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Abstract 

Intertidal vegetation grows in the transition region between land and sea, providing habitat 

for coastal organisms and impacting on coastal ecological structures and food chains. It not 

only plays an important role in communicating with the land and sea ecosystems, but also 

can resist and reduce damages due to waves to the shoreline. Another physical effect of 

intertidal vegetation is it changes transport and diffusion of sediment and marine pollutants 

along the coast, which depends significantly on velocity distribution inside and outside of 

vegetation region. 

 

At present, there are many researches on rigid intertidal vegetations. However, the 

distribution of them is regional and limited, and flexible intertidal vegetation are more 

widely distributed around the world. Scirpus mariqueter, a native vegetation in China, is 

also a kind of flexible coastal vegetation which has been greatly reduced due to the biological 

invasion. It has been strongly supported for conservation and recommended as restoration 

material of coastal vegetation by the government of China. In the present study, the physical 

effect of flexible vegetation on wave decay was investigated by using vegetation model in 

an experimental flume. 

 

The experiment in this paper is divided into two parts. The first part is wave decay 

measurements on vegetation models for different water depth, vegetation density and 

vegetation flexibility. The free surface elevation at three wave gauges for every case was 

measured and the wave decay ratio between at the front of vegetation model and the back of 

it was calculated. The vegetation model used in the experiment is made by a 3-D printer. In 

order to find the difference between flexible and rigid vegetation for wave decay, the further 

experiment was performed. The wave decay ratio was measured for flexible and rigid 



 

vegetation model under the conditions of the same wave, vegetation density and vegetation 

belt length. 

 

The second part of the experiment is velocity fields measurement on vegetation models for 

different flexibility by using Particle Image Velocimetry (PIV). Velocity field above the 

vegetation model was measured when water depth was 16cm, while height of the vegetation 

models was 12cm. The frame rate for PIV was 1/500s and more than 8000 frames have been 

captured.  

 

The results of the experiment are shown as follow: 

 

1. Under conditions of the same vegetation density and water depth, wave height decreases 

along the horizontal distance and significantly decreases in region of vegetation model. 

2. Under conditions of the same vegetation density, the decay ratio of wave height 

decreases with increase of water depth, showing approximate linear changes. Higher 

vegetation density gives larger absolute value of the slope of linear functions. 

3. Under conditions of the same water depth, wave decay ratio increases with vegetation 

density. The linear fitting shows that the decay ratio variation with density is larger for 

the smaller water depth. 

4. Both the flexible and rigid vegetation model have some effects on wave decay. When the 

water depth is smaller than the height of model, decay ratio of rigid model is higher than 

that of the flexible model. When the water depth exceeds the height of model, the decay 

ratio of rigid model decreases a lot and is smaller than that of the flexible model under 

the same water depth. 

5. In the case of no vegetation model, the velocity field is very consistent and can be clearly 

seen that all the velocity vectors are in the same direction. In the cases with rigid and 

flexible vegetation models, the velocity fields are disturbed by vegetation. Moreover, 

there are have boundary layers between the canopy region and open water region in both 

cases of rigid and flexible vegetation, and the boundary layer thickness is thicker in the 



 

rigid vegetation model. 

6. At the wave crest phase, the horizontal averaged velocity on flexible vegetation model 

can be slightly smaller than the case of rigid vegetation which is much smaller than that 

for the no vegetation model. However, the magnitude of flexible vegetation model is 

larger at the wave trough phase. The averaged velocity distribution is more variable on 

the flexible vegetation model both at the wave crest and trough phases, which means 

flexible vegetation may affect the velocity fields more than the rigid vegetation. 
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Chapter 1: Introduction 

1.1 Background 

Coastal cities have rich natural resources, convenient transportation and dense population, 

which are important economic development areas in coastal countries. It is necessary to 

construct effective measures to protect shorelines and artificial coastal structures to reduce 

the damage of extreme marine disasters such as tsunami, storm surge and so on. Many 

traditional coastal engineering measures mainly focus on raising the elevation of seawalls 

and building submerged breakwaters in front of seawalls (Cheng, 2016). Although they can 

play effective and stable roles in reducing waves and preventing coastal erosion, their 

construction and maintenance costs are too high, and they may cut off the original material 

exchange between land and ocean lives completely, because it is hard for the land organism 

to get into the ocean through that concrete structures and it is hard too for the ocean organism. 

These artificial structures may destroy the habitat of intertidal organisms by making 

ecological imbalance. With the increasing awareness of ecological protection in recent years, 

coastal protection with using vegetation has become an important development direction of 

coastal protection. 

 

Intertidal vegetation grows in the transition region between land and sea, providing habitat 

for coastal organisms and directly impacting on coastal ecological structures by changing 

the distribution and transportation of dissolved oxygen, inorganic salt and organic nutrition 

in water. They can not only communicate with the land and sea ecosystems, keep the 

integrity of food chain and intercept the based-land pollutant, but also can resist and reduce 

the damage due to waves to the shorelines and coastal structures by their root, stem and leaf, 

which can produce double benefits in the protection of ecological and physical environment 

(Yuan, 2013; Cheng, 2018). For example, in the event of the 2004 Indian Ocean tsunami, 
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areas with coastal tree vegetation were markedly less damaged than areas with no vegetation 

(Danielsen et al, 2005; Iverson et al, 2007). There is approximately 80% of a 30-year-old 

mangrove forest would absorb 50% of the tsunami's hydrodynamic force (Yanagisawa et al, 

2010; Wang et al, 2016). Similarly, the vegetated dune at Misawa was the primary factor in 

tsunami mitigation after the 2011 Great East Japan tsunami, and next are dune only, 

vegetation only and bare land (Nandasena et al, 2012). Moreover, along the east coast of the 

United States, damage to shorelines protected by marsh was less than that with artificial 

facilities following a category 1 hurricane event (Gittman et al, 2014; Hawkins et al, 2019). 

