mathieu equation (2.47) are determined. The above 

equations are tridiagonal matrix determinants. In order to increase the accuracy of calculation, the 

order of the determinants is valued by 30. For a given value 𝜀 , the corresponding value 𝛿  is 
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calculated by solving the eigenvalues of the determinants, computing of which was programmed 

by MATLAB. Figure 2.7 shows Mathieu stability chart. ‘U’ means the unstable region and ‘S’ 

means the stable region. When the the parameter of 𝛿 and 𝜀 is in “U” region, that is unstable 

region, the solution of Equation (2.47) is divergent. When the the parameter of 𝛿 and 𝜀 is in “S” 

region, that is stable region, the solution of Equation (2.47) is convergent. According to the 

parameter of 𝛿 and 𝜀, the tendency of result or motions can be figured out directly. The method 

of analyzing Mathieu instability condition can be directly utilized to buoy motion, and results of 

stable or unstable motion be determined easily. 

 

Figure 2.7 Mathieu stability chart. 

2.5 Conclusion 

The heave and pitch motion of the spar-type buoy are expressed with considering the harmonic 

wave exciting. The natural frequency of heave and pitch motion are calculated in theory, which can 

prove the experiment design reference and make the characteristic of the buoy satisfy the Mathieu 

instability condition (the natural frequency of the heave motion is twice of the pitch motion). The 

Mathieu equation of the pitch motion was expressed and occurring of large motion of the buoy was 

explained in theory. Moreover, the stability of the Mathieu equation was plotted, which can provide 

the theoretical reasons for the occurring of the large pitch in the later experiment. 
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Chapter3 Experiment work 

3.1 Introduction 

In order to investigate the coupled motion around the Mathieu-type instability condition, the 

corresponding experiment should be carried out. When the natural frequency of heave and the pitch 

motion satisfy Mathieu instability condition, the large motion will occur. In order to make the buoy 

satisfy this condition, the free-decay experiment is necessary is to be carried out. In this work, the 

ballast control system is designed to change the natural frequency of heave motion. Then the 

experiment in regular wave is carried out to verify the buoy motion characteristics under Mathieu 

instability condition. 

3.2 Configuration of the spar-buoy 

An innovative model is designed and made. The main body of cylindrical is made of 

transparent acrylic acid resin and a hemispherical aluminum ballast is attached to the bottom. The 

principal particulars of buoy model are listed in Table 3.1 and the appearance of the buoy model is 

shown in Figure 3.1. In order to investigate the coupled motion around the Mathieu-type instability 

condition, a ballast control mechanism was installed in the buoy model. The mechanism consists of 

weights, a step motor and a ball screw. The ball screw can shift the weights up and down so that the 

center of gravity of the buoy can be changed. Using this mechanism, the pitch natural frequency 

can be adjusted around half the heave natural frequency. The ballast position can be adjusted by the 

ball screw from 0 mm to 45 mm. The position is defined by the distance from the upper surface of 

the hemispherical ballast to the bottom surface of movable ballast. The specifications of buoy under 

different ballast positions are shown in Table 3.2. 

Table 3.1 Principle particulars of the buoy model. 

Item Value 

Depth 745 mm 

Diameter of the buoy 
(Outer diameter) 160 mm 

Weight 11.15 kg 

Draught (from the bottom) 581.2 mm 

Centre of buoyancy 

(from the bottom) 
303.6 mm 

Metacentric radius (BM) 2.89 mm 

Ballast weight 2.74 kg 

Ballast moving range 0~45 mm 
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In the experiments, the buoy model is likely to start swaying and yawing by the effect of the 

vortex induced vibration. Therefore, a flat metal bar was fixed on the top of the buoy model, and a 

restraining frame was also introduced and fixed on the carrier as shown in Figure 3.2. The actual 

condition of the experiments is shown in Figure 3.3. 

Table 3.2 The specifications in the different ballast positions. 

Ballast position (mm) 0 5 10 15 20 40 

Centre of gravity (mm) 265.1 266.3 267.5 268.8 270.0 274.9 

Inertia moment of pitch (kgm2) 0.74 0.73 0.73 0.72 0.72 0.71 

Metacentric height 

GM (mm) 
41.4 40.2 39.0 37.7 36.5 31.6 

    

  

Figure 3.1 Configuration of the spar-buoy model. 
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Figure 3.2 The restraining frame was fixed on the carrier. 

 

 

Figure 3.3 The restraining frame for sway, roll, yaw and lateral drift 

 (surge, heave, pitch and longitudinal drift are free). 
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3.3 Control and measurement system 

Figure 3.4 shows the ball screw mechanism driven by a step motor. The step motor driver is 

controlled by an Arduino Nano Mega328 and the control signals are received through the wireless 

transmission modules from the control PC which is shown in Figure 3.5. Nine axes accelerometer 

(Arduino 9 Axes Sensor Shield) is also installed in the buoy model to measure the buoy motions. 

