TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

Functional Sperm of the Yellowtail (Seriola quinqueradiata) Were Produced in the Small-Bodied Surrogate, Jack Mackerel (Trachurus japonicus).

メタデータ	言語: eng
	出版者:
	公開日: 2019-01-07
	キーワード (Ja):
	キーワード (En):
	作成者: Morita, Tetsuro, Kagayaki Morishima, Misako
	Miwa, Naoki Kumakura, Satomi Kudo, Ichida, Kensuke,
	Toru Mitsuboshi, Yutaka Takeuchi, Yoshizaki, Goro
	メールアドレス:
	所属:
URL	https://oacis.repo.nii.ac.jp/records/1636
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

2	surrogate, jack mackerel (<i>Trachurus japonicus</i>)
3	
4	Authors:
5	Tetsuro Morita, ^{*,1} Kagayaki Morishima, ¹ Misako Miwa, ² Naoki Kumakura, ¹ Satomi Kudo, ³ Kensuke
6	Ichida, ² Toru Mitsuboshi, ¹ Yutaka Takeuchi, ⁴ and Goro Yoshizaki ²
7	Central Research Laboratory, ¹ Nippon Suisan Kaisha, Ltd., 1-32-3 Nanakuni, Hachioji-shi, Tokyo
8	192-0991, Japan
9	Department of Marine Biosciences, ² Tokyo University of Marine Science and Technology, 4-5-7 Konan,
10	Minato-ku, Tokyo 108-8477, Japan
11	Oita Marine Biological Technology Center, ³ Nippon Suisan Kaisha, Ltd., 508-8 Ariakeura Tsurumi,
12	Saiki-shi, Oita 876-1204, Japan
13	Research Center for Advanced Science and Technology, ⁴ Tokyo University of Marine Science and
14	Technology, 670 Banda, Tateyama-shi, Chiba 294-0308, Japan
15	

Functional sperm of the yellowtail (Seriola quinqueradiata) were produced in the small-bodied

16 *Correspondence: Tel and Fax: 81 42 638 0496; e-mail: morita77@nissui.co.jp

17

18 Abstract

19Production of xenogeneic gametes from large-bodied, commercially important marine species in 20closely related smaller surrogates with short generation times may enable rapid domestication of the targeted species. In this study we aimed to produce gametes of Japanese yellowtail (Seriola 2122quinqueradiata) using jack mackerel (Trachurus japonicus) as a surrogate with a smaller body size and 23shorter maturation period. Donor spermatogonia were collected from the testes of yellowtail males and $\mathbf{24}$ transferred into the peritoneal cavity of 10- and 12-day-old jack mackerel larvae. Twenty days later, 2559.5% of the recipients survived of which 88.2% had donor-derived germ cells in their gonads. One 26year later, genomic DNA templates were prepared from the semen of 96 male recipients and subjected 27to PCR analyses using primers specific for the yellowtail vasa sequence, resulting in the detection of 28positive signals in semen from two recipients. The milt collected from the recipients was used for 29fertilization with yellowtail eggs. Of eight hatchlings obtained from the crosses, two were confirmed to 30be derived from donor yellowtail by DNA markers, although the others were gynogenetic diploids. 31These findings indicate that it is possible to produce donor-derived sperm in xenogeneic recipients with 32smaller body size and shorter generation time by transplanting spermatogonia. Thus, the xenogeneic 33transplantation of spermatogonia might be a potential tool to produce gametes of large-bodied, 34commercially important fish although the efficiency of the method requires further improvement. This is the first report demonstrating that donor-derived sperm could be produced in xenogeneic recipient 3536 via spermatogonial transplantation in carangid fishes. 37

 $\mathbf{2}$

38 Keywords:

39 spermatogonial transplantation, germ cell, spermatogenesis, xenogeneic recipient, surrogate broodstock

40

41

42 Introduction

43Japanese yellowtail, Seriola quinqueradiata (YT) is the most commonly cultivated fish in Japan; its 44 annual production during 2012 was approximately 160,396 metric tons, constituting about 64% of the 45total yearly farmed marine fish production in Japan (Cultured Aquatic Species Information Programme 462005; FishStat database 2015). Although mass production of hatchery-reared juveniles is indispensable 47for the establishment of an efficient and sustainable YT aquaculture system, the commercial 48aquaculture remains largely reliant on wild-caught juveniles (Hamada and Mushiake 2006; Nakada 492008). One of the major problems is that collecting gametes from YT broodstock requires much space, 50time, cost, and labor. The candidate individuals, who subsequent to being raised up to 5-10 kg body 51weight after 3-5 years in sea cages, are induced to 65-100 terrestrially based tanks for several months 52for maturation by manipulating the day length and water temperature, followed by hormonal treatment 53(Mushiake et al. 1998; Chuda et al. 2005; Hamada and Mushiake 2006). Thus, the handling of YT 54broodstock of during each step such as anesthetizing, administrating hormones, and collecting gametes by the abdominal pressure is very laborious. The identification of surrogate broodstock of smaller body 5556size and shorter generation time for the production of YT gametes could facilitate easier and faster 57production of hatchery-reared juveniles of this species.

