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1 Introduction

This introductory chapter first premises the background and outline of the
underwater vehicles, which have been becoming requisite devices in oceanic
research. Next, focusing on towed underwater vehicles (TUVs), related
previous works are introduced and reviewed briefly. Based on them, some
important viewpoints to address control problems of TUVs are located and
the objectives of this work are explained. Finally, the organization of the
dissertation is presented.

1.1 Background

Over the last several decades, underwater vehicles have been one of the most
powerful and effective tools for marine sciences. They can be equipped with
various kinds of instruments, which are indispensable to oceanic researches,
thus scientists and researchers are increasingly depending on them [1], [2].
For instance, sonars are essential for benthic mapping and almost the only
one measure to perceive the deep ocean over a wide view. While cameras
provide another visual resource with a relatively narrow range of scope,
which are necessary for undersea operation, detailed resource mapping,
organism collection, and so on. Since physical, chemical and biological data
are always the fundamentals of investigations, a large variety of sensors,
such as the conductivity temperature depth profiler (CTD) and acoustic
doppler current profiler (ADCP), are also important devices for scientific
measurements [3], [4].

Hence, according to the variety of research objectives, some types of un-
derwater vehicles and control methods for them have been developed. For
example, remotely operated vehicles (ROVs) have been employed since it
was put into practice in 1960s, which are generally composed of an umbil-
ical cable and underwater body [5]-[13]. Autonomous underwater vehicles
(AUVs) or unmanned undersea vehicles (UUVs) are now the main targets
of investigations of underwater vehicles [14]-[18]. They are often used as
a towing platform for a towfish as well as a simple probe [19]-[25], and
various approaches to control AUVs have been pursued in accordance with
versatile surveys [26]-[38]. Further, motion control of vehicle-manipulator
systems have also been studied, e.g., [39]-[41], where its application range
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extends to even the exploration of other heavenly bodies [42].
Among such vehicles, towed underwater vehicles (TUVs) may seem to

be less capable because they have to be towed by a mothership to be in mo-
tion like a kite flying in the air. However, the great advantages of the TUVs
compared to other vehicles originate from the following points; the lack of
thrusters or propulsions enables ones to reduce the cost for the development
and to avoid the apprehension for the power supply [43]. This trait also
retains the mobility of the mothership and the easiness in practical opera-
tions. Moreover, towing type apparatuses are suitable for wide-region ex-
plorations, so that they also play important roles in scientific investigations
[2], [44]. Thus, TUVs have been convenient and useful for oceanographical,
geological, biological, environmental and more other research situations in
no way inferior to AUVs and ROVs.

1.2 Previous Works

First of all, previous works related to TUVs can be classified roughly into
two groups according to the towing arrangements; that is, single-stage
towing arrangements [44]-[57] and two-stage towing arrangements [58]-[92].
The configuration of the former case is similar to that of ROVs, while the
latter includes gravitational depressors or launcher systems and secondary
towing cable, which is neutrally buoyant and connected to the vehicle. Ob-
viously, such an arrangement can alleviate the influence of the dynamics of
the primal towing cable, but is rather complicated to deal with and requires
higher cost in practice. Of course, it depends on the purpose and priority
of each research that which towing arrangement is suitable; nevertheless,
more simple settings are focused on in this study and only the single-stage
towing arrangement will be considered.

Second, a lot of efforts toward motion control problems of TUVs are able
to be divided into some groups in view of a control design method. For in-
stance, the simplest examples come from a controller based on proportional-
integral-derivative (PID) control [45], [61], [62], [64], [65]. This method does
not have to consider a model dynamics in detail and hence is relatively easy
to apply. The linear-quadratic (LQ) and linear-quadratic-integral (LQI)
optimal frameworks have been utilized in many studies, particularly in
Japanese researches [44], [53], [54], [56], [58]. The integral operation in-
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cluded in the LQI control framework is expected to achieve robust servo
control performance. Note that all of these studies have constructed con-
trollers with full or reduced order linear observers. The linear H∞ control
theory [47], [57] and the linear parameter varying (LPV) control method-
ology [49] have been employed to obatin respective robust controllers, and
a comparison between an LQI-based controller and a linear H∞-based con-
troller has been conducted [55], where both controllers have been gain-
scheduled and the superiority of the H∞-based controller has been demon-
strated. In addition, the control configured vehicle (CCV) technique and
the fuzzy logic have been utilized to control the attitude of the vehicle [50],
[51]; particularly, the former has conducted the water tank experiment and
derived the set of physical parameters, which is necessary for computations.