The measured signals are also sent back through the wireless transmission modules to the control 

PC. The configuration of the measurement system is shown in Figure 3.6.  

 

Figure 3.4 The ball screw mechanism driven by a step motor. 

 

 

Figure 3.5 The ballast control system using wireless signal transmission module. 
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Figure 3.6 Wireless signal acquisition system for measurement of buoy motions. 

3.4 Free-decay experiments 

The experiments were conducted in the ship maneuvering research basin of TUMSAT. The 

principal dimensions and the photo are shown in Table 3.3 and Figure 3.7. The free-decay 

experiments were performed to determine the natural periods and damping coefficients of the heave 

and pitch motions.  

 

Figure 3.7 Ship maneuvering research basin of TUMSAT. 
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Table 3.3 Principal dimensions of Ship maneuvering research basin of TUMSAT. 

Length 54 m 

Breadth 10 m 

Depth   2 m 

Wave maker Flat plate type 

 

 

 

Figure 3.8 The free-decay experiment in still water. 

 

 

Figure 3.9 Measured time histories of heave acceleration (ballast position = 5 mm). 
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Figure 3.10 Measured time histories of pitch angle (ballast position = 5 mm). 

 

The free-decay experiment was carried. Firstly, the buoy was put into the water as shown in 

Figure 3.8. Then the buoy was set at the initial small displacement in vertical direction and a small 

pitch angle separately by hand, and the free motions occurred. Figure 3.9 shows the heave 

acceleration measured by the accelerometer at the 5 mm ballast position. The signal was analyzed 

by fitting the following equation: 

𝑧̈ = 𝐴𝑒(−𝜈±𝑖√1−𝜈2)𝜔𝑡                           (3.1) 

where 𝑧̈ and A denote the heave acceleration and the amplitude, ν and ω are the damping ratio and 

the natural frequency. 

The estimated natural period was 1.55s and the damping ratio was 0.013. Figure 3.10 shows the 

measured pitch angle at the 5mm ballast position. The signals of pitch motion were also analyzed 

by the similar curve fitting. The analyzed pitch natural periods at the different ballast positions are 

listed in Table 4 and the damping ratio was 0.038. As shown in Table 3.4, it can be found that the 

5mm ballast position is closest to the Mathieu-type instability condition (the heave natural period 

is almost half of the pitch natural period). 

Table 3.4 The pitch natural frequency at the different ballast positions. 

Ballast position  Period 

0 mm 2.93 s 

5 mm 3.24 s 

15 mm 3.26 s 

20 mm 3.30 s 
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3.5 The experiment in regular waves 

The motions of the buoy was measured with regular waves. The period of the incident waves 

was set to the heave natural period (1.55s) and waves height was 0.040m, as shown in Figure 3.11. 

In order to decrease the error, two waves height meters called “A” and “B” were installed to measure 

the actual waves height and period before carrying out the experiment. The waves height meters 

were put into the acrylic sink, as shown in Figure 3.12. The date of signal voltage with different 

water heights were measured to calculate the piezo voltage coefficient.  

 

Figure 3.11 The PC control interface of waves maker.  

 

 

Figure 3.12 The PC control interface of waves maker.  
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Figure 3.12 shown the measured result. The calculated coefficients of the waves height meter “A” 

and “B” are 0.1247 v/cm and 0.1244 v/cm.  

 

  

Figure 3.12 The measured piezo voltage results with different water heights. 

 

 

Figure 3.13 The PC control interface of waves maker.  

 

Figure 3.13 shows the signal acquisition interface of two wave height meters. The results are shown 

in Figure 3.14 and Figure 3.15. And the “Date1” and “Data2” are the singal date of waves height 

“A” and “B”. The test results accord with the data curves of Least Squares, and the test proves the 

feasibility. The actual waves height and period were calculated and the both results are same. The 

actual period is 1.55s and the actual waves height is 0.042m. 



Chapter3 Experiment work 

26 

 

Figure 3.14 The actual waves wave height results of wave height meter “A”.  

 

 

Figure 3.15 The actual waves wave height results of wave height meter “B”. 

 

After above experimental preparation, the motions of the buoy was measured with regular waves. 

Figure 3.16 a~f show the measured time histories of heave accelerations and pitch angles with 

ballast positions 0 ~ 40mm. Looking at the graphs, there are common characteristics as follows: 

• The heave amplitude becomes larger alone in the first 10 seconds. 

• Large pitch motions occur suddenly around 15 seconds. 

• The heave amplitude shrinks just after the occurrence of large pitch motion. 

• The kinetic energy of the large pitch motion seems to be supplied from the heave motion. 

 

 

Figure 3.16a Measured time histories of pitch angle and heave acceleration  

(ballast position = 0 mm). 
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Figure 3.16b Measured time histories of pitch angle and heave acceleration  

(ballast position = 5 mm). 