58	Okutsu et al. (2007; 2008a) demonstrated that xenogeneic transplantation of rainbow trout
59	(Oncorhynchus mykiss) spermatogonia into the peritoneal cavity of masu salmon (Oncorhynchus
60	masou) hatchlings resulted in surrogate salmon parents that produced donor-derived trout sperm and
61	eggs. Using this approach, spermatogonia were collected from donor fish and transplanted into the
62	peritoneal cavity of recipient larvae. The transplanted trout spermatogonia migrated by chemotaxis
63	toward the gonadal anlagen of the recipient salmon, into which they were subsequently incorporated.
64	Once incorporated into the recipient gonads, the donor spermatogonia can propagate and differentiate
65	to produce functional gametes. Consequently, functional eggs as well as sperm can be produced
66	because donor spermatogonia have been shown to differentiate into gametes according to the sex of the
67	recipients (Okutsu et al. 2006). Therefore, by mating recipient males and females, donor-derived
68	offspring can be produced.
69	In this study, we selected the jack mackerel, Trachurus japonicas (JM) as the surrogate species for
70	the production of YT gametes because of its suitable features, such as a smaller body size and shorter
71	generation time than YT. Age and size at first maturity of JM under cultured conditions was reported to
72	be 1 year and <70-g body weight (Ochiai 1983). The small size of this species makes it possible to
73	maintain the broodstock for the induction of maturation in approximately 3-kL tanks, which is
74	remarkably smaller than the tanks used for YT (Masuda 2006; Nyuji et al. 2013). In addition, all
75	handling for the JM broodstock is expected to be easier than that of YT. Furthermore, hatchery
76	production of the JM juveniles has already been established since the early 1980s (Oka and Mori 2006).
77	A stable supply of newly hatched larvae is very advantageous introducing the technique of

78	intraperitoneal transplantation of spermatogonia. Finally, JM and YT both belong to the Carangidae
79	family. Previously, Higuchi et al. (2011) attempted to produce YT gametes of in a smaller surrogate
80	Nibe croaker (Nibea mitsukurii) via spermatogonial transplantation. However, gametes of the donor YT
81	were not produced in spite of the successful colonization of intraperitoneally transplanted
82	spermatogonia into the recipient gonad. It was suggested that Nibe croaker, family Sciaenidae, was
83	genetically too distant from YT to produce gametes of this species. On the other hand, Okutsu et al.
84	(2008b) reported that surrogate Char (Salvelinus leucomaenis) produced sperm of the donor rainbow
85	trout. In this case, both the donor and recipient belonged to the same family, Salmonidae, suggesting
86	that intrafamily transplantation of spermatogonia could work more successfully than interfamily
87	transplantation. Therefore, in this study, we aimed to produce YT gametes using JM as surrogate
88	broodstock.
88 89	broodstock.
88 89 90	broodstock. Materials and Methods
88 89 90 91	broodstock. Materials and Methods Larval rearing
8889909192	broodstock. Materials and Methods Larval rearing All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory
 88 89 90 91 92 93 	broodstock. Materials and Methods Larval rearing All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals from Tokyo University of Marine Science and Technology.
 88 89 90 91 92 93 94 	broodstock. Materials and Methods Larval rearing All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory of Animals from Tokyo University of Marine Science and Technology. JM larvae and juveniles were produced at Oita marine biological technology center of Nippon
 88 89 90 91 92 93 94 95 	broodstock. Materials and Methods Larval rearing All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals from Tokyo University of Marine Science and Technology. JM larvae and juveniles were produced at Oita marine biological technology center of Nippon Suisan Kaisha, Ltd., Oita Prefecture, Japan between April and June, corresponding to the spawning
 88 89 90 91 92 93 94 95 96 	broodstock. Materials and Methods Larval rearing All experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals from Tokyo University of Marine Science and Technology. JM larvae and juveniles were produced at Oita marine biological technology center of Nippon Suisan Kaisha, Ltd., Oita Prefecture, Japan between April and June, corresponding to the spawning season of JM (Masuda 2006; Nyuji et al. 2013). Adult fish of JM were caught by hook and line from

98	center. The body weight [average \pm standard error of the mean (SEM)] of the broodstock fish was
99	204.8 \pm 13.0 g (n = 10). Females with oocytes that were more than 480 μm in diameter and spermiated
100	males were selected by biopsy and were injected with human chorionic gonadotropin (HCG;
101	Gonatropin, ASKA Pharmaceutical Co., Ltd., Tokyo, Japan) at a dose of 500 IU/kg to induce
102	ovulation and spermiation, respectively. Approximately 36-38 h after hormone administration, eggs
103	and sperm were collected by applying gentle pressure to the abdomen of the fish and were used for
104	insemination. After insemination, approximately 10,000 eggs were transferred to a 100-L
105	polycarbonate tank and incubated at $19 \pm 1^{\circ}$ C with gentle aeration. Feeding of the larvae began 2 days
106	post-hatching (dph). Rotifers (Brachionus rotundiformis) fed with phytoplankton (Chlorella sp.;
107	Super Fresh Chlorella-V12, Chlorella Industry Co., Ltd., Tokyo, Japan) were added to the tank twice
108	daily, and the densities of the rotifers and Chlorella sp. in the fish tank were maintained at 10-20
109	individuals/mL and 5×10^5 cells/mL, respectively. Nauplii of brine shrimp (<i>Artemia</i> sp.; Pacific
110	Trading Co., Ltd., Fukuoka, Japan) and an artificial diet (Otohime, Pacific Trading Co., Ltd.) were
111	provided from 20 and from 40 dph, respectively. To increase the n-3 fatty-acid concentration in the
112	live feed, the rotifers and brine shrimp were incubated with Hyper Gloss (Marine Tech Co., Ltd.,
113	Aichi, Japan) and Super Marine Gloss (Marine Tech), respectively. Fish was reared in 100-L tanks for
114	approximately 50 days, followed by transfer into 500-L tanks. Rearing water temperature was
115	maintained at $19 \pm 2^{\circ}$ C.
116	