A 62 million-US-dollar-program has been endorsed to restore and preserve the coastal 

vegetation in 12 Asian and African countries to against the future tsunamis (Baird, 2006; 

Wang et al, 2016). 

 

However, rigid intertidal vegetation, such as the mangrove which can reduce waves 

obviously as mentioned above, are found to be mainly distributed between 5°N and 5°S 

latitude by using earth observation satellite data. The total area of mangroves in the year 

2000 was 137760 km2 in 118 countries and territories in the tropical and subtropical regions 

of the world. Approximately 75% of world’s mangroves are found in just 15 countries (Giri, 

2011). Therefore, for most temperate coastal countries, it is not suitable to grow such rigid 

intertidal vegetation. Instead, flexible intertidal vegetations are more widely distributed 

around the world. 

 

On the other hand, the vegetation selected for research in this paper is Scirpus mariqueter, a 

native herbaceous perennial in China, which also a kind of flexible intertidal vegetation that 

is distributed in the coastal beach of the Yangtze estuary (Ding et al, 2015; Tao et al,2018). 

In recent years, the Chinese government has carried out many researches and projects to try 

to support for conservation and recommended as restoration material of coastal vegetation 

because it has been greatly reduced due to biological invasion. In April 2016, the government 

began the program of ecological restoration and reconstruction of Scirpus mariqueter 

community in Shanghai (Tao et al,2018). The restoration effect of this project is remarkable, 
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and the species and quantity of aquatic vegetations and animals are obviously increased, 

which brings a positive effect to the ecological stability. The propagate coefficient of 

vegetation was high and covered well (see Figure 1.1.1). Meanwhile, the central government 

of China issued a document on the use and protection of the coast in 2017, which specified 

that at least 35% of its shoreline should be maintained in a natural state by 2020 (Hawkins 

et al，2019). 

 

Fig.1.1.1 Ecological restoration effect of Scirpus mariqueter in nanhui, Shanghai (Tao et 

al,2018) 
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1.2 Motivations and objectives of the study 

At present, there have been a lot of researches which focused on rigid vegetation under the 

action of waves, but because flexible intertidal vegetation can be swung in the waves, its 

influence on the wave propagation will be very different from that by rigid vegetation. 

Studies on the wave attenuation characteristics of flexible intertidal vegetation are far from 

enough, especially on the difference of velocity fields between flexible and rigid vegetation. 

Therefore, this thesis will do research on these aspects to improve it. 

 

At the same time, Scirpus mariqueter, as an important intertidal vegetation which needs to 

be restored. The Chinese government has carried out many researches and projects to try to 

support for conservation. And due to the excessive development of coastal regions in recent 

years, extensive intertidal wetlands have shrunk, so this study is also important to prevent 

further decrease of coastal wetlands and maintain the coastal ecological balance. 

 

Based on the above motivations, the main objectives of this study are as follows： 

1. Since there are few studies on the wave attenuation due to flexible intertidal vegetation, 

the first objective of this study is to understand the wave attenuating ability of flexible 

vegetation, through wave decay measurements on flexible vegetation model under the 

action of regular waves with changing water depth and vegetation density in the 

experimental wave flume. 

 

2. The second objective is to better understand the difference of wave attenuation between 

flexible and rigid intertidal vegetations, through wave decay measurements on flexible 

and rigid vegetation models under regular waves with changing water depth in the 

experimental wave flume. 

 

3. Because of the intertidal vegetation may change the flow fields under waves, which is 
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closely related to the transport and diffusion of sediment and marine pollutants along the 

coast. The velocity distribution of wave action with vegetation is the basis for further 

study of their vorticity field characteristics, turbulence characteristics and transportation 

characteristics. Up to now, less attention has been paid to it, especially the difference 

between flexible and rigid vegetation in this way. Therefore, the third objective of this 

study is to understand the difference of velocity fields on flexible and rigid vegetation 

models by using the Particle Image Velocimetry (PIV) technology. 
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1.3 Outline of the thesis 

1. The background of this study will be given in chapter1, including the benefits and cases 

of using intertidal vegetation to be a material of coastal protection, and the reasons to 

choose flexible intertidal vegetation in this study. 

 

2. The laboratory experiment of wave decay measurements on vegetation models will be 

introduced in chapter2. The experiment was designed to measure the wave height and 

calculate the wave decay ratio due to vegetation models, then compared the difference 

between flexible and rigid vegetation models. 

 

3. The laboratory experiment of velocity fields measurement on vegetation models by 

using Particle Image Velocimetry technology will be introduced in chapter3. The 

experiment was designed to measure the velocity distribution and compared the 

difference between flexible and rigid vegetation models. 