 
Figure 3.16c Measured time histories of pitch angle and heave acceleration  

(ballast position = 10 mm). 

 
Figure 3.16d Measured time histories of pitch angle and heave acceleration 

 (ballast position = 20 mm). 

 
Figure 3.16e Measured time histories of pitch angle and heave acceleration 

 (ballast position = 30 mm). 
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Figure 3.16f Measured time histories of pitch angle and heave acceleration  

(ballast position = 40 mm). 

3.6 Wave-induced force  

In order to investigate the wave force on the buoy, the wave-induced force experiment was 

carried out in towing tank with the buoy fixed on carrier. As shown in Figure 3.17, the coefficients 

of three-component force gauge were measured in preparation. The measured result is shown in 

Figure 3.18. “Fx” is the fore in x-axis (wave coming direction), “Fz” is the force in vertical direction 

and “My” is the moment is trim angle axis. The corresponding coefficients are -1.919 kg/V, 1.905 

kg/V and 4.695 kg*m/V. 

 

 

Figure 3.17 The coefficients of three-component force gauge were measured. 
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Figure 3.18 The result of measured three-component force gauge coefficients. 

 

The fixed structure in Figure 3.19 is installed to test the wave exciting force with different trim 

angle. It can also be found there are two wave height meters to installed assure the accuracy of the 

experiment. The fix device can rotate the buoy with the different inclination (0 deg ~ 50deg), on the 

of which connected with three-component force gauge. The waterplane center of buoy and the wave 

height meters are on the same horizontal line which is perpendicular to wave coming direction. The 

data of acquisition will be recorded by amplifier and DAQ device as shown in Figure 3.20. 

 

 

Figure 3.19 The wave-induced force testing. 
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In this experiment, the wave frequency is 1.55s, and the wave height is 4.2cm. The wave forces 

and wave heights were measured at the same, as shown in Figure 3.20. Figure 3.21 ~ Figure 3.24 

show the wave-induced force results and the corresponding results of amplitudes are shown in Table 

3.5. In this experiment, the trim angle is set by 0-degree, 5-degree, 10-degree and 20-degree. Here, 

My is pitch moment, Fz (N) is heave force and wave amplitude is the amplitude of the mad wave 

by wave maker. 

 

Figure 3.20 Experimental data acquisition devices. 

 

Figure 3.21 Wave-induced force with inclination angle 0 degree. 

 

Figure 3.22 Wave-induced force with inclination angle 5 degree. 
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Figure 3.23 Wave-induced force with inclination angle 10 degree. 

 

 

Figure 3.24 Wave-induced force with inclination angle 20 degree. 

 

Table 3.5 The amplitude of the wave-induced force.  

Trim angle (degree) My (N*m) Fz (N) Wave amplitude (m) 

0 8.752  0.661  0.024  

5 8.624  0.670  0.024  

10 8.561  0.678  0.024  

20 7.783  0.802  0.023 

 

3.7 Conclusion 

The free-decay experiment was carried out to verify that the designed spar buoy can nearly 

satisfy the Mathieu instability condition (the natural frequency of heave motion is double the natural 

frequency of pitch motion). In order to investigate the coupled motion around the Mathieu-type 

instability condition in regular wave, the corresponding experiment was carried out with different 

ballast condition. It can be indicated that the large pitch motions occur suddenly around 15 seconds; 

the heave amplitude shrinks just after the occurrence of larger pitch motion and the kinetic energy 

of the large pitch motion seems to be supplied from the heave motion.  
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However, for the sake of completeness, this model still requires some improvements in future: 

• The buoy oscillating motions were collected based on the acceleration gyroscope. With the 

changing of the ballast’s position, the gravity center was also changed. The results of data 

acquisition keep error to some extent. To overcome this lack, the buoy will be designed to be able 

to be moved up and down, or a new acquisition data system, such as image acquisition, will be 

introduced. Moreover, there is resistance in the fixed frame. In order to achieve buoy oscillating 

much smoother, the limit of the slide rail system can be introduced. 

• The length of the towing tank is 50m, and the experiment was carried out in middle of the 

towing tank. Due to the reflection of the made waves, the effective of data is just until about 40 

seconds, after which the experiment results can’t be referenced. If possible, the improved 

experiment carried out in the longer towing tank is necessary and meaningful.   
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Chapter4 Energy transfer analysis 

4.1 Introduction 

It is found that the kinetic energy of the large pitch motion seems to be supplied from the heave 

motion in the experiment results. Hence, in order to investigate existence of the energy transform, 

the signals of the heave acceleration were integrated with high pass filtering in the frequency 

domain and the vertical velocities and displacements of the buoy were calculated. Base on the 

integrated data and the original measured data, the kinetic and potential energy of heave and pitch 

motions were calculated. The energy transform of the buoy motions is discussed in time domain. 