Despite that these investigations have offered a certain amount of sat-
isfactory results, most of the TUVs in practice are still used passively and
even is not equipped with any control devices. One of the explanations for
this gap may be given by considering the cardinal characteristics of motion
control problems of TUVs; some complex nonlinear dynamics. The typical
principal problem is highly-nonlinear hydrodynamic forces, which have to
be dealt with more or less in every kind of underwater systems. How to
treat the dynamics of a towing cable is the other important issue, because
the flexible cable leads to an infinite-dimensional problem. For example,
the cable can be treated as a series of elastic elements with the mass-lumped
node to model its physical characteristics [45], [46] or as a long thin circu-
lar cylinder to analyze the motion of the cable and forces on towfish [69],
[70]. In fact, a marine cable and/or underwater towed system have been
a challenging subject in ocean engineering, e.g., cable dynamics such as
hydrodynamic response and transient behavior [71]-[78], towed array sys-
tems mainly for acoustic researches [79]-[84], and with underwater vehicles
or other towed systems [85]-[94]. On the other hand, their fundamental
methods were similarly depending on finite-element approaches. The most
conventional and fundamental approximation is based on a lumped-mass
method [95], where the towing cable is regarded as some concatenated rigid
segments. Additionally, the cable dynamics cause difficulty in adopting a
full state-feedback controller practically. Owing to this, an output-feedback
controller needs to be designed.
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According to these factors, the nonlinear dynamics seem to be a key
to better motion control of TUVs; however, only few previous works have
addressed control problems of TUVs by considering their nonlinearities di-
rectly. One of the interesting exceptions is a Lyaponov-based nonlinear
adaptive controller presented in [66], [67], [68], where the controlled sys-
tem demonstrates preferable performance by simulations. But the model
is based on the two-stage towing arrangement, hence the method is not
available for the target in this study immediately. Therefore, it can be said
that there is a room for improvement and amelioration in control systems
of TUVs via direct consideration of the nonlinear dynamics.

Antecedently, our group has presented a theoretic analysis of a control
system structure of TUVs with single-stage towing arrangement, which pos-
sesses two pairs of movable wings at the center (the main wing) and rear
(the tail wing) to control its depth and attitude [96]. Based on it, a control
design method employing a high-gain observer has been proposed and its
regulation performances has been evaluated with simple simulations [97],
[98]. A high-gain observer is one kind of nonlinear design technique [99],
which is known to be able to estimate the state of the system considering
the nonlinearity thoroughly. Based on an initial value theorem in [100], the
study [101] has presented the design of robust feedback controller with a
high-gain observer for fully-linearizable systems and the stability analysis
utilizing the singular perturbation method. This achievement has triggered
a chain of researches; for example, [102]-[104], and see [105]-[107] for more
detailed history, recent development and references. But this versatile con-
trol design method and stability analysis have not been applied to motion
control problems of TUVs before our study.

Consequently, the main motivation of our work is application of the
high-gain observer-based approach to consider the nonlinear dynamics of
the TUV system. In addition to this, robustness of the control system also
has to be taken into account to obtain better control performance, since
model variations and uncertainties are unavoidable. Evaluations from such
a viewpoint have not been performed yet in [97] and [98]. Note that external
disturbances such as tide and wave are always present in practical situations
but in this study excludes the problem to avoid excessive complications.
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1.3 Objectives and Contents of the Dissertation

This dissertation presents a high-gain observer-based motion control method
and stability analysis of the TUV to show the effectiveness and importance
of the direct consideration of nonlinear dynamics. The control law utilized
in this study is based on LQ and LQI optimal control methods, which have
never been combined with a nonlinear observer to our best knowledge, al-
though their applications have already been investigated as reviewed above.
Thus robust performance of the LQI-control-based approach would be ex-
pected to improve and, in order to confirm this, the proposed controller
will be compared to a conventional linear observer-based controller by some
types of simulations. The most remarkable feature and originality of the
work are the detailed stability analysis referring to [101] for the LQ-control-
based approach, where the region of attraction is estimated as well as the
proof of the asymptotic stability. It should be emphasized that the conven-
tional estimates are improved by devising a “state-space scaling method”,
and this method can be applied not only for problems of underwater vehi-
cles but also other control systems extensively.