 

4. The final conclusions of the wave attenuation, velocity fields and averaged velocity 

distribution will be given at last. 
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Chapter 2: Laboratory experiment of wave decay measurements 

on vegetation models 

2.1 Introduction 

In this chapter, an experiment of wave decay due to vegetation models in a wave flume is 

described. The experiment is divided into two groups. The first group is to study the wave 

attenuation due to flexible vegetation model under the action of regular waves with changing 

water depth and vegetation density. The second group is to study the difference of wave 

attenuation between flexible and rigid vegetation models under regular waves with changing 

water depth. 
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2.2 Methodology 

2.2.1 Experimental setup and instrumentation 

The laboratory experiments were carried out in the wave flume in the Coastal Environment 

and Engineering Laboratory of Tokyo University of Marine Science and Technology. The 

wave flume was 720cm long, 15cm wide and 30cm high, as shown in Fig.2.2.1 and Fig2.2.2. 

It was equipped with a computer-controlled piston-type wave-maker at one end (Feng, 2013). 

The components of wave maker are step motor, slider and wave paddle, which presented in 

the Fig2.2.3. In order to reduce the wave reflection from the wall of wave flume, the 

absorbing materials are placed on both ends of wave flume, as shown in Fig.2.2.4. 

 

 

Fig.2.2.1 Wave flume of Tokyo University of Marine Science and Technology 
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Fig.2.2.2 Sketch of the experimental setup 
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Fig.2.2.3 Wave generation system of the flume 

 

 

Fig.2.2.4 Absorbing materials on both ends of the wave flume 
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The type of wave gauge used in the experiment is CHT6-30 and presented in the Fig.2.2.5, 

which made by KENEK company. The positions of these three wave gauges are shown in 

Fig.2.2.2, where the distance between ch2 and ch3 is 135.4cm, located in front of the 

vegetation model and the back of it. The data capture system consists of wave gauge, BNC 

cable, initial data collector, data box and c-logger software, as shown in Fig.2.2.6. 

 

 

Fig.2.2.5 Wave gauge used in the experiment 

 

Fig.2.2.6 Data capturing system for the wave gauges 
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Before the experiment, calibration of the wave gauges was carried out to obtain the 

relationship between water elevation and output voltage value. Raise the water surface to the 

appropriate position so that it can be measured by wave gauge from 5cm up to 5cm down. 

Set the initial water level at 0, then raise it 5 times, each time by 1cm and get the voltage 

value. Similarly, drop the water level down 5 times, each time by 1cm and get the voltage 

value. Finally, the regression lines and calibration functions of each wave gauge are obtained 

in the Fig.2.2.7. 

 

 

Fig.2.2.7 Calibration data of the wave gauges 

2.2.2 Vegetation model 

The vegetation model used in the experiment was printed by the L-DEVO company's 3D 

printer, M2030TP. The 3D printer is presented in the Fig.2.2.8. The construction of the 

whole vegetation model belt in the experiment is divided into three steps. Firstly, printed out 

a piece of vegetation models as shown in Fig.2.2.9. The height of each vegetation model was 

12.5cm and the width was 0.3cm. Then, seven pieces were glued to a 2mm transparent plastic 
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plate to be a unit. One unit of vegetation model is presented in the Fig.2.2.10. In the third 

step, put all units together to obtain the whole vegetation belt used in the experiment, as 

shown in Fig.2.2.11. 

 

 

Fig.2.2.8 L-DEVO M2030TP 3D printer 

 

Fig.2.2.9 Two pieces of vegetation models 
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Fig.2.2.10 One unit of vegetation models 

 

Fig.2.2.11 The whole vegetation model belt 

 

In the first group of this experiment, there are three kinds of densities of vegetation models 

were used, 0ind/m2, 3660ind/m2 and 11025ind/m2. The vegetation model arrangement is 

presented in the Fig.2.2.12. In the second group, the density of vegetation model remained 
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unchanged at 11025 ind/m2, and two kinds of flexibility were printed, flexible and rigid 

vegetation model, as shown in the Fig.2.2.13. 

 

Fig.2.2.12 Vegetation model arrangements. (a)No vegetation, (b)Low density, (c)High 

density 

 

Fig.2.2.13 Flexible (top) and rigid (bottom) vegetation models 
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2.2.3 Experimental conditions 

The experiment was conducted for twenty cases with different conditions, which divided 

into the two groups. The conditions were summarized in the Tab.2.2.1.  

Table 2.2.1 Experimental conditions 

Group Case 
Model 

type 

Vegetation 

density 

(ind/m2) 

Water depth 

h (cm) 

Wave height 

H (cm) 

Wave period 

T (s) 

1 

1 

No 

model 
0 

4.0 2.13 0.83 

2 8.0 2.35 0.83 

3 12.0 2.97 0.85 

4 16.0 3.18 0.80 

5 

Flexible 

model 

3660 

4.0 2.12 0.83 

6 8.0 2.28 0.81 

7 12.0 2.81 0.82 

8 16.0 3.14 0.83 

9 

11025 

4.0 2.04 0.83 

10 8.0 2.20 0.81 

11 12.0 2.93 0.83 

12 16.0 3.03 0.81 

2 

13 

Flexible 

model 

11025 

4.0 2.13 0.82 

14 8.0 2.33 0.86 

15 12.0 2.96 0.81 

16 16.0 3.17 0.82 

17 

Rigid 

model 

4.0 2.13 0.83 

18 8.0 2.35 0.82 

19 12.0 3.00 0.82 

20 16.0 3.10 0.81 
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Before investigating the wave attenuation along vegetation model region, the hydrodynamic 

parameters for different water depths are studied as listed in Tab.2.2.2. Here, 𝑢𝑚𝑎𝑥 is the 

averaged horizontal velocity at wave crest at different water depth, which measured by PIV. 