4.2 The calculation of the heave displacement 

In order to investigate existence of the energy transfer, the kinetic and potential energy of heave 

and pitch motions is tried to be estimated from the measured signals. The signals of the heave 

acceleration were integrated with high pass filtering in the frequency domain and the vertical 

velocities and displacements of the buoy were calculated. The integral results were transformed to 

the time domain again to obtain the time history of the vertical displacements and the velocities. 

Figure 4.1a ~ 4.1e show the accelerations, velocities and displacements of the heave motion at the 

ballast position 0 ~ 40 mm. It can be recognized that the signals were integrated successfully. 

 

 

 

Figure 4.1a Acceleration, velocity and displacement of the heave motion (ballast position = 0 mm). 
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Figure 4.1b Acceleration, velocity and displacement of the heave motion (ballast position= 10 mm). 

 

 

Figure 4.1c Acceleration, velocity and displacement of the heave motion (ballast position= 20 mm). 

 

 

Figure 4.1d Acceleration, velocity and displacement of the heave motion (ballast position= 30 mm). 
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Figure 4.1e Acceleration, velocity and displacement of the heave motion (ballast position = 40 mm). 

4.3 The analysis about the transformation of the kinetic energy 

Using the integrated data and the original measured data, the kinetic and potential energy of 

heave and pitch motions were calculated. Figure 4.2a~4.2e show the time histories of the estimated 

energies at the ballast position 0 ~ 40 mm. The blue and red curves denote the energies of pitch and 

heave motions, respectively. Moreover, the green curves denote the total energy, namely, the sum 

of pitch and heave energy. Looking at the figures, the total energy takes the maximum value around 

16s and the first half of the peak is dominated by the heave energy and the latter half is replaced by 

the pitch energy. Therefore, this can be concluded that the energy was transferred from the heave 

mode to the pitch mode and shrunken by the pitch damping. On the other hand, the power to be 

taken off is closely related to the total energy (area surrounded by the green curve and the horizontal 

axis). Therefore, the optimum ballast position can be determined from this point of view. 

Figure 4.3 shows the zero crossing periods of the time histories in time history of heave motion, by 

the method of which, these periods in transient states of heave motion was measured. The the transition 

of the periods of pitch motion was also carried out by the same means. 

Figure 4.4 shows the transition of the periods of pitch and heave motions. These periods in transient 

states were measured by the zero crossing periods of the time histories. The left and right vertical axes 

denote the pitch and heave periods, respectively. Here, it should be noted that the scale of the left vertical 

axis is twice with respect to the right. Therefore, the intersecting points of two lines mean that the 

Mathieu-type instability condition is satisfied. Looking at these figures, it can be observed that the first 

timing of the intersection coincides with the occurrence of the large pitch motion. Therefore, it may be 

able to find some conditions in which the large pitch motion occurs suddenly by considering the 

theoretical condition of the Mathieu-type instability. 

Figure 4.5 and Figure 4.6 show the transition of the periods of pitch and heave motions. These 

periods in transient states were measured by the zero crossing periods of the time histories. The left and 
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right vertical axes denote the pitch and heave periods, respectively. Here, it should be noted that the scale 

of the left vertical axis is twice with respect to the right. Therefore, the intersecting points of two lines 

mean that the Mathieu-type instability condition is satisfied. Looking at these figures, it can be observed 

that the first timing of the intersection coincides with the occurrence of the large pitch motion. Therefore, 

it may be able to find some conditions in which the large pitch motion occurs suddenly by considering 

the theoretical condition of the Mathieu-type instability. 

 

 

Figure 4.2a The energy time histories of the pitch angle and heave motion (ballast position = 0 mm). 

 

 

Figure 4.2b The energy time histories of the pitch angle and heave motion (ballast position = 10 mm). 

 

 

Figure 4.2c The energy time histories of the pitch angle and heave motion (ballast position = 20 mm). 
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Figure 4.2d The energy time histories of the pitch angle and heave motion (ballast position = 30 mm). 

 

Figure 4.2e The energy time histories of the pitch angle and heave motion (ballast position = 40 mm). 

 

Figure 4.3 Transition of the periods of pitch and heave motions (ballast position = 20 mm). 

 

Figure 4.4 The total energy and frequency ratio between heave and pitch with ballast position 

changing. 
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Figure 4.5 Transition of the periods of pitch and heave motions (ballast position = 0 mm). 

 

Figure 4.6 Transition of the periods of pitch and heave motions (ballast position = 20 mm). 

4.4 Conclusion 

The vertical velocities and displacements of the buoy were calculated based on the integration 

of signals of the heave acceleration. The kinetic energy of pitch and heave motions are calculated 

to investigate existence of the energy transform. The conclusion was obtained as follows：The total 

energy takes the maximum value around 16s and the first half of the peak is dominated by the heave 

energy and the latter half is replaced by the pitch energy. Therefore, this can be concluded that the 

energy was transferred from the heave mode to the pitch mode and shrunken by the pitch damping. 