Testicular cell transplantation

118	The testicular cell suspension of YT was prepared by the procedure reported previously (Morita et al.
119	2012). To prepare YT testicular cells for transplantation, 13-month-old YT males ($n = 2$) were deeply
120	anesthetized with 2-phenoxyethanol (Wako Pure Chemical Industries, Ltd., Osaka, Japan), and
121	sacrificed by decapitation. The average \pm SEM body weight and gonadosomatic index [GSI: (gonad
122	weight in g/body weight in g) \times 100] were 962 \pm 264 g and 0.10 \pm 0.02%, respectively. The testes of
123	donor males were histologically analyzed following the method previously reported (Morita et al.
124	2012). The donor cells were stained with the fluorescent membrane dye PKH26 (Sigma-Aldrich Inc., St.
125	Louis, MO), as described previously (Takeuchi et al. 2009), for tracing in the recipients after
126	transplantation. A 15-nL sample of a suspension containing 20,000 testicular cells of YT was
127	transplanted into the peritoneal cavity of JM larvae using the method reported by Morita et al. (2012).
128	The transplantations were performed in recipient larvae at 10 and 12 dph with average \pm SEM total
129	lengths (n = 12) of 3.96 ± 0.06 and 4.32 ± 0.07 mm, respectively. After transplantation, the recipient
130	larvae were transferred to a 1-L recovery tank filled with seawater containing bovine serum albumin
131	(BSA; Cohn Fraction V, Wako) at a concentration of 0.1 g/L (Takeuchi et al. 2009), followed by
132	transfer into 100-L rearing tanks. The survival rate of the transplanted recipients at 20 days
133	post-transplantation (dpt) was calculated using the following formula:
134	survival rate (%) = number of viable juveniles/number of transplanted larvae \times 100
135	Because transplantations were performed at 10 and 12 dph of JM recipients, 20 dpt corresponded to 30
136	dph (n = 10) and 32 dph (n = 8) with average \pm SEM total lengths of 11.9 \pm 0.5 mm and 12.4 \pm 0.5 mm,
137	respectively.

139	Fluorescent observation of donor-derived germ cells in jack mackerel recipients
140	Genital ridges excised from juvenile recipients were observed under a BZ-9000 fluorescent microscope
141	(KEYENCE, Osaka, Japan) at 20 dpt to confirm the incorporation of PKH26-labeled donor germ cells.
142	The genital ridges with PKH26-labeled cells were further subjected to in situ hybridization as
143	mentioned below.
144	
145	In situ hybridization
146	The expressions of YT and JM vasa were analyzed by in situ hybridization (ISH) on tissue sections
147	or excised genital ridges. The 441-bp YT vasa cDNA fragment (nucleotides 1968–2403 bp; accession
148	no. GU596411) and the 572-bp JM vasa cDNA fragment (nucleotides 1–572 bp; accession no.
149	LC027530) were used as templates for the synthesis of antisense RNA probes. The ISH was performed
150	as described previously by Sawatari et al. (2007).
151	
152	PCR detection of donor-derived cells in recipient gonads
153	After 9 months of rearing, 14 females (body weight: 96.8 \pm 6.5 g; fork length: 16.4 \pm 0.3 cm; and
154	GSI: 0.35 \pm 0.02%) and 14 males (body weight: 95.1 \pm 7.1 g; fork length: 16.3 \pm 0.3 cm; and GSI: 0.66
155	\pm 0.02%) were sacrificed and gonads were collected. In addition, ovaries were collected from
156	12-month-old female recipients (body weight: 166.6 ± 8.0 g; fork length: 18.9 ± 0.2 cm; and GSI: 3.68
157	\pm 0.23%; n = 83). A portion of each gonad was preserved at -80° C for reverse transcription polymerase