The other crucial point of view of the research is the relationship between
the orders of the system and controller. Generally, the system order is
required to be as high as possible, in case that the higher degree of the model
leads to the more realistic model. By contrast, a lower-order controller is
desirable with respect to the complexity of controller design, the number
of parameters to be tuned, calculation cost, and so on. Consequently, the
ideal situation is that a lower-order controller is enough robust to be able
to control higher-order systems. In particular for TUVs, this viewpoint
is inevitable because strictly speaking the model is expressed by a partial
differential equation and becomes an infinite-order system. If that is the
case, the order of the system on which the controller is based must be taken
into consideration studiously.

As mentioned above, finite-element approaches were taken in most of
contributions for treating the dynamics of marine cables. This study also
chooses the conventional lumped-mass approach to approximate the cable
due to the requirement of simplicity and validity of the model, so that
a partial differential equation and an infinite-dimensional problem can be
avoided. Hence, the order of the TUV system increases according to the
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number of the cable segments, i.e., a degree of the approximation, and the
lowest-order model of the TUV is adopted to design control systems in this
study. The obtained controllers will be evaluated by simulations to confirm
whether they can be available for higher-order, i.e., more realistic, systems
or not.

The chapters of this dissertation are organized as follows.

• Chapter 2 provides the problem setting including some essential as-
sumptions, on which the study will depend. The dynamical mod-
els corresponding to different conditions are formulated in a common
state-space representation.

• Chapter 3 describes the control design method of the LQ-control-based
approach with the high-gain observer. Not only a regulator around one
equilibrium point but also a method of switching controllers for depth
tracking is developed with the lowest-order model.

• Chapter 4 presents the results of the stability analysis of the controllers
designed in Chapter 3 based on the singular perturbation method,
which consists of the proof of the asymptotic stability and estimation
of the region of attraction. An improving method for the estimation
is also presented and its efficacy will be confirmed by comparing with
the results of conventional one.

• Chapter 5 demonstrates evaluations on the controllers designed in
Chapter 3 by simulations. Two types of control problems are con-
sidered; regulation with various initial deviations of the equilibrium
states, which includes comparison with the results of the analysis in
Chapter 4, and depth tracking via switching controllers.

• Chapter 6 describes the expansion of the control strategy so as to en-
hance the robustness against model uncertainties. The control design
method of the LQI-control-based approach is presented and a linear
Kalman filter-based output-feedback controller is also introduced for
the purpose of comparison.

• Chapter 7 demonstrates evaluations on the controllers designed in
Chapter 6. Simulations with some model uncertainties are conducted
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to show the superiority of the proposed control system, and the appli-
cability for the higher-order systems and depth tracking performance
will be investigated.

• Chapter 8 provides conclusions on what have been found from this
work and a summary of the tasks left behind.
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2 Problem Setting and Dynamical Model

This chapter presents the problem definition and dynamical model formu-
lation of a TUV. Some important assumptions and coordinate systems for
the problem, which will be common throughout the study, are introduced.
These settings enable us to formulate the equations of motion of the TUV
and to derive a state-space representation. Further, the system is rewritten
into the form based on the input-output linearization scheme for the control
system design in Chapter 3.

2.1 Problem Definition

A TUV with two pairs of movable wings is considered throughout this study,
and motions of which are restricted to the vertical plane to concentrate on
the most important problem in a practical situation. The “main wings” is
at the center of the vehicle and the “tail wings” is a pair of the rear ones,
which are intended to control the depth and attitude of the vehicle. Note
that most of existing TUVs does not have such movable wings.

A schematic diagram of the TUV and coordinate frames employed in this
study are depicted in Fig. 2.1, where all the angles are defined to be positive
in the counterclockwise sense. A streamline-shaped body is considered, so
that the drag force on the body can be neglected. The inertia frame O0X0Z0

is the global coordinates attached to the towing point on the mothership,
whose Z axis is collimated with the direction of gravity. The frame on
each cable segment is denoted by OiXiZi(1 ≤ i ≤ n) and the angle of the
ith cable segment is denoted by xi. The frame attached to the center of
the vehicle On+1 and attitude of the vehicle are On+1Xn+1Zn+1 and xn+1,
respectively. The input angles of the main and tail wings are denoted by
u1 and u2. The distance from On to On+1 is Lv = 0.205 m and the distance
from On+1 to Ot, the center of the tail wing, is Lt = 0.7 m. The length of
the vehicle is 2 m and height is 0.41 m, that is, the size of the vehicle in
Fig. 2.1 is deformed for convenience of exposition. Table. 2.1 summarizes
each notation in Fig. 2.1.