On the other hand, the power to be taken off is closely related to the total energy. 
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Chapter5 Righting lever GZ analysis 

5.1 Introduction 

In order to find some conditions in which the large pitch motion occurs suddenly by 

considering the theoretical condition of the Mathieu-type instability. The righting lever of the buoy 

model is calculated with assuming the free board is infinite. The relationship between the pitch 

angle and the righting lever under the Mathieu-type instability was theoretically discussed in the 

time domain.  

5.2 The righting lever GZ under the Mathieu-type instability condition 

In order to understand the Mathieu-type instability in the time domain, the solution of Equation 

(2.41) is examined next. As is well known, the solution becomes unstable when ωnh=2ωnφ and can 

be approximated by the following form. 

2
0 04 1

sin
2

n

S
t

GM

nCe t


 



 
 




 

 
 −
   −
 

 
=  + 

 

                     (5.1) 

where C is a constant to be determined by the initial conditions. 

Therefore, looking at the exponential part of Equation (5.1), if the condition expressed by 

2

0 04 1S GM     −                                   (5.2) 

is satisfied, the pitch amplitude becomes larger and larger as time proceeds. 

Figure 5.1 shows the relationship between the pitch angle and the righting lever 

( ( ) ( ))GZ GM t t=   under the Mathieu-type instability expressed by Equation (5.1). The red arrows 

are added to the graph in order to indicate the movement of the relationship with the time progress. The 

ballast position was set to 20mm and the heaving amplitude z0 was set to 15mm in the calculation. The 

relationship is plotted from t=0 to 15s. It can be observed that the pitch amplitude is increasing with 

time. Moreover, the righting lever takes larger value during the pitch motion is returning to the 

equilibrium position. It can be recognized as the physical explanation of the Mathieu-type instability in 

the time domain. 

The righting lever of the buoy model is calculated with assuming the free board is infinite. Figure 

5.2 denotes the calculated righting levers with respect to the draft. The GMs are also plotted in the figure 

as coloured lines. It can be shown that the righting lever GZ can be approximated by metacentric height 

GM as follows: 

                          (5.3) ( , ) ( )GZ d GM d  



Chapter5 Righting lever GZ analysis 

40 

 

Figure 5.1 Relationship between the pitch angle and the righting lever GZ under the Mathieu-type 

instability condition. (t=0s~15s, z0=15mm) 

 

Figure 5.2 Righting levers GZ of the buoy model with respect to the draft (d=300mm~600mm). 

5.3 The righting lever GZ under experiments 

The experimental results shown in Figures 3.16 are investigated in the time domain. Figure 5.3a 

to 5.3f show the relationship between the pitch angle and the righting lever GZ with respect to the 

ballast positions 0, 5, 10, 20, 30 and 40mm. In the left figures, the green rectangles shows the 

samples time histories. In right figures, red arrows are also added to the graphs in order to indicate 

the movement of the relationship with the time progress. On the other hand, each blue arrow is 

indicating the last part of the large pitch motion. Compared to Figure 5.3, similar relationship can 

be seen in each figure. The larger righting levers can be seen when the pitch motion is returning to 

the equilibrium position. On the contrary, smaller righting levers, negative values in some cases, 

can be seen when the pitch motion is leaving from the equilibrium position. Furthermore, the inverse 

relationship can be seen at the end of the large pitch motion (at the blue arrow). This means that the 

large pitch motions disappear at the timing when the condition of the Mathieu-type instability is 

lost (righting levers become smaller when the pitch motion is returning to the equilibrium position). 
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Figure 5.3a Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration(left), see Figure 3.16a. 

 (ballast position = 0 mm, t=13s~18s). 

 
 

Figure 5.3b Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration (left), see Figure 3.16b. 

 (ballast position = 5 mm, t=10s~16s) 

 
 

Figure 5.3c Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration (left), see Figure 3.16c. 

 (ballast position = 10 mm, t=10s~16s) 

 
 

Figure 5.3d Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration (left), see Figure 3.16d. 

(ballast position = 20 mm, t=13s~17s) 
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Figure 5.3e Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration (left), see Figure 3.16e. 

(ballast position = 30 mm, t=11s~15s) 

 

 
 

Figure 5.3f Relationship between the pitch angle and the righting lever GZ (right); 

Measured time histories of pitch angle and heave acceleration (left), see Figure 3.16f. 

 (ballast position = 40 mm, t=14s~18s) 

5.4 Conclusion 

Based on the model experiments and considerations of the righting lever under Mathieu-type 

instability, the occurrence of the large pitch motion is discussed in the time domain. The results are 

summarized below: 

(1) The righting lever of pitch motions can be changed by the draft (heaving motion). 

(2) The relationship between the pitch angle and the righting lever under the Mathieu-type 

instability was theoretically discussed in the time domain. 