158	chain reaction (RT-PCR) analysis; the remaining portion was fixed with Bouin's fixative for <i>in situ</i>
159	hybridization. For RT-PCR analysis, gonads were homogenized, and total RNA was extracted using
160	RNAiso Plus reagent (Takara Bio Inc., Shiga, Japan). One microgram of isolated RNA was used to
161	synthesize first-strand cDNA using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche
162	Diagnostics GmbH, Mannheim, Germany). To amplify the 357-bp fragment of YT vasa cDNA
163	(nucleotides 1,932-2,288 bp; accession no. GU596411), specific PCR primers were designed (Fw:
164	5'-CTC CTG GTT AGA GGA GTG T-3'; Rv: 5'-CAT CTC ACT TGA CTT TTC ACC-3'). The DNA
165	fragments were amplified using AmpliTaq Gold (Thermo Fisher Scientific Inc., Waltham, MA). The
166	RT-PCR conditions comprised 10 min of <i>Taq</i> polymerase activation at 94°C; followed by 35 cycles of
167	PCR at 94°C for 20 s (denaturation), 58°C for 30 s (annealing), and 72°C for 30 s (extension); followed
168	by the final elongation step of 72°C for 15 min. The other primer set (Fw: 5'-TAT TCT GCG AAT GAT
169	AGC TCA GGA A-3'; Rv: 5'-TTT CAC TAA CTC CAT CGT CTC CAT C-3') specific for the 277-bp
170	fragment of JM vasa cDNA (nucleotides 102-378 bp; accession no. AB362788) was used for RT-PCR
171	amplification as an internal control. PCR products were electrophoresed on a 1.5% agarose gel. The
172	remaining gonads were used for in situ hybridization (ISH) of tissue sections.
173	

174 **Parentage test**

175 JM recipients transplanted with YT testicular cells reached maturity in 1 year. Milt was collected from

- 176 96 male recipients (body weight: 161.7 ± 6.5 g; fork length: 18.9 ± 1.7 cm; data from 20 individuals).
- 177 DNA was extracted from 1-µL milt using the Gentra Puregene Cell Kit (Qiagen GmbH, Düsseldorf,

178	Germany) and subjected to PCR with YT vasa- or JM vasa-specific primers. To investigate the
179	production of first filial (F ₁) individuals from spermatozoa derived from donor testicular cells, milt was
180	collected from the recipients within whom the YT vasa was detected and was used to fertilize eggs
181	from YT females. YT eggs were collected from female broodstock with an average \pm SEM body weight
182	of 9.5 \pm 0.1 kg (n=2) by the method described previously (Morita et al. 2012). DNA samples were
183	extracted from F1 hatchlings, the YT donors, JM recipients, and the YT females that supplied gametes
184	for insemination. To examine the genetic relationship of the fish, DNA samples were further subjected
185	to PCR using primers for DNA microsatellite markers of YT (sequ-56, sequ-57, and sequ-77; Ohara et
186	al. 2003). The polymorphisms of the microsatellite loci were analyzed by the procedure mentioned
187	previously (Morita et al. 2012). DNA samples from larvae were subjected to PCR analyses using the
188	primers specific for genomic sequences of YT β -actin, JM β -actin, YT vasa, and JM vasa. The primer
189	sets used were as follows: 5'-TGA TGA AGC CCA GAG CAA GAG A-3' and 5'-TGC TCA ACT GTG
190	TGT ACA AGT AAG G-3' for YT β -actin (nucleotides 27–258 bp; accession no. LC025962); 5'-TGA
191	TGA AGC CCA GAG CAA GAG G-3' and 5'-TCT CAA CTC TGT GCA AAG GGA ACA-3' for JM
192	β -actin (nucleotides 27–257 bp; accession no. LC022766); 5'-TAG AGG AGT GTG TGT TCA GCG
193	GCT CA-3' and 5'-TGA GGA CAG AGA TGA CAG AGT GAG GA-3' for YT vasa (nucleotides 8–191
194	bp; accession no. LC025955), and 5'-CGG ACT CGA GGA AGG TAA CAA CAT GTC-3' and 5'-TGC
195	TGC TCT GTT TTT ATG TCG ATC GTG TA-3' for JM vasa (nucleotides 68–228 bp; accession no.
196	LC025963). The PCR conditions comprised Taq polymerase activation at 94°C for 3 min; followed by
197	32 cycles of PCR at 94°C for 20 s, 62°C for 30 s, and 72°C for 30 s; followed by a final elongation step

198 of 72°C for 15 min. TaKaRa Taq (Takara Bio, Inc.) was used for the reaction.

199

200 **Results**

201 Transplantation of the yellowtail testicular cells into jack mackerel recipients

In the present study, we prepared the testicular cell suspension from 1-year-old males before

203 puberty to efficiently collect type A spermatogonia, the only testicular cells capable of colonizing

recipient gonads (Yano et al. 2008). Although the progression of spermatogenesis was observed in the

205 inner part of the donor testes, the peripheral part or testicular lobules was rich in type A spermatogonia

206 (Fig. 1a-c). Approximately 10⁷ testicular cells were collected from each 100-mg fragment of testis, and

207 labeled with PKH26 fluorescent dye. Using a fluorescent binocular microscope, approximately 20,000

208 donor cells were successfully transplanted into the peritoneal cavity of approximately 40–60 recipient

209 larvae in 1 h (Fig. 2a–c).

