TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

Functional Sperm of the Yellowtail (Seriola quinqueradiata) Were Produced in the Small-Bodied Surrogate, Jack Mackerel (Trachurus japonicus).

メタデータ	言語: eng
	出版者:
	公開日: 2019-01-07
	キーワード (Ja):
	キーワード (En):
	作成者: Morita, Tetsuro, Kagayaki Morishima, Misako
	Miwa, Naoki Kumakura, Satomi Kudo, Ichida, Kensuke,
	Toru Mitsuboshi, Yutaka Takeuchi, Yoshizaki, Goro
	メールアドレス:
	所属:
URL	https://oacis.repo.nii.ac.jp/records/1636
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	l Figure	legends
		0

2	Fig. 1 Section of the donor testis of the yellowtail stained with hematoxylin and eosin. a Overview of
3	the testis. Upper and lower rectangles show the area rich in type A spermatogonia and sperm,
4	respectively. b and c show higher magnification images of upper and lower rectangles in a, respectively.
5	Scale bars: 2 mm (a) and 20 μ m (b and c).
6	
7	Fig. 2 Intraperitoneal transplantation of donor testicular cells into the jack mackerel larvae. a
8	Bright-field image. b Fluorescent image. c Transplanted (TP) and non-transplanted (NTP) individuals.
9	N, transplantation needle. Scale bar = 1 mm.
10	
11	Fig. 3 Incorporation of transplanted PKH26-labeled cells into recipient genital ridges. Fluorescent (a,
12	c) and yellowtail vasa in situ hybridization (b, d) images of the excised genital ridges from
13	transplanted (a , b) and nontransplanted (c , d) fish at 20 dpt. Arrowheads indicate donor-derived germ
14	cells that were labeled with PKH-26 (a), and were expressing the yellowtail vasa mRNA (b). Scale bars
15	= 20 μm.
16	
17	Fig. 4 Sections of jack mackerel (a, b) and the yellowtail (c, d) testis hybridized with antisense jack
18	mackerel (a , c) and yellowtail <i>vasa</i> probes (b , d). Scale bars = 20 μ m.

- **Fig. 5** RT-PCR amplification of donor-derived yellowtail *vasa* mRNA in recipient gonads.

21	Electrophoresis patterns of RT-PCR of recipient number $1-14$ (a) and $15-28$ (b) using specific primers
22	for the yellowtail vasa (upper panels) and jack mackerel vasa (lower panels) cDNA sequences. Lane P
23	is a positive control obtained using cDNA derived from the yellowtail testis as template. Lane N is a
24	negative control containing no cDNA template. M represents a molecular weight marker.
25	
26	Fig. 6 Detection of the colony containing donor-derived germ cells in recipient testis. Serial sections of
27	testis from jack mackerel testis hybridized with yellowtail (a) and jack mackerel (b) vasa probes and
28	were stained with hematoxylin and eosin (c). The colony containing donor-derived germ cells is
29	surrounded with a dotted line. Scale bars = $20 \ \mu m$.
30	
31	Fig. 7 PCR amplification of donor-derived yellowtail vasa genomic DNA fragment in recipient semen.
32	Lane P is a positive control obtained using genomic DNA extracted from the yellowtail semen as
33	template. Lane N is a negative control containing no DNA template. Electrophoretic mobility of the
34	targeted DNA fragment was indicated by arrowheads.
35	
36	Fig. 8 Embryos at 48 h-post-fertilization obtained from progeny tests. a Normal embryos obtained by
37	crossing the yellowtail female and male. b Eggs obtained by crossing the yellowtail female and male
38	recipient number 28. Arrowhead indicates a normal embryo. c Eggs obtained by crossing the yellowtail
39	female and wild-type jack mackerel male. Scale bars = 1 mm.

 $\mathbf{2}$

41	Fig. 9 Donor-derived offspring obtained from progeny tests. a Newly hatched larva obtained by
42	crossing the yellowtail female and male. $b-d$ Newly hatched larvae obtained by crossing the yellowtail
43	female and male recipient number 28. b Normal individual. c , d Abnormal individuals. Scale bars =
44	500 µm.
45	
46	Fig. 10 PCR amplification of β -actin and vasa genomic DNA fragments in larvae obtained from
47	progeny tests. Electrophoresis patterns of PCR using specific primers for yellowtail β -actin (a), jack
48	mackerel β -actin (b), yellowtail vasa (c), and jack mackerel vasa (d) DNA sequences. Lane 1 and 2 are
49	larva samples obtained from the crosses of recipient mackerel number 28 and the yellowtail females.
50	Lane 3 and 4 are larva samples of wild type yellowtail. Lane 5 and 6 are wild type jack mackerel. Lane
51	7 is a negative control containing no DNA template. <i>M</i> represents a molecular weight marker.
52	

3