(3) It was shown that the experimental relationship between the pitch angle and the righting lever 

during the large pitch motions is similar to the theoretical characteristic of the Mathieu-type 

instability. 

(4) The large pitch motion disappears just after the theoretical characteristic of the Mathieu-type 

instability is lost. 
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Chapter6 Stability analysis of buoy motions 

6.1 Introduction 

In some experiments, it was observed that the large pitch motions became unstable and 

occurred suddenly. This unstable large pitch motion can produce much more kinetic energy and can 

be transformed to electricity, which is helpful for design the WECs and increase the generating 

efficiency. Hence, the corresponding peaks and troughs of pitch and heave motions are extracted 

out and the transient period was calculated. Based on the plotted stability charts of Mathieu equation, 

the occurrence of the large pitch motion was discussed with different ballast condition.  

6.2 Stability analysis with experimental results 

In this section, the measured experimental results in Figure 3.9 are investigated in the time 

history with the stability chart of the Mathieu equation. In order to analyse the phenomenon that the 

large pitch motions occurred suddenly at around 16 second, the corresponding peaks and troughs 

of pitch and heave motions are extracted out.  

The time histories of transient periods in the vicinity intervals where the large pitch motion 

occurring are calculated by the time difference of the adjacent peaks or troughs. Figure 6.1 shows 

the measured partial time histories of pitch angle and heave acceleration with the ballast position at 

0mm. The data of peaks and troughs in the vicinity of the large motions occurring are extracted to 

calculate the transient periods, and extracted times are defined as ‘Time1’ to ‘Time10’ (the circle 

marks in Figure (6.1). The same work is also applied to the ballast positions at 5mm, 10mm, 15mm 

and 20mm. The extracted times at different ballast positions keep the same characteristics as 

follows: 

1）When the times locate at ‘Time4’and ‘Time5’, the large pitch motions became unstable and the 

large pitch motion occurred suddenly; 

2）After ‘Time5’, the pitch motions decayed, and the large pitch motions disappeared. After 

‘Time10’, the large pitch motions occurred again. 

 

Figure 6.1 The extracted times in the time history of heave and pitch motions. (ballast position = 0mm) 
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In order to investigate these common characteristics of time histories of transient periods under 

experimental results, the transient frequencies of pitch and heave are assumed to be corresponding 

the natural frequency of pitch motion 𝜔𝑛𝜑 and the natural frequency of heave motion 𝜔𝑛ℎ. 

The following equation is introduced again 

𝜙̈(𝑡) + {𝛿 + 𝜀 𝑐𝑜𝑠(𝜏)}𝜙(𝑡) = 0                        (6.1) 

where the (δ, ε) can be obtained based on the equation of pitch motion shown in Equation (2.48). 

𝛿 =
𝜔𝜑𝑛

2

𝜔𝑧
2 (1 − 𝜈𝜙

2), 𝜀 =
𝜔𝜑𝑛

2 𝑆𝜙

𝜔𝑧
2 , 𝜏 = 𝜔𝑧𝑡 + 𝜃𝜁 +

𝜋

2
                (6.2)  

The results of (δ, ε) are marked into the stability charts of Mathieu equation to perform the 

analysis. Here, 𝛿  is defined as concrete restoring coefficient and 𝜀  is defined as fluctuating 

restoring coefficient. Meanwhile, the amplitude of heave motion was assumed to be 0.1m in 

calculation for simplicity (the maximum amplitude of heave motions is about 0.1m in experiment 

results).  

Figure 6.2a to 6.2e show the time histories (‘Time1’ to ‘Time10’) of the experimental results of 

(δ, ε) with different ballast positions in the stability charts of Mathieu equation. The arrows are 

added to the graph in order to indicate the movement of stability results with the time progress. The 

square marks of ‘Time1’ to ‘Time4’ are always in the unstable region, under the condition of which 

the pitch motion becomes unstable. It is also indicated that the large pitch motions occurred 

suddenly when that the times at ‘Time4’and ‘Time5’ (large pitch motions occur suddenly at around 

15 second). It can be concluded that the large pitch motions can be induced when the condition of 

Mathieu-type instability in satisfied (the stability results of (δ, ε) is in unstable region). The first 

large pitch motion occurred until ‘Time5’, when at the time of which, it can be observed that all the 

results of stability are in the stable region with different ballast positions. The stability result of 

‘Time5’ is marked by triangle marks. After ‘Time5’, it was shown in Figures 6.2 that all the large 

pitch motions disappeared (decayed) at a short time. And all the stability marks of ‘Time5’ are in 

the stable region (it is considered as that the condition of the Mathieu-type instability is lost at 

timing), which is the reason why pitch motion disappeared shortly just after the large pitch motion 

occurred. After large pitch motions disappeared (from ‘Time5’), all the stability marks of ‘Time6’ 

to ‘Time10’ return to the unstable region again, it is indicated that the large pitch motion occurred 

again, which is also indicated to be induced by the Mathieu-type instability. 