210

211 Incorporation of transplanted germ cells into recipient gonads

The JM recipients were reared for 20 days after transplantation, and the survival rates of the 10-dph and 12-dph transplanted recipients were 53.6% and 64.8%, respectively (Table 1). Although the survival

rates of 10-dph- and 12-dph-transplanted group were lower than control groups, they were high enough

215 for practical applications. Genital ridges of the recipients were excised and subjected to observation by

- 216 fluorescence microscopy. Fluorescence-positive cells were detected in the genital ridges of transplanted
- 217 fish (Fig. 3a), but not in the gonads of non-transplanted fish (Fig. 3c). In the 10-dph group, eight of ten

218	examined recipients (80.0%) had PKH-labeled cells in their genital ridges, whereas all observed
219	recipients had PKH-labeled cells in the 12-dph group. We subsequently examined whether incorporated
220	PKH-positive cells had the molecular characteristics of germ cells using the germ cell marker vasa. For
221	this purpose, we designed YT and JM vasa probes for ISH using the 3'-untranslated region, which was
222	reported to be suitable for the species-specific probes (Yazawa et al. 2010). We confirmed that each
223	probe specifically hybridized to germ cells in YT and JM testis, respectively, without cross
224	hybridization (Fig. 4a-d). In following ISH using the YT vasa probe, PKH26-labeled cells in recipient
225	gonads were confirmed to be germ cells derived from the donor (Fig. 3b), whereas no positive cells
226	were detected in gonads from non-transplanted fish (Fig. 3d). These results demonstrated that donor
227	cells transplanted into the abdominal cavity of xenogeneic recipients could be incorporated in genital
228	ridges.

230 Survival of donor-derived cells in recipient gonads

231 Gonads from 9-month-old recipient fish were tested for the presence of the donor-derived germ cells by

232 RT-PCR using the YT-specific vasa primers. As shown in Fig. 5, the YT vasa cDNA fragment was

amplified in three of 28 gonads (10.7%). The PCR-positive samples (numbers 3, 6, and 23) were all

from testes, whereas no signal was detected in samples from ovaries. Frequencies of the

235 YT-vasa-positive specimens from males were 21.4% (three of 14). The testis sample derived from male

- number 3 was thereafter subjected to ISH of tissue sections, and a colony expressing the YT vasa (Fig.
- 237 6a), but not the JM vasa (Fig. 6b), was detected. This result indicates that donor germ cells had been

238 maintained in xenogeneic recipient testis for 9 months. Although endogenous germ cells in the testis

had already been differentiated into sperm, the YT-*vasa*-positive colony mainly comprised type-A and

240 -B spermatogonia (Fig. 6c).

241

242 Detection of jack mackerel recipients producing the yellowtail sperm

243One year after transplantation, 179 of 523 injected recipient larvae (96 males and 83 females) survived 244(survival rate = 34.2%). All male recipients reached maturity and their milt samples were collected and 245subjected to the analyses described below. Genomic DNA was extracted from each of the milt samples 246and was subjected to PCR analysis using the primer set specific for YT vasa. As shown in Fig. 7, the 247YT vasa fragment was amplified in two of the 96 milt DNA samples (2.1%). Milt samples from the two 248males (number 28 and 82) were collected by gentle abdominal pressure and were used to artificially 249inseminate eggs collected from two YT females (Table 2). In the crosses of YT females and YT males, 250it was observed that most of the fertilized embryos developed normally at 48 hours post fertilization 251(Fig. 8a). On the other hand, in the crosses using sperm of the PCR-positive JM recipient, although 252thousands of fertilized eggs were obtained, a few eggs survived and a normal embryonic body was 253observed (Fig. 8b). When YT eggs were fertilized with JM sperm, all eggs died without the appearance 254of normal embryos (Fig. 8c). At approximately 60 h after fertilization, seven hatchlings were obtained 255(Table 2). Five larvae from the cross of the YT females and the recipient number 28 were sampled just 256after hatching. The larva number 1 (Fig. 9b) and 4 were normal in an appearance and very similar to 257wild-type YT larva (Fig. 9a). However, the larvae number 2, 3 (Fig. 9c, d), and 5 were apparently

258	abnormal with curved and underdeveloped bodies. All of the larvae were subjected to genotyping using
259	three types of YT microsatellite markers (sequ-56, sequ-57, and sequ-77 loci). Table 3 shows the alleles
260	of the donor YT, recipient number 28, YT females from whom eggs for the crosses were collected, and
261	five larvae obtained in crosses using the sperm of recipient number 28. Genomic DNA from larvae
262	numbers 1 and 4 had the same alleles as the donor, whereas that from larvae numbers 2, 3, and 5 had
263	same alleles as only the female YT. These results indicated that the larvae numbers 1 and 4 were the
264	progeny of the donor YT. To further ensure that the larvaes number 1 and 4 were YT, genomic DNA of
265	the larvae were subjected to PCR analyses using primers specific to genomic sequences of YT β -actin,
266	JM β -actin, YT vasa, and JM vasa (Fig. 10a–d). As a result, only the YT-derived DNA fragments were
267	amplified, indicating that the larvae were not hybrids of YT and JM but indeed pure YT. The germ-line
268	transmission rates for the donor-derived genotypes in the two crosses were 0.009% and 0.033%,
269	respectively. When sperm of the recipient number 82 was used, all three larvae had only
270	mother-derived alleles (data not shown).
271	In the case of the female recipients, all 83 individuals were sacrificed and their ovaries were collected
272	to perform RT-PCR analyses using the YT-vasa-specific primers. As a result, YT vasa fragment was
273	not amplified in any of the ovary samples (data not shown).
274	
275	Discussion