8



Figure 2.1. Schematic diagram of the TUV and configuration of the prob-
lem.
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Table 2.1. Notations in Fig. 2.1

O0X0Z0 frame attached to the towing point on the mothership
OiXiZi frame attached to the ith cable segment
On+1Xn+1Zn+1 frame attached to the center of the vehicle
OtXtZt frame attached to the center of tail wings
xi angle of the ith cable segment
xn+1 the attitude of the vehicle
u1 input angle for the main wings
u2 input angle for the tail wings
Lv distance from O1 to O2

Lt distance from O2 to Ot

Here, the following assumptions are made in addressing motion control
problems of TUVs;

A1 the mothership advances in the horizontal direction with constant ve-
locity v0 and its dynamics will be ignored;

A2 the dynamics of the wing actuators and environmental water current
will be ignored;

A3 the control inputs for the main and tail wings are set bounds within
±30◦;

A4 if the control system performs such that the attitude of the vehicle is
restricted within ±45◦, the control process is regarded successful; and

A5 the towing cable is approximated by a finite number of rigid segments
with its mass concentrated at the end point and all forces for each
cable segment are assumed to be applied to the point of mass.

A1 and A2 are the simplifications from the viewpoint of control system
design and analysis, and due to the stage of the study. However, the robust
controller in the later chapter has a potential to deal with these disturbing
factors and simulation results with changing v0 will be shown in Chapter 7.
A3 and A4 are necessary in order to make simulations more valid by taking
into account the dynamic stall approximately; strictly speaking, bounds
for the angles of attack have to be set to model the phenomenon more

10



precisely. The saturation of the control inputs not only has restrictive
effect but also alleviates a baneful influence of peaking phenomena of the
high-gain observer as shown in Chapter 5.

As mentioned in Section 1.3, the order of the control system is one of
the important factors in control system design of TUVs and A5 implies
that the number of the cable segments n rules the order of the system.
Hence, due to the intention of this study, the lowest-order n = 1 model is
constructed to design and evaluate controllers as in [97] and [98]. Moreover,
total six cases of the TUV model are prepared to compare the results as
shown in Table. 2.2. The difference between the models C1 to C4 is only
the towing cable length L; C1 with 30 m, C2 with 100 m, C3 with 200
m and C4 with 300 m. C5 and C6 include some modifications for C3 and
C4, where the values of the towing speed v0 and the square measure of
the main and tail wings are set twice as large as the nominal one so as to
consider other physical design specification cases of the vehicle. These cases
will show the steady effectiveness of the proposed control system in later
chapters. Note that the doubled wings area of C5 and C6 are implemented
to increase the hydrodynamic forces related to the wings. Finally, C2, the
cable length L = 100 m model, will be basically employed as a standard
model to explain the control system design and the results of the analysis
and simulations throughout the study.

Table 2.2. Models for the problem

Case Cable length L (m) v0 (m/s) Wings area

C1 30 4 nominal
C2 100 4 nominal
C3 200 4 nominal
C4 300 4 nominal
C5 200 8 doubled
C6 300 8 doubled

11



2.2 Dynamical Model

The dynamical model of the TUV can be described without considering
redundant state variables by the Lagrange approach as follows:

E(x)ẍ+ F (x) = τbg(x) + τh(x, u), (2.1)

where x = [x1, . . . , xn+1, ẋ1, . . . , ẋn+1]
T = [x1, . . . , x2(n+1)]

T ∈ ℜ2(n+1) de-
notes the state-vector and u = [u1, u2]

T ∈ ℜ2 is the input vector; E(x) ∈
ℜ(n+1)×(n+1) is the symmetric inertia matrix, F (x) ∈ ℜ(n+1) represents the
Coriolis and centripetal force vector, τbg(x) ∈ ℜ(n+1) is the buoyancy and
gravity, and τh(x, u) ∈ ℜ(n+1) represents the hydrodynamic forces, respec-
tively.

Explicit expressions for each term are given by (2.2)-(2.6) with the ab-
breviations s(·) and c(·) of sin(·) and cos(·).

E(x) =


E11 . . . E1,n+1

E21 . . . E2,n+1
... . . . ...

En+1,1 . . . En+1,n+1


Eij =Eji

=
1

2

(
L

n

)2

{(M11 +M22 + 2kijmac)c(xi − xj)

+ (M11 −M22)c(xi + xj − 2xn+1)}
(for i, j ∈ n)

Ei,n+1 =En+1,i

=
L

n
{(M13 + LvM11)c(xi − xn+1)−M23s(xi − xn+1)}

(for i ∈ n)

En+1,n+1 =M33 + Lv(LvM11 + 2M13), (2.2)

where the inertia matrix of the vehicle M consists of the element Mij as

M =

 mv + av11 0 mvzg + av13
0 mv + av22 −mvxg + av23

mvzg + av13 −mvxg + av23 Jv + av33
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and kij denotes the element of the n× n matrix

k =


n n− 1 n− 2 . . . 1

n− 1 n− 1 n− 2 . . . 1
n− 2 n− 2 n− 2 . . . 1

...
...