The large pitch motions disappear (decayed) at the timing when the condition of the Mathieu-

type instability is lost. Based on it, considering protecting the buoy device from damaging in the 

extreme weather, it is necessary to keep results of (δ, ε) always in stable region, which can reduce 

the overlarge pitch motion occurring. For example, the circle marks in Figures 6.2 are in the unstable 
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region, if there is enough inner space for ballast to move up and down and change the value of (δ, 

ε) to the stable region, for example, change value of (δ, ε) to the value of triangle marks, which can 

reduce the occurring of the large pitch motion to some extent.  

 

  
Figure 6.2a Stability analysis of buoy motions with experiment in time history (right); 

The extracted times in the repeated time history of heave and pitch motions (left). 

 (ballast position = 0mm) 

 

 

  
Figure 6.2b Stability analysis of buoy motions with experiment in time history (right); 

The extracted times in the repeated time history of heave and pitch motions (left). 

(ballast position = 5mm) 

 

 

  
Figure 6.2c Stability analysis of buoy motions with experiment in time history (right); 

The extracted times in the repeated time history of heave and pitch motions (left). 

 (ballast position = 10mm) 
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Figure 6.2d Stability analysis of buoy motions with experiment in time history (right); 

The extracted times in the repeated time history of heave and pitch motions (left). 

 (ballast position = 15mm) 

 

  

Figure 6.2e Stability analysis of buoy motions with experiment in time history (right); 

The extracted times in the repeated time history of heave and pitch motions (left). 

 (ballast position = 20mm) 

 

Based on the experimental results, as shown in Figure 6.3 and Figure 6.4, it is found that the 

large pitch motion occurred suddenly and the heave amplitude shrinks after the occurrence after 

large pitch occurring. The large kinetic energy is occurred just in the first time. The tendency of the 

total power will shrink with time progresses. The ballast positions in Figures are at 0mm and 40mm, 

other ballast positions also keep same above characteristics. 

    The main intention of the research is how to continue the tendency and keep large kinetic 

energy occur continuously. According to the previous conclusion, the large pitch motions 

disappearing at the timing is regarded as the buoy losing the condition of the Mathieu-type 

instability. In Equation 6.1 and 6.2, concrete restoring coefficient 𝛿  depends on the natural 

frequency of pitch motion 𝜔𝑛𝑝 and the natural frequency of heave motion 𝜔𝑛ℎ. From “Time4” to 

“Time5”, it is found that the value of (δ, ε) is from unstable region to stable region, before which it 

is possible increase the natural frequency of pitch motion or decrease the natural frequency of the 

heave motion to be capable of keeping the value of (δ, ε) always in the unstable region. Then the 

large motion of buoy will occur continuously. In Figure 6.3and 6.4, Purple lines show the total 
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power of the large pitch motion occurring. Black lines show the power steady (average) without 

natural frequency controlling. The same calculations were carried out at different ballast positions. 

Compared with the no control of natural frequency, it is found that efficiency of kinetic energy will 

be improved up to 3-5 times with control. This is very useful to apply to the designment of WECs. 

 

  

Figure 6.3 The energy time histories of the pitch angle and heave motion (right); 

The time history of heave and pitch motions (right).   

(ballast position = 0 mm) 

 

  

Figure 6.4 The energy time histories of the pitch angle and heave motion (right); 

The time history of heave and pitch motions (right).   

 (ballast position = 40 mm) 

6.3 Conclusion 

In some experiments, it was observed that the large pitch motions became unstable and 

occurred suddenly. Based on the plotted stability charts of Mathieu equation, the occurrence of the 

large pitch motion was discussed. The results are summarized below: 

(1) The stability chart of Mathieu equation was plotted for the experiment with the method of the 

harmonic balance. 

(2) It could be found that all the experimental results of (δ, ε) were in the unstable region before the 

large pitch motion disappeared (until ‘Time5’), which inducing the Mathieu-type instability of pitch 

motion.  
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(3) Before the large pitch motion decayed, that is at ‘Time5’, all the stability results were in the 

stable region of the stability chart of Mathieu equation. 

(4) It has been indicated that the large pitch motions disappeared (decayed) at the timing when the 

condition of the Mathieu-type instability is lost. 

(5) It has been shown stability results returned to the unstable region, and large pitch motion 

occurred again after large pitch motion disappeared, which is induced by the condition of Mathieu 

instability. 
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Chapter7 Conclusions and future research 

7.1 Conclusions 

Wave energy is an intermittent energy source, which is widely considered as one of the most 

alternative renewable and sustainable energy. WECs technologies are still in its infant stage, which 

naturally confronts this renewable energy converters with lots of challenges, problems and barriers 

during its maturation. To maximize the waves energy and realize the large oscillation of the buoy, the 

purpose of this research is to improve the efficiency by using parametric self-excited oscillation of WECs. 