The Reynolds number and Froude number are 

 

𝑅𝑒 =
𝑢max𝑑

ν
(2.1) 

𝐹𝑟 =
𝑢max

√gℎ
(2.2) 

 

Table 2.2.2 Hydrodynamic parameters for different water depth 

Parameter 
Water depth h (cm) 

4.0 8.0 12.0 16.0 

Wave height H (cm) 2.13 2.35 2.97 3.18 

Horizontal velocity 𝑢𝑚𝑎𝑥 (cm/s) 16.86 16.90 16.90 16.89 

Reynolds number Re 505.8 507 507 506.7 

Froude number Fr 0.27 0.19 0.16 0.13 

2.2.4 Data processing 

For every case at least 4941 original data were recorded by wave gauges, and the time 

interval of each data is 0.01s. The calibration data results the form of the calibration equation 

as follows, 

𝑦 = 𝑎𝑥 + 𝑏 (2.3) 

Then according to the calibration result to calculate the water surface elevation value, where 

𝑥0 is the outputted voltage from the wave gauges. 

𝜂0 = 𝑎 ∙ 𝑥0 + 𝑏 (2.4) 

𝜂′ = 𝜂0 −
∑ 𝜂0

4941
1

4941
(2.5) 

The root-mean-square value of water surface elevation 𝜂𝑅.𝑀.𝑆. is, 
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𝜂𝑅.𝑀.𝑆. = √
∑ (𝜂′2)4941

1

4941
(2.6) 

Because the waves were assumed to be regular, the wave height 𝐻 is, 

𝐻 = 2√2𝜂𝑅.𝑀.𝑆. (2.7) 

In the experiment of wave attenuation, the wave height decay ratio K is usually taken as the 

index of wave attenuation degree. The equation is 

𝐾 = (1 −
𝐻3

𝐻2
) × 100% (2.7) 

Where, the value of 𝐻2 is the incoming wave height in front of vegetation models, and the 

value of 𝐻3 is the wave height after vegetation models. If the wave decay ratio is larger, 

the attenuation of wave passing through the flexible vegetation belt is more obvious. 

2.3 Results and conclusion 

The results of different cases are shown in Tab.2.3.1. 
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Table 2.3.1 The wave height and wave decay ratio of different cases 

Group Case h (cm) 𝑯𝟏(cm) 𝑯𝟐(cm) 𝑯𝟑(cm) 𝑲(%) 

1 

1 4.0 2.13 1.77 1.55 12.44 

2 8.0 2.35 1.96 1.80 8.51 

3 12.0 2.97 2.57 2.40 6.62 

4 16.0 3.18 2.88 2.74 4.88 

5 4.0 2.12 1.65 0.57 65.33 

6 8.0 2.28 1.79 0.89 50.24 

7 12.0 2.81 2.49 1.44 42.25 

8 16.0 3.14 2.80 1.83 34.53 

9 4.0 2.04 1.59 0.12 92.21 

10 8.0 2.20 1.73 0.25 85.67 

11 12.0 2.93 2.41 0.59 75.48 

12 16.0 3.03 2.64 1.07 59.47 

2 

13 4.0 2.13 1.71 1.37 19.89 

14 8.0 2.33 1.92 1.59 16.91 

15 12.0 2.96 2.64 2.27 14.01 

16 16.0 3.17 2.82 2.46 12.81 

17 4.0 2.13 1.87 1.45 22.28 

18 8.0 2.35 2.03 1.51 25.78 

19 12.0 3.00 2.76 1.95 29.38 

20 16.0 3.10 2.88 2.63 8.64 

2.3.1 Wave decay on flexible vegetation models 

As described above, there are two groups in this experiment. In the first group, a total of 

three vegetation densities were designed. Fig.2.3.1 to Fig.2.3.4 show snapshots at the 

experiment for different water depth under the condition of low vegetation model density, 

and Fig.2.3.5 to Fig.2.3.8 show them for high vegetation model density. 
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Fig.2.3.1 Snapshot for case5 (h=4.0cm, H=2.12cm) 

 

Fig.2.3.2 Snapshot for case6 (h=8.0cm, H=2.28cm) 
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Fig.2.3.3 Snapshot for case7 (h=12.0cm, H=2.81cm) 

 

Fig.2.3.4 Snapshot for case8 (h=16.0cm, H=3.14cm) 

 

Fig.2.3.5 Snapshot for case9 (h=4.0cm, H=2.04cm) 



 22 

 

Fig.2.3.6 Snapshot for case10 (h=8.0cm, H=2.20cm) 

 

Fig.2.3.7 Snapshot for case11 (h=12.0cm, H=2.93cm) 

 

Fig.2.3.8 Snapshot for case12 (h=16.0cm, H=3.03cm) 
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Taking the horizontal distance as the abscissa and the wave height as the ordinate, wave 

height variations along the horizontal distance for group1 cases are presented in the Fig.2.3.9 

to Fig.2.3.11. Each of the figure shows results for the same vegetation density. It is observed 

that wave height decreases along the horizontal distance and significantly decreases in region 

of the vegetation model. 