The present study demonstrated for the first time that sperm derived from the donor fish could be produced using the xenogeneic recipient in carangid fishes. We utilized JM as a surrogate because this

278	species is known to have suitable features, such as small body size and short generation time. As
279	expected, approximately 100 individuals of JM could be reared in 500-L tanks and all males reached
280	sexual maturity in 1 year. In addition, we could acquire the functional sperm of YT from a 1-year-old
281	JM male whose body weight was as low as 160 g. In previous studies, YT broodstock, that had reached
282	5-10 kg of body weight in 3-5 years, were maintained in of 65-100-kL tanks for the acquisition of
283	gametes (Mushiake et al. 1998; Chuda et al. 2005; Hamada and Mushiake, 2006). Thus, in this study
284	we succeeded in the acquisition of YT gametes from the surrogate JM within a shorter period than the
285	cases in which YT broodstock were used. In addition, the surrogate JM were raised to maturity in
286	smaller tanks by a factor of one hundredth than that required for the maintenance of YT broodstock.
287	Although the efficiency of YT gamete production in surrogate broodstock requires improvement, the
288	results in the present study indicate the possibility of YT gamete production in a less resource intensive
289	manner by saving space and time, resulting in the prevalence of the hatchery-reared juveniles in YT
290	aquaculture. In addition, shortening of the generation period is an important requirement to precede
291	breeding programs of YT. Recently, genetic tools for the establishment of efficient breeding by
292	marker-assisted selection (MAS) have been exploited in YT (Ohara et al. 2005; Ozaki et al. 2013; Aoki
293	et al. 2014). Establishment of MAS in YT would make it possible to select the individuals with
294	desirable economic traits before the fish reaches maturity. By the transplantation of germ cells derived
295	from the selected young YT into surrogate JM and production of the donor-derived gametes in the
296	recipients, accelerated YT breeding would be expected.
297	However, critical problems remain for the mass production of YT gametes using surrogate JM. First,

298	production efficiency of the donor-derived sperm in the surrogate broodstock was remarkably low. In
299	fact, the vasa signal of YT was detected in the genomic DNA of semen from only two recipients among
300	96 males. One of the two recipients, male number 28, was found to produce the donor-derived sperm.
301	In the crossing tests using the sperm of recipient number 28, two YT hatchlings were obtained from
302	approximately 14,000 fertilized eggs, suggesting that the contribution rate of donor-derived sperm was
303	0.015%. The rest of hatchlings were spontaneous gynogenetic diploids. Further, when the semen of
304	another PCR-positive recipient (number 82) was used, all three larvae had only mother-derived alleles
305	and therefore all were judged to be gynogenetic. We concluded that donor-derived offspring were not
306	obtained from the crossings of recipient number 82 and the YT females. This was thought to be caused
307	by the low contribution rate of donor-derived sperm in the semen of the recipient number 82. In
308	previous studies of xenogeneic transplantation of fish germ cells, the use of sterilized recipients was
309	shown to be very effective in improving the production efficiencies of donor-derived gametes. Sterile
310	fish can be obtained by several methods such as triploidy induction (Okutsu et al., 2007), interspecies
311	crossing (Wong et al., 2011), and knocking down the genes required for the proper development of
312	germ cells to eliminate endogenous germ cells (Ciruna et al., 2002; Saito et al., 2008), all of which
313	were shown to be effective in improving the production efficiency of donor-derived gametes. Therefore,
314	establishment of the method to induce sterility in JM is needed. The method of triploidy induction in
315	JM is under development.
316	Second, we could not obtain any YT eggs from the female recipient. Most of the recipients were

found to possess PKH26-labeled cells in their gonads after 20 days of transplantation, suggesting that

318	the YT germ cells colonized in the gonads of recipients of both sexes. However, we could not detect the
319	expression of the YT vasa in ovaries from 9-month-old female recipients. These results suggested that
320	few, if any, the donor-derived germ cells survived diminished or diluted below the detection limit
321	before recipients reached the sexually matured stage although the transplanted germ cells colonized in
322	the gonads of female recipients as well as in those of males. It is necessary to investigate the fate of
323	donor-derived germ cells in recipient ovaries, in particular between 20 days and 12 months after
324	transplantation. Takeuchi et al. (2004) proved that primordial germ cells (PGCs) derived from rainbow
325	trout, which were transplanted into the peritoneal cavity of masu salmon, were found to differentiate
326	into functional gametes in the male recipient but not in female recipients, although the donor-derived
327	oocytes were confirmed in the xenogeneic ovary. In addition, Saito et al. (2008) reported that PGCs
328	derived from goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) were transplanted
329	into zebrafish (Danio rerio) embryos, resulting in the successful production of donor-derived sperm in
330	recipient zebrafish, whilst donor-derived eggs were not produced at all. Results shown in past studies
331	as well as in the present study suggest that producing donor-derived eggs might be more difficult than
332	producing donor-derived sperm in a xenogeneic recipient. There may be many factors affecting the
333	oogenesis of donor-derived germ cells (such as vitellogenin and egg envelop proteins) that are supplied
334	from recipient liver and are indispensable for oogenesis (Lubzens et al. 2010). The compatibilities
335	between recipient-derived and donor-derived germ cells have to be investigated in detail.
336	To overcome the abovementioned obstacles, utilization of other surrogate species more appropriate
337	than JM could be one solution. The production of donor-derived eggs in xenogeneic recipients was