... . . . ...
1 1 1 . . . 1

 .

Jv denotes the inertia moment and (xg, zg) denotes the coordinates of the
center of gravity of the vehicle in On+1Xn+1Zn+1.

F (x) = [F1, . . . , Fn+1]
T

Fi =
n∑

j=1

[
1

2

(
L

n

)2

{(M11 +M22 + 2kijmac)s(xi − xj)

− (M11 −M22)s(xi + xj − 2xn+1)}ẋj

+

(
L

n

)2

(M11 −M22)s(xi + xj − 2xn+1)ẋjẋn+1]

+
L

n
{M23c(xi − xn+1) + (M13 + LvM11)s(xi − xn+1)}ẋ2n+1

+
L

n
(M11 −M22)s(xi − 2xn+1)v0ẋn+1

+
1

2

(
L

n

)
{(M11 −M22)c(xi − 2xn+1)

+ (M11 +M22 + 2k1imac)c(xi)}v̇0
(for i ∈ n)

Fn+1 =
n∑

i=1

[
n∑

j=1

{−1

2

(
L

n

)2

· (M11 −M22)s(xi + xj − 2xn+1)ẋiẋj}

− L

n
{M23c(xi − xn+1) + (M13 + LvM11)s(xi − xn+1)}ẋ2i

− L

n
(M11 −M22)s(xi − 2xn+1)v0ẋi]

+
1

2
(M11 −M22)s(2xn+1)v

2
0

+ {M23s(xn+1) + (M13 + LvM11)c(xn+1)}v̇0. (2.3)
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τbg(x) = [τbg1, . . . , τbgn+1]
T

τbgi =
L

n
{Lk1i

n
(Bc −mcg) +Bv −mvg}s(xi)

(for i ∈ n)

τbgn+1 = {BvLv −mvg(Lv + zg)}s(xn+1) + (Bvxb −mvgxg)c(xn+1), (2.4)

where Bc and Bv represent the buoyancy of the cable per unit length and
the buoyancy of the vehicle, (xb, 0) denotes the coordinates of the center
of buoyancy of the vehicle in On+1Xn+1Zn+1 and g is the gravitational
acceleration.

τ(x, u) = [τh1, . . . , τhn+1]
T

τhi = −
n∑
j=i

hcjc(αj + xi − xj)

+
L

n
{−hmDc(αn+1 + xi − xn+1)− htDc(αt + xi − xn+1)

+ (hvL + hmL)s(αn+1 + xi − xn+1) + htLs(αt + xi − xn+1)}
(for i ∈ n)

τhn+1 =hvLLvs(αn+1) + CM + hmLLvs(αn+1)− hmDLvc(αn+1)

+ (htLLv − htDLt)s(αt)− (htDLv + htLLt)c(αt), (2.5)

where (−Lt, 0) denotes the coordinates of the center of hydrodynamic force
on the tail wings in On+1Xn+1Zn+1 and CM represents a constant param-
eter with respect to hydrodynamic moment. The angle of attack is defined
by αi = tan−1(viz/vix) (vix ̸= 0), where vi = [vix, viz]

T as the velocity vector
of Oi associated with OiXiZi. h∗ represents each hydrodynamic force as in
the following;

hci =
L

n
(CDc1α

2
i + CDc2)∥vi∥2

hmD = {CDm1(αn+1 + u1 + CLm2)
2 + CDm2}∥vn+1∥2

hmL =CLm1(αn+1 + u1 + CLm2)∥vn+1∥2

htD = {CDt1(αt + u2)
2 + CDt2}∥vt∥2

htL =CLt1(αt + u2)∥vt∥2

hvL =CLv1αn+1∥vn+1∥2, (2.6)

14



where hci represents the drag on the ith cable segment and CD∗ and CL∗
denote the drag and the lift coefficients. The suffixes D and L denote drag
and lift, and m, t and v denote the main wing, the tail wing and the body
of the vehicle, respectively. The physical parameters for computation are
adopted from [50], which are shown in Table 2.3.
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Table 2.3. Physical parameters for computation