 

 

Fig.2.3.9 The result of wave height along horizontal distance with no vegetation model 
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Fig.2.3.10 The result of wave height along horizontal distance with low vegetation density 

 

Fig.2.3.11 The result of wave height along horizontal distance with high vegetation density 
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Taking the water depth as the abscissa and the wave decay ratio as the ordinate, variations 

of wave decay ratio for different water depth are shown in Fig.2.3.12. Under conditions of 

the same vegetation density, the decay ratio decreases with increase of water depth, showing 

approximate linear changes and higher vegetation density gives larger absolute value of the 

slope of linear functions. 

 

 

Fig.2.3.12 The result of wave decay ratio along water depth 
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Taking the square root of vegetation density as the abscissa and the wave decay ratio as the 

ordinate, variations of wave decay ratio for the same water depth are shown in Fig.2.3.13. 

Under conditions of the same water depth, wave decay ratio increases with vegetation 

density. The linear fitting shows that the decay ratio variation with density is larger for the 

smaller water depth. 

 

 

Fig.2.3.13 The result of wave decay ratio along the square root of vegetation density 
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2.3.2 Wave decay on different flexibility of vegetation models 

In the second group of the experiment, two flexibilities of vegetation models were employed. 

The snapshots of the experiment are presented in the Fig.2.3.14 and Fig.2.3.15. Meanwhile, 

the results of the wave height along horizontal distance and the wave decay ratio along water 

depth and vegetation density are presented in Fig.2.3.16 to Fig.2.3.18. 

 

 

Fig.2.3.14 Snapshot for flexible vegetation model 

 

Fig.2.3.15 Snapshot for rigid vegetation model 
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Fig.2.3.16 The result of wave height along horizontal distance with flexible vegetation 

model 

 

Fig.2.3.17 The result of wave height along horizontal distance with rigid vegetation model 
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Fig.2.3.18 The result of wave decay ratio along water depth 

 

From the above figures, both the flexible and rigid vegetation model have some effects on 

wave decay. When the water depth is smaller than the height of vegetation models, wave 

decay ratio of rigid vegetation model is higher than that of the flexible vegetation model; 

when the water depth exceeds the height of model, the wave decay ratio of rigid decreases a 

lot and is smaller than that of the flexible vegetation model under the same water depth. 

 

In the case 16 and 20, the reason for these results is when the water depth is larger than rigid 

vegetation height, the wave attenuation ability will be greatly reduced. The decrease maybe 

slow or sudden, and the slope of decrease maybe varies according to the different experiment. 

However, when the water depth is larger than flexible vegetation height, the wave decay will 

be increased to a stable value or increased first and then decreased. When the flexible 

vegetation condition is compared to the rigid, the result maybe depend on the flexibility of 

flexible vegetation and the difference value of flexibility between flexible and rigid, which 
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requires us to use the same martial to make more different flexibilities of vegetation models 

to do further experiment. 
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Chapter 3: Laboratory experiment of velocity fields 

measurement on vegetation models by using Particle Image 

Velocimetry (PIV) 

3.1 Introduction  

Along the coast, the intertidal vegetation not only reduce the wave height, but also change 

the transport and diffusion of sediment and marine pollutants, which depends significantly 

on velocity distribution inside and outside of vegetation region. On the purpose of coastal 

protection, many experiments and numerical simulations were carried out on the interaction 

between the surface waves and the emerged array of cylinders (Augustin et al，2009; Irtem 

et al，2008; Huang et al，2011; Iimura et al，2012; Wu et al，2013). Recently, more attention 

has been paid to the internal and external flow structure in the interaction of vegetation and 

ocean waves (Nepf et al，2000; Nepf et al，2007; Nepf et al，2008; Wang et al, 2016). The 

dense canopies of coastal vegetations can alter the flow field from that of a simple bottom 

boundary layer and influence the material transports, as well as dissipate the wave energy 

(Reidenbach et al，2007; Nepf et al，2012; Wang et al, 2016). In this aspect, the effects of 

the submerged canopies on the flow characteristics, the velocity structure, mass transfer and 

energy dissipation were studied (Lowe et al，2005; Lowe et al，2007). Moreover, numerical 

solutions were simulated to obtain the precise flow structure to analyze the effect of the 

vegetation, which provides another quantitative approach (Cui et al，2008; Ma et al，2013; 

Wu et al，2013). 

 

Even though, our current knowledge of the wave fields with vegetation is still not enough 

for coastal protection and environmental protection, especially less attention has been paid 

to compare flexible and rigid vegetation in flow fields. The fundamental studies for the wave 
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attenuation and the flow field are still insufficient. Meanwhile, the Particle Image 

Velocimetry (PIV) has been highly developed in recent two decades and employed in vast 

experiments (Raffel et al., 2007; Wang et al, 2016). The PIV technique has served to measure 

the flow structure around a single cylinder (Ozgoren, 2006; Dong et al., 2006; Wang et al, 

2016). 

 

Therefore, in the present study, an experiment of velocity fields measurement over flexible 

and rigid vegetation models by using the Particle Image Velocimetry (PIV) was carried out. 

Because of the limited time, the experiment was only done at the water depth of 16cm, that 

is the condition of high tide level. 
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3.2 Principle of Particle Image Velocimetry (PIV) 

Particle Image Velocimetry (PIV) is a kind of velocity measurement technique by non-

interferential and indirect way. Its characteristic is beyond the limitations of single point 

velocimetry (such as LDV), which can record whole velocity fields and provide abundant 

spatial structure characteristics of the flow field. This kind of technique does not interfere in 

the flow field except for the scattering of tracer particles to the flow field, so it can accurately 

and effectively measure the flow field (Qie et al，2014). 