338	achieved only when the donor species and recipient species belonged to the same genus (Takeuchi et al.
339	2004; Okutsu et al. 2007; 2008a), whilst donor-derived sperm were successfully produced in the
340	recipient of the different genus (Okutsu et al. 2008b) and even a different family (Saito et al. 2008). In
341	Carangidae, genus Seriola (YT) and genus Trachurus (JM) were shown to be quite distant genetically
342	(Kijima et al. 1986; Reed et al. 2002) and phylogenetically (Gushiken, 1988). The distant relationship
343	between YT and JM might lead to the retardation in differentiation of YT germ cells in JM testis. Thus,
344	mass production of YT eggs, and maybe even sperm in JM would be difficult when sterile JM could be
345	used as the recipient. Because a large number of Carangid species exist (Laroche et al. 1984), it sould
346	be possible to identify candidate species as surrogate broodstock for the efficient production of YT
347	gametes. For example, the pilot fish (Naucrates ductor) and black-banded kingfish (Seriolina
348	nigrofasciata) might be candidates because these species are known to belong to the subfamily
349	Naucratinae, as does YT, and are reported to be smaller than YT in body size (Carpenter and Niem
350	1999). Assessment of the adequacy of these candidate species as a surrogate for YT would be an
351	important task for future studies.
352	
353	
354	REFERENCES
355	Aoki J, Kai W, Kawabata Y, Ozaki A, Yoshida K, Tsuzaki T, Fuji K, Koyama T, Sakamoto T, Araki K
356	(2014) Construction of a radiation hybrid panel and the first yellowtail (Seriola quinqueradiata)

357 radiation hybrid map using a nanofluidic dynamic array. BMC Genomics 15:165

358	Carpenter KE, Niem	VH (1999) FAO species	identification	guide for fishe	ery purposes.	. The living
			/ /			2 1 1	

- 359 marine resources of the Western Central Pacific. Volume 4. Bony fishes part 2 (Mugilidae to
- 360 Carangidae). FAO, Rome
- 361 Chuda H, Nakao T, Arakawa T, Matsuyama M (2005) Effects of oocyte diameter on ovulation time,
- 362 quantity and quality of eggs in yellowtail Seriola quinqueradiata in inducing ovulation with HCG
- 363 (in Japanese with English abstract). Nippon Suisan Gakkaishi 71:942–946
- 364 Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, Schier A (2002) Production of
- 365 maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci USA 99:14919–
- 366 14924
- 367 Cultured Aquatic Species Information Programme. Seriola quinqueradiata. (2005) FAO, Rome.
- 368 <u>http://www.fao.org/fishery/culturedspecies/Seriola_quinqueradiata/en</u> Accessed 2 Feb 2015
- 369 Fishstat Database (2015) FAO, Rome. <u>http://www.fao.org/fishery/statistics/en</u> Accessed 2 Feb 2015
- 370 Gushiken S (1988) Phylogenetic relationship of the Perciform genera of the family Carangidae. Japan J
- 371 Ichthyol 34:443–461.
- Hamada K, Mushiake K (2006) Advanced spawning technique and its advantages in stock enhancement
- and aquaculture of the yellowtail *Seriola quinqueradiata* (in Japanese with English abstract).
- 374 Nippon Suisan Gakkaishi 72:250–253
- 375 Higuchi K, Takeuchi Y, Miwa M, Yamamoto Y, Tsunemoto K, Yoshizaki G (2011) Colonization,
- 376 proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata
- 377 spermatogonia in nibe croaker *Nibea mitsukurii*. Fish Sci 77:69–77

- 378 Kijima A, Taniguchi N, Ochiai A (1986) In: Uyeno T, Arai R, Taniuchi T, Matsuura K (ed) Indo-Pacific
- 379 fish biology: Proc. of the 2nd International Conference on Indo-Pacific Fishes. Ichthyological Soc.
- 380 of Japan, Tokyo
- 381 Laroche WA, Smith-Vaniz WF, Richardson SL (1984) In: Moser HG, Richards WJ, Cohen MP, Fahay
- 382 AW, Kendall AW Jr, Richardson SL (ed) Ontogeny and systematics of fishes. American Society of
- 383 Ichthyologists and Herpetologists, Kansas
- Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: How fish eggs are formed. Gen
- 385 Comp Endocrinol 165:367–389
- 386 Masuda R (2006) Ontogeny of anti-predator behavior in hatchery-reared jack mackerel Trachurus
- 387 *japonicus* larvae and juveniles: patchiness formation, swimming capability, and interaction with
- 388 jellyfish. Fish Sci 72:1225–1235
- 389 Morita T, Kumakura N, Morishima K, Mitsuboshi T, Ishida M, Hara T, Kudo S, Miwa M, Ihara S,
- 390 Higuchi K, Takeuchi Y, Yoshizaki G (2012) Production of donor-derived offspring by allogeneic
- transplantation of spermatogonia in the yellowtail (*Seriola quinqueradiata*). Biol Reprod 86:1–11
- 392 Mushiake K, Kawano K, Kobayashi T, Yamasaki T (1998) Advanced spawning in yellowtail, Seriola
- 393 *quinqueradiata*, by manipulations of the photoperiod and water temperature. Fish Sci 64:727–731
- 394 Nakada M (2008) In: Lovatelli A, Holthus PF (ed) Capture-based Aquaculture. Global Overview. FAO
- 395 Fisheries Technical Paper, No. 508. FAO, Rome
- 396 Nyuji M, Fujisawa K, Imanaga Y, Kitano H, Yamaguch A, Matsuyama M (2013) GnRHa-induced
- 397 spawning of wild-caught jack mackerel *Trachurus japonicus*. Fish Sci 79:251–258