Sign Value Unit

ac 1.76715ρ × 10−4 kg/m
av11 0.010ρ kg
av13 0 kgm
av22 0.539ρ kg
av23 0.032ρ kgm
av33 0.039ρ kgm2

Bc 0.69g N/m
Bv 0.162ρg kg

CDc1 −1.23075ρ × 10−3 Ns2/m3

CDc2 3.975ρ × 10−3 Ns2/m3

CDm1 0.60835ρ Ns2/m2

CDm2 0.00274506ρ Ns2/m2

CDt1 0.0335183ρ Ns2/m2

CDt2 7.22347ρ × 10−4 Ns2/m2

CLm1 1.72595ρ Ns2/m2

CLm2 −0.141372 rad
CLt1 0.202770ρ Ns2/m2

CLv1 0.0766708ρ Ns2/m2

CM 1.17268 m
g 9.8 m/s2

Jv 26.078 kgm2

Lt 0.7 m
Lv 0.205 m
mc 0.95 kg/m
mv 182.687 kg
xb 0.017 m
xg 0.017 m
zg 0.02 m
ρ 1025 kg/m3
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2.3 State-Space Formulation and Transformed System

Consequently, a state-space representation of Eq. (2.1) is derived as

ẋ = f(x) + g(x, u), (2.7)

where

f(x) =

[
ẋi

E(x)−1{−F (x) + τbg(x)}

]
, (2.8)

g(x, u) =

[
0

E(x)−1τh(x, u)

]
. (2.9)

The measured outputs, depth and attitude of the vehicle, can be also rep-
resented in

y = [y1, y2]
T

=

[
L
n

∑n
i=1 c (xi) + Lvc (xn+1)

xn+1

]
. (2.10)

The system represented by (2.7) and (2.10) is the target of our control
design.

Next, to utilize a high-gain observer-based approach with the lowest-
order model in Chapter 3, the coordinates of the system (2.7) need to be
transformed according to the scheme used in input-output linearization,
e.g., see [99] and [101]. The derivatives of the output (2.10) with n = 1 are
calculated as

ẏ =

[
−Lẋ1s(x1)− Lvẋ2s(x2)

ẋ2

]
ÿ =H(x) +G(x, u), (2.11)

where H(x) = L2
fy and G(x, u) = LgLfy. The Lie derivatives with respect

to f and g are represented by Lf(·) and Lg(·), respectively. Then, the
control system (2.7) and (2.10) can be rewritten as

ż =Azz +Bzϕ(z, u)

y =Czz, (2.12)
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where z = [zT1 , z
T
2 ]

T = [yT , ẏT ]T = T (x) is the transformation and

Az =

[
0 I2
0 0

]
Bz =

[
0
I2

]
Cz =

[
I2 0

]
(2.13)

are the constant matrices. Note that this transformation bundles the non-
linear terms into ϕ(z, u) = H(T−1(z)) +G(T−1(z), u) so that the observer
based on the system (2.12) can consider the nonlinear dynamics of the
original system completely.
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3 Motion Control Design Using an LQ-Control-Based

Approach

This chapter presents an LQ-control-based approach with a high-gain ob-
server. Employing a high-gain observer by [99], an output-feedback con-
troller is designed based on a state-feedback controller derived from the
linearization around an equilibrium point. In addition, a depth tracking
control system by switching controllers is constructed.

3.1 Equilibrium Point and Linearization

In order to design a control system, an equilibrium point of the system (2.7)
has to be obtained, which satisfies f(x∗) + g(x∗, u∗) = 0. The lowest-order
model has four states, x = [x1, x2, ẋ1, ẋ2]

T (deg, deg, deg/s, deg/s), then
the equilibrium input u∗ = [u∗1, u

∗
2]
T (deg, deg) is calculated providing x∗ =

[−60.0, 0, 0, 0] so that the equilibrium depth of the vehicle is equivalent to
the half length of the cable. The equilibriums resulting from these settings
will be referred to as “Central Equilibrium Point” (CEP) in this study and
Table. 3.1 shows the CEP for each model. Then the approximate linearized
system around the equilibrium point is derived as

ẇ =Aw +Bv

p =Cw, (3.1)

where A,B,C denote each coefficient matrix and w = x−x∗ = [x1−x∗1, x2−
x∗2, ẋ1 − ẋ∗1, ẋ2 − ẋ∗2]

T = [w1, w2, w3, w4]
T , v = u− u∗ = [u1 − u∗1, u2 − u∗2]

T .