 

The experimental setup of a PIV system typically consists of several subsystem. Normally, 

tracer particles are added to the flow, a light sheet within the flow is illuminated by laser 

within a short time. It is assumed that the tracer particles move with local flow velocity. The 

light scattered by the tracer particles is recorded via a high-speed camera. The output of the 

digital sensor is transferred to the memory of a computer directly and the sophisticated post-

processing is required to calculate the displacement of the particle images between the light 

pulses. Here, Fig.3.2.1 is an example of PIV system (Raffel et al, 2007; Feng, 2013; Zhu, 

2018). 

 

 

Fig.3.2.1 Sketch of a typical laboratory PIV system (Raffel et al, 2007) 
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3.3 Methodology 

3.3.1 Experimental setup and instrumentation 

The wave flume and vegetation models of this experiment are the same as those described 

in Chapter 2, except for the PIV system, shown in Fig.3.3.1. The PIV system in this 

experiment consists of laser system (including a laser head, laser transmitter and controlling 

unit), high-speed camera system (including a high-speed CCD camera) and computer system. 

The Fig.3.3.2 shows snapshot at the experiment of flexible vegetation models by using PIV 

system and the Fig.3.3.3 shows the region of observation. 

 

The laser system made by KATO LOKEN was used to illuminate the measuring section and 

the range of the laser thickness is between 1mm to 5mm, which is shown in Fig.3.3.4. The 

laser head can adjust the laser direction and the thickness of laser sheet and the laser 

transmitter can adjust the magnitude of laser. Fig.3.3.5 shows the type of high-speed CCD 

camera HAS-D72, which was made by DITECT. Its maximum frame rate is 2000 fps with 

the maximum resolution 1024×1280 pixels. The camera can be trigged and recorded by outer 

signals (Zhu, 2018). 

 

In addition, PIV is an indirect way to obtain the velocity of particles rather than the velocity 

of fluid. So, the quality of tracer particles play an important role to the results. The 

concentration of the tracer particles must be tested to make sure good image can be obtained 

by adding proper quantity. In this experiment, tracer particles HGS Hollow Glass Spheres 

produced by DANTEC were used and their diameter is 10μm, as shown in Fig.3.3.6 (Zhu, 

2018). 
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Fig.3.3.1 PIV system 

 

Fig.3.3.2 Snapshot for flexible experiment by using PIV system 
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Fig.3.3.3 The region of observation in this experiment 

 

Fig.3.3.4 Laser system 
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Fig.3.3.5 High-speed CCD camera 

 

Fig.3.3.6 Tracer particles 
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3.3.2 Calibration 

Before the experiment, the calibration experiment of PIV was carried out to obtain the 

relationship between the pixel distance and the real distance. A ruler was placed in the 

middle of wave flume, in the same position of laser sheet, and used the high-speed camera 

to capture the images, as shown in Fig.3.3.7. Then all frames were inputted to the software 

named Motion Studio, which can directly transfer the distance unit from pixel to centimeter. 

 

 

Fig.3.3.7 Calibration 

3.3.3 Data processing 

For every case at least 8000 original images were recorded by high speed camera, and the 

time interval of each image is 0.002s. The main idea of the PIV evaluation is based on digital 
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spatial correlation analysis. Firstly, the particles are illuminated by laser and the second 

frame is recorded at a short time later during which the particles will have moved according 

to the flow. The spatial translation of groups of particles can be observed. The image pair 

can yield a field of linear displacement vectors where each vector is formed by analyzing 

the movement of localized groups of particles. In practice, this is accomplished by extracting 

small samples or interrogation windows and analyzing them statically, as shown in Fig.3.3.8 

(Feng, 2013; Zhu, 2018). 

 

 

Fig.3.3.8 Sketch for illustration of interrogation window (Raffel et al, 2007; Feng, 2013; 

Zhu, 2018) 

 

The method to find the best match between the images in a statistical sense is accomplished 

by using the discreet cross-correlation function, whose integral function is shown as Eq.3.1: 
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𝑅𝐼𝐼(𝑥, 𝑦) =  ∑ ∑ 𝐼(𝑖, 𝑗)𝐼′(𝑖 + 𝑥, 𝑗 + 𝑦)

𝐿

𝑗=−𝐿

𝐾

𝑖=−𝐾

(3.1) 

 

The variable I and I’ are the samples as extracted from the images where I’ is larger than the 

template I. Especially, the template I is linearly shifted around in the sample I’ without 

extending over edges of I’. For each choice of sample shift (x,y), the sum of the products of 

all overlapping pixel intensities produces one cross-correlation value RII(x,y). By applying 

this operation for a range of shifts (−M ≤ x ≤ +M, −N ≤ y ≤ +N), a correlation planes the 

size of (2M+1) × (2N+1) is formed. This is shown in Fig.3.3.9. For shift values at which the 

samples particle images align with each other, the sum of the products of the pixel intensities 

will be larger than elsewhere, resulting in a high cross-correlation value RII at this position. 

Especially, the cross-correlation function statistically measures the degree of match between 

the two samples for a given shift. The highest value in the correlation plan can then be used 

as d direct estimate of the particle image displacement (Feng, 2013; Zhu, 2018). 