The study focuses on the coupled motion of a spar-buoy type point absorber with coupled motions (heave 

and pitch), and the buoy is equipped with a ballast control system to generate parametric self-excited 

oscillation based on Mathieu-type instability. With using this buoy model, the measurement experiment 

was carried out in a regular wave. Using the system, the condition of the parametric pitch resonance 

phenomenon was investigated based on Mathieu-type instability. The results are summarized below: 

(1) The large pitch motions occurred suddenly under the heave resonance condition. According to 

analyze the kinetic energy of the motions, it is indicated that the oscillation energy seems to be 

transferred from the heave mode to the pitch mode. Around the peak of the total energy occurring, 

the ratio of the natural frequencies between the heave and pitch motion almost equals 2. When the 

large pitch motion suddenly occurred, the phase relationship between the pitch angle and the heave 

acceleration showed the similar tendency with the theoretical Mathieu-type instability. 

(2) The larger righting levers can be seen when the pitch motion is returning to the equilibrium position. 

On the contrary, smaller righting levers, negative values in some cases, can be seen when the pitch 

motion is leaving from the equilibrium position. Furthermore, the inverse relationship can be seen 

at the end of the large pitch motion. The large pitch motions occurred suddenly under the heave 

resonance condition. The righting lever of pitch motions can be changed by the draft (heaving 

motion). The relationship between the pitch angle and the righting lever under the Mathieu-type 

instability was theoretically discussed in the time domain. It was shown that the experimental 

relationship between the pitch angle and the righting lever during the large pitch motions is similar 

to the theoretical characteristic of the Mathieu-type instability. The large pitch motion disappears 

just after the theoretical characteristic of the Mathieu-type instability is lost. 

(3) The stability chart of Mathieu equation was plotted for the experiment with the method of the 

harmonic balance. It could be found that all the experimental results of (δ, ε) (concrete restoring 

coefficient and fluctuating restoring force) were in the unstable region before the large pitch motion 

disappeared, which inducing the Mathieu-type instability of pitch motion. Before the large pitch 

motion decayed, all the stability results were in the stable region of the stability chart of Mathieu 
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equation. It has been indicated that the large pitch motions disappeared (decayed) at the timing when 

the condition of the Mathieu-type instability is lost. It has been shown stability results returned to 

the unstable region, and large pitch motion occurred again after large pitch motion disappeared, 

which is induced by the condition of Mathieu instability. 

(4) Based on the parametrical oscillating characteristics, it is indicated that it is available how to utilize 

the dynamic frequency control for the WECs to realize the kinetic energy maximization, which is 

helpful for the WECs to harness the wave energy and transform to electricity. The main intention of 

the research is how to continue and keep large kinetic energy occur continuously. The large pitch 

motions disappearing at the timing is regarded as the buoy losing the condition of the Mathieu-type 

instability. The concrete restoring coefficient 𝛿 depends on the natural frequency of pitch motion 

𝜔𝑛𝑝  and the natural frequency of heave motion 𝜔𝑛ℎ . Before Mathieu instability condition 

disappears, it is possible to increase the natural frequency of pitch motion or decrease the natural 

frequency of the heave motion in order to be capable of keeping the value of (δ, ε) always in the 

unstable region based on the stability chart of Mathieu equation. Then the large motion of buoy will 

occur continuously. The continuous large kinetic energy can improve the kinetic energy up to 3-5 

times with frequency control, compared with the no control of natural frequency. This is very 

useful to be applied to the designment of WECs. The large kinetic energy can be transformed 

to the electricity. Power generation efficiency of renewable energy can be improved, which 

contributes to the development of human society. 

7.2 Future work 

The main contribution of this thesis is the construction of a new spar-type buoy model and 

parametric pitch resonance phenomenon was investigated based on Mathieu-type instability. 

However, for the sake of completeness, this model still requires some continued research: 

• Power take-off (PTO) system  

PTO system of WEC can absorb energy by the primary converter is transformed into useable 

electricity. The PTO system is essential as it will directly how efficiently the absorbed wave power 

is converted into electricity. Moreover, it also contributes to the mass, the size and the structural 

dynamics of the wave energy converter. PTO system will be introduced in the future experiment. 

• The mooring system 

Floating WECs need to have good power capture from the incident waves for most common 

frequencies. But floating bodies experience many external loads including winds, waves, and 

currents, which induced the point absorber drifting away from the desired location. The device 

should be moored using mooring systems. And the motions responding of the buoy under mooring 

system should be analyzed, especially make use of the theory of Mathieu instability. 
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• Numerical modeling 

The Computational Fluid Dynamics (CFD) toolbox OpenFOAM will be used to perform numerical 

simulations of the point absorber wave energy converters (WECs) inside a numerical wave tank. 

The numerical and the experimental results for the WECs’ motions will be investigated, it is not 

only helpful to simulate the motion response under different sea states, but also simplify the costly 

experimental investigation for WECs design. 
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