Table 3.1. Equilibriums for each model

Case u1 (deg) u2 (deg) Depth (m)

C1 7.0456 −0.3735 15.205
C2 3.8573 −0.6319 50.205
C3 −0.7660 −1.5637 100.205
C4 −5.4630 −3.1833 150.205
C5 11.2648 −0.6689 100.205
C6 8.7584 −1.1457 150.205
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3.2 Controller Using an LQ State-Feedback Gain

3.2.1 State-Feedback Controller

Based on the linearized system (3.1), an LQ feedback gain K is computed
as

K = R−1BTS, (3.2)

where S denotes the positive-definite solution of the Riccati equation

ATS + SA− SBR−1BTS +Q = 0. (3.3)

Q and R denotes the weighting matrices, which are chosen as the identity
matrix I4 and I2, respectively. The resulting gain (3.2) minimizes the cost
function

J =

∫ ∞

0

(wTQw + vTRv)dt. (3.4)

Hence, the control input of this state-feedback controller is given by

v = −Kw. (3.5)

Each gain (3.2) with coefficient matrices is listed (A.1)-(A.6) in Appendix
A.

3.2.2 Output-Feedback Controller with a High-Gain Observer

The transformed system (2.12) yields a high-gain observer with the observer
gain Γ as

˙̂z = Azẑ +Bzϕ(ẑ, u) + Γ(y − Czẑ), (3.6)

Γ =


α1/ϵ 0
0 α1/ϵ

α2/ϵ
2 0

0 α2/ϵ
2

 . (3.7)

ẑ denotes the estimate of z and a design parameter ϵ predominates the
whole estimation performance; the smaller ϵ becomes, the better the ob-
server works theoretically. The positive constant αi(i = 1, 2) is set as
α1 = 1.4, α2 = 1 to be the same as in [97] and [98] so that s2+α1s+α2 = 0
has stable roots. While ϵ = 0.01 is adopted in this study instead of
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ϵ = 0.001, which has been concluded the best value in [97] and [98]. This
modification is necessary for abating the effect of the peaking and manag-
ing the wide range of the cable length. Consequently, the control input of
this output-feedback controller is expressed as

v = −Kŵ, (3.8)

where ŵ = x̂− x∗0. x̂ is calculated from T−1(ẑ), the inverse transformation
of T (x) in Section 2.3.
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4 Stability Analysis via Singular Perturbation Method

This chapter presents a stability analysis of the proposed LQ-control-based
approach. Employing the singular perturbation method, Theorem 1 and
Lemma 1 are utilized to consider not only an asymptotic stability of the
system but also its estimate of the region of attraction as in [101]. More-
over, a state-space scaling method of Theorem 2 is devised so that less
conservative estimates are obtained. Note that all the specific values in
this chapter correspond to C2, i.e., the model with L = 100 m, unless
otherwise specified.

4.1 Singularly Perturbed System

First, introducing the original estimation error ē = z − ẑ and the scaled
estimation error

e =N−1(ϵ)ē

N(ϵ) =

[
ϵI2 0
0 I2

]
, (4.1)

the system (2.7) can be rewritten as

ẇ = fc(w) + f̃(w,N(ϵ)e) (4.2)

using w in (3.1). fc(w) denotes the closed-loop system (2.7) under the state-
feedback control (3.5) and the second term f̃(w,N(ϵ)e) = f ′

c(w,N(ϵ)e) −
fc(w) represents the difference between fc(w) and f ′

c(w,N(ϵ)e), the system
with the output-feedback control (3.6) and (3.8). Note that fc(0) = 0 and
f̃(w, 0) = 0.

Second, the observer (3.6) is transformed using the derivative of ē as

˙̄e = Aeē+Bzδ(z, ē) (4.3)

with Hurwitz Ae = Az − ΓCz. Note that δ(z, ē) = ϕ(z, u(ẑ)) − ϕ(ẑ, u(ẑ))
and N−1(ϵ)Bz = Bz. Applying e yields the rewritten observer

ϵė = Aee+ ϵg̃(w,N(ϵ)e), (4.4)

where Ae = ϵN−1(ϵ)AeN(ϵ), g̃ = Bzδ(T (w + x∗), N(ϵ)e) and g̃(0, 0) = 0.
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Third, it is notable that the original estimation error dynamics (4.4) is
almost equivalent to the “fast system”

de

dτ
= Aee (4.5)

for sufficiently small ϵ, where e converges to 0 quite fast due to Ae and the
time τ = t/ϵ. This implies that the state-space equation (4.2) promptly
converges to the “slow system”

ẇ = fc(w) (4.6)

and then w converges to 0 rather slowly.
Thus, the singularly perturbed system (4.2) and (4.4) can be considered

in the following analysis.