 

 

Fig.3.3.9 Sketch of the illustration of the direct cross correlation (Raffel et al, 2007; Feng, 

2013; Zhu, 2018) 

 

For several cases it may be useful to quantify the degree of correlation between the two 

image samples. The standard cross-correlation function Eq.3.2 will yield different maximum 

correlation values for the same degree of matching because the function is not normalized. 

For instance, samples with many (or brighter) particle images will produce much higher 
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correlation values than interrogation windows with fewer (or weaker) particle images. This 

makes a comparison of the degree of correlation between the individual interrogation 

windows impossible. The cross-correlation coefficient function normalizes the cross-

correlation function Eq.3.2 properly: 

c𝐼𝐼(x, y) =
c𝐼𝐼(x, y)

√𝜎𝐼(𝑥, 𝑦)√𝜎𝐼
′(𝑥, 𝑦)

(3.2) 

 

where 

c𝐼𝐼(x, y) = ∑ ∑[𝐼(𝑖. 𝑗) − 𝜇𝑖]

𝑁

𝑗=0

𝑀

𝑖=0

[I′(i + x, j + y) − μI′(x,y)] (3.3) 

 

𝜎𝐼(𝑥, 𝑦) = ∑ ∑[𝐼(𝑖. 𝑗) − 𝜇𝐼]2

𝑁

𝑗=0

𝑀

𝑖=0

 

(3.4) 

 

𝜎′
𝐼(𝑥, 𝑦) = ∑ ∑[𝐼′(𝑖.𝑗) − 𝜇𝐼′(x,y)]

2
𝑁

𝑗=0

𝑀

𝑖=0

 

(3.5) 

 

The value μi is the average of the template and is computed only once while μi (x, y) is the 

average of I’ coincident with the template I at position (x, y). It must be computed for every 

position (x, y). 

3.4 Results and conclusion 

3.4.1 Velocity fields 

The instantaneous flow fields may be different under the different conditions of vegetation 

models. Therefore, in this experiment, the velocity fields will be compared with no 
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vegetation model, rigid vegetation model and flexible vegetation model, as shown in 

Fig.3.4.1 to Fig.3.4.3. 
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Fig.3.4.1 The result of instantaneous velocity fields with no vegetation model 

 

In the Fig.3.4.1, when at time a, the water surface is in the trough position. The velocity 

direction is horizontal to the left and the distribution is very uniform and consistent. When 

at time b, the water surface began to rise. The velocity direction is slightly to the upper left 

and the distribution is very uniform and consistent. When at time c, the water surface 

continues to rise, and the velocity direction is mostly to the upper left, especially near the 

water surface. When at time d, the velocity direction is mostly to the upward. When at time 

e, the water surface is about to the crest position. The velocity direction is to the upper right 

and the distribution is very uniform and consistent. When at time f, the water surface is in 

the crest position. The velocity direction is horizontal to the right and the distribution is very 

uniform and consistent. When at time g, the water surface began to down. The velocity 
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direction is to the lower right and the distribution is very uniform and consistent. When at 

time h, the water surface continues to down, and the velocity direction is mostly to the 

downward. When at time i, the velocity direction is mostly to the lower left, especially near 

the water surface. When at time j, the water surface is about to the trough position, and the 

velocity direction is slightly to the lower left, especially near the water surface. 

 

From the above results, it can be clearly seen all the velocity vectors are mostly in the same 

direction in every phase, which means the instantaneous velocity fields in this case are very 

consistent and stable.  
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Fig.3.4.2 The result of instantaneous velocity fields with rigid vegetation model 
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In the Fig.3.4.2, when at time a, the water surface is in the trough position. The velocity 

direction is horizontal to the left and has the boundary layer between the vegetation canopy 

and open water region. When at time b, the water surface began to rise. The velocity direction 

is slightly to the upper left and is to the downward near the vegetation canopy. When at time 

c, the water surface continues to rise, and the velocity direction is mostly to the upper left 

and it also has the boundary layer between the vegetation canopy and open water region. 

When at time d, the velocity direction is mostly to the upward and it has some turbulence 

and vortex flow. When at time e, the water surface is about to the crest position. The velocity 

direction is to the upper right, right and upper right from left to right region. When at time f, 

the water surface is in the crest position. The velocity direction is horizontal to the right and 

the distribution is mostly consistent. When at time g, the water surface began to down, the 

velocity direction is mostly to the lower right. When at time h, the water surface continues 

to down, and the velocity direction is mostly to the downward. When at time i, the velocity 

direction is mostly to the lower left and is to the downward near the vegetation canopy. 

When at time j, the water surface is about to the trough position, and the velocity direction 

is slightly to the lower left and it also has the boundary layer between the vegetation canopy 

and open water region. 