398	Ochiai A, Mutsutani K	Umeda S (1983) On the	irst year's growth,	maturity and artificial s	pawning of
-----	-----------------------	-----------------------	---------------------	---------------------------	------------

- 399 cultured jack mackerel (in Japanese with English abstract). Bull Japan Soc Sci Fish 49:541–545
- 400 Ohara E, Nishimura T, Sakamoto T, Nagakura Y, Mushiake K, Okamoto N (2003) Isolation and
- 401 characterization of microsatellite loci from yellowtail *Seriola quinqueradiata* and cross-species
- 402 amplification within the genus *Seriola*. Mol Ecol Notes 3:390–391
- 403 Ohara E, Nishimura T, Nagakura Y, Sakamoto T, Mushiake K, Okamoto N (2005) Genetic linkage maps
- 404 of two yellowtails (*Seriola quinqueradiata* and *Seriola lalandi*). Aquaculture 244:41–48
- 405 Oka M, Mori K (2006) A review on spawning under captive condition in Japanese horse mackerel
- 406 *Trachurus japonicus* (in Japanese with English abstract). Bull Fish Res Agency Suppl 4:151–155
- 407 Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize
- 408 sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci
- 409 USA 103:2725–2729
- 410 Okutsu T, Shikina S, Kanno M, Takeuchi Y, Yoshizaki G (2007) Production of trout offspring from
- 411 triploid salmon parents. Science 317:1517
- 412 Okutsu T, Takeuchi Y, Yoshizaki G (2008a) In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TD Jr,
- 413 Kaiser MJ (ed) Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008.
- 414 TERRAPUB, Tokyo
- 415 Okutsu T, Kobayashi T, Takeuchi Y, Yoshizaki G (2008b) Identification of donor-derived germ cells
- 416 and spermatozoa in xenogeneic recipient using species-specific primers against *vasa* gene in germ
- 417 cell transplantation experiments (in Japanese with English abstract). Fish Genet Breed Sci 37:29–

110	Ozobi A	Vochido V	Endi V	Kuboto S		A obi I	Vouvoboto	VCII	zuki I	Abito V	Voumo	т
41.7	UZAKI A	. TOSHIUA K	. run K.	. Kubola o). Nai w.	AUKLJ.	. Nawabala	1.00	ZUKIJ.	AKILA K.	. Kuvama	

- 420 Nakagawa M, Hotta T, Tsuzaki T, Okamoto N, Araki K, Sakamoto T (2013) Quantitative trait loci
- 421 (QTL) Associated with Resistance to a monogenean parasite (*Benedenia seriolae*) in yellowtail
- 422 (Seriola quiqueradiata) through genome wide analysis. PLoS ONE 8:e64987
- 423 Reed DL, Carpenter KE, deGravelle MJ (2002) Molecular systematics of the Jacks (Perciformes:
- 424 Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and
- 425 Bayesian approaches. Mol Phylogen Evol 23:513–524
- 426 Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of
- 427 germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78:159–166
- 428 Sawatari E, Shikina S, Takeuchi T, Yoshizaki G (2007) A novel transforming growth factor-beta
- 429 superfamily member expressed in gonadal somatic cells enhances primordial germ cell and
- 430 spermatogonial proliferation in rainbow trout (*Oncorhynchus mykiss*). Dev Biol 301:266–275
- 431 Takeuchi Y, Yoshizaki G, Takeuchi T (2004) Surrogate broodstock produces salmonids. Nature 430:629
- 432 Takeuchi Y, Higuchi K, Yatabe T, Miwa M, Yoshizaki G (2009) Establishment of spermatogonial cell
- 433 transplantation in Nibe croaker (*Nibea mitsukurii*). Biol Reprod 81:1055–1063
- 434 Wong TT, Saito T, Crodian J, Collodi P (2011) Zebrafish germline chimeras produced by
- transplantation of ovarian germ cells into sterile host larvae. Biol Reprod 84:1190–1197
- 436 Yano A, Suzuki K, Yoshizaki G (2008) Flow-cytometric isolation of testicular germ cells from rainbow
- 437 trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by trout vasa

- 438 regulatory regions. Biol Reprod 78:151–158
- 439 Yazawa R, Takeuchi Y, Higuchi K, Yatabe T, Kabeya N, Yoshizaki G (2010) Chub mackerel gonads
- 440 support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ
- 441 cells. Biol Reprod 82:896–904
- 442