 

From the above results, the velocity vectors are not in the same direction, which means the 

instantaneous velocity fields are disturbed by vegetation model and the boundary layer 

between the vegetation canopy region and open water region is very clear. 
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Fig.3.4.3 The result of instantaneous velocity fields with flexible vegetation model 

 

In the Fig.3.4.3, when at time a, the water surface is in the trough position and the vegetation 

model moves to the left to the maximum. The velocity direction is horizontal to the left and 

has the boundary layer between the vegetation canopy and open water region. When at time 

b, the water surface began to rise. The velocity direction is slightly to the upper left and it 

also has the boundary layer between the vegetation canopy and open water region. When at 

time c, the water surface continues to rise, and the velocity direction is mostly to the upper 

left and it also has the boundary layer. When at time d, the velocity direction is mostly to the 

upward and has some turbulence and vortex flow. When at time e, the water surface is about 
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to the crest position. The velocity direction is mostly to the upper right in the open water 

region and is to the upward above the vegetation canopy. When at time f, the water surface 

is in the crest position and the vegetation model moves to the right to the maximum. The 

velocity direction is horizontal to the right in the open water region. In the region above the 

vegetation canopy, the velocity direction is to the upper right and has the vortex flow. When 

at time g, the water surface began to down, the velocity direction is mostly to the lower right 

and it also has the vortex flow. When at time h, the water surface continues to down. The 

velocity direction is mostly to the lower left in the open water region and is to the downward 

above the vegetation canopy and it also has some turbulence and vortex flow. When at time 

i, the velocity direction is mostly to the lower left and is to the downward near the vegetation 

canopy. When at time j, the water surface is about to the trough position. The velocity 

direction is slightly to the lower left and is to the downward near the vegetation canopy. 

 

From the above results, the flexible vegetation model moves around every time. The 

instantaneous velocity fields are variable and disturbed by vegetation model very much. 

Compared with the rigid vegetation, the boundary layer thickness in flexible is thinner at the 

wave trough phase, and the size and range of velocity fields variation in flexible is larger at 

the wave crest phase. 

3.4.2 Velocity distribution 

From the above results, it is found that the velocity fields at the wave crest and trough are 

very different. Therefore, the averaged velocity distribution at the two phases are further 

analyzed and presented in Fig.3.4.4 and Fig.3.4.5. 
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Fig.3.4.4 The result of averaged velocity distribution at wave crest phase 

 

Fig.3.4.5 The result of averaged velocity distribution at wave trough phase 
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In the Fig.3.4.4, under the condition of no vegetation model, the velocity ranges from 14 to 

17cm/s and decreases very slowly from the bottom to the top. Under the condition of rigid 

vegetation model, the velocity ranges from 10 to 14cm/s and the velocity distribution process 

is increases first and then decreases slowly from the vegetation canopy to the top. Under the 

condition of flexible vegetation model, the velocity ranges from 0 to 14cm/s and the velocity 

distribution process is increases first and then decreases suddenly from the vegetation 

canopy to the top. 

 

In the Fig.3.4.5, under the condition of no vegetation model, the velocity ranges from 8 to 

12cm/s and increases slowly from the bottom to the top. Under the condition of rigid 

vegetation model, the velocity ranges from 0 to 14cm/s and the velocity distribution process 

is slow increases first, sudden increases and then slow increases from the vegetation canopy 

to the top. Under the condition of flexible vegetation model, the velocity ranges from 0 to 

18cm/s and the velocity distribution process is the same as the condition of rigid vegetation 

model. 

 

The above results show that the horizontal averaged velocity on flexible vegetation model 

can be slightly smaller than the case of rigid vegetation model which is much smaller than 

that for no vegetation model at wave crest. However, the magnitude of it is larger than rigid 

vegetation model at wave trough. The variation of averaged velocity distribution is large on 

the flexible vegetation model both at the wave crest and wave trough, which means flexible 

vegetation may affect the velocity fields more than the rigid vegetation. 
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Chapter 4: Conclusions and limitations 

The conclusions can be drawn as follows: 

 

1. Under conditions of the same vegetation density and water depth, wave height decreases 

along the horizontal distance and significantly decreases in region of vegetation model. 

2. Under conditions of the same vegetation density, the decay ratio of wave height 

decreases with increase of water depth, showing approximate linear changes. Higher 

vegetation density gives larger absolute value of the slope of linear functions. 

3. Under conditions of the same water depth, wave decay ratio increases with vegetation 

density. The linear fitting shows that the decay ratio variation with density is larger for 

the smaller water depth. 

4. Both the flexible and rigid vegetation model have some effects on wave decay. When the 

water depth is smaller than the height of model, decay ratio of rigid model is higher than 

that of the flexible model. When the water depth exceeds the height of model, the decay 

ratio of rigid model decreases a lot and is smaller than that of the flexible model under 

the same water depth. 

5. In the case of no vegetation model, the velocity field is very consistent and can be clearly 

seen that all the velocity vectors are in the same direction. In the cases with rigid and 

flexible vegetation models, the velocity fields are disturbed by vegetation. Moreover, 

there are have boundary layers between the canopy region and open water region in both 

cases of rigid and flexible vegetation, and the boundary layer thickness is thicker in the 

rigid vegetation model. 

6. At the wave crest phase, the horizontal averaged velocity on flexible vegetation model 

can be slightly smaller than the case of rigid vegetation which is much smaller than that 

for the no vegetation model. However, the magnitude of flexible vegetation model is 

larger at the wave trough phase. The averaged velocity distribution is more variable on 

the flexible vegetation model both at the wave crest and trough phases, which means 
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flexible vegetation may affect the velocity fields more than the rigid vegetation. 

 

While doing experiments the limitations are as follows: 

 

1. Since the printing time of the vegetation model is too long, the rigid vegetation model is 

only made of short length. It should be better if we provided more vegetation model. 

2. The flexible vegetation model used in the experiments is white, but it would have been 

better to use a dark color to reduce the scattering from the LASER sheet.  
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