4.2 Lyapunov function candidate

Next, a Lyapunov function candidate for the full singularly perturbed sys-
tem is derived by combining each Lyapunov function of (4.5) and (4.6).
The Lyapunov equation P (A − BK) + (A − BK)TP = −I4 is solved to
obtain the positive-definite matrix

P =


21.008 −0.8838 0.6107 −0.0100
−0.8838 1.1662 2.0254 0.0374
0.6107 2.0254 35.649 0.4945
−0.0100 0.0374 0.4945 0.0151

 (4.7)

and a Lyapunov function W (w) = wTPw of (3.1) with C2 is constructed
for the slow system (4.6), which satisfies

β1∥w∥2 ≤ W (w) ≤ β2∥w∥2 (4.8)

Ẇ (w) ≤ −β3∥w∥2 (4.9)

∥∂W
∂w

∥ ≤ β4∥w∥ (4.10)

for all w ∈ D1 ⊂ ℜ4. D1 containing the origin is a domain to be estimated
and positive constants β1 to β4 are calculated from the eigenvalues λ’s of
P as in Table 4.1, where λmin(·) and λmax(·) denote the minimal and the
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Table 4.1. Positive constant βi (1 ≤ i ≤ 4)

βi Calculation Value

β1 λmin(P ) 0.0081
β2 λmax(P ) 35.796

β3 satisfying Ẇ/∥w∥2 ≤ −β3 0.0001
β4 2λmax(P ) 71.592

maximal eigenvalues, respectively. In this analysis, a “hyper rhombus” with
each vertex on one of the state-space coordinate axes is defined as

Rh(p1, p2, p3,p4)

:= {(w1,w2, w3, w4)|wi = sipi,Σi|si| ≤ 1, si ∈ ℜ, i = 1, 2, 3, 4}
(4.11)

to depict estimates of region of attraction, where pi denotes the coordinate
of the vertex on each axis. Applying this representation, an estimate of
the region of attraction for the system with the state-feedback controller is
obtained

D1 = Rh(28.3, 7.6, 0.4, 28.3) (deg, deg, deg/s, deg/s). (4.12)

While a Lyapunov function for the fast system can be constructed since
Ae is Hurwitz. The positive-definite solution

Pe =


5.0× 107 0 −0.5× 104 0

0 7.0× 107 0 −0.5× 104

−0.5× 104 0 3.6× 103 0
0 −0.5× 104 0 0.5× 104

 (4.13)

of the Lyapunov equation PeAe + AT
e Pe = −I4 yields V (e) = eTPee, and a

domain for e containing the origin is also denoted by D2 ⊂ ℜ4, which is set
as

D2 = Rh(2.2 ∗ 105, 1.3 ∗ 107, 2.2 ∗ 105, 1.3 ∗ 107) (m, deg, m/s, deg/s).
(4.14)

Note that pi represents the range of ei and the scaled estimation error (4.1)
implies that a region of non-scaled estimation error

D̄2 = Rh(2.2 ∗ 103, 1.3 ∗ 105, 2.2 ∗ 105, 1.3 ∗ 107) (m, deg, m/s, deg/s).
(4.15)
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Hence a Lyapunov function candidate for the full singularly perturbed sys-
tem results from a weighted sum of those two Lyapunov functions,

ν(w, e) =
W (w)

µ0
+

V (e)

σ0
, (4.16)

where µ0 > 0, σ0 > 0.

4.3 Stability Analysis

4.3.1 Asymptotic Stability

Now Theorem 1 is introduced referring to the extension in [101] of the
Tikhonov’s theorem as follows:

Theorem 1 Suppose in addition to the assumptions (4.8) − (4.10), the
system (4.2) and (4.4) satisfies

∥f̃(w,N(ϵ)e)∥ ≤ β5∥e∥ (4.17)

∥g̃(w,N(ϵ)e)∥ ≤ β6∥w∥+ β7∥e∥ (4.18)

for all (w, e) ∈ D1 ×D2, where β5 to β7 are non-negative constants. Then
there exists ϵ∗ > 0 such that for 0 < ϵ < ϵ∗, the origin of (4.2) and (4.4) is
asymptotically stable and a region of attraction is estimated by

Ω = {(w, e) | W (w)

µ0
+

V (e)

σ0
≤ 1} ⊂ D1 ×D2. (4.19)

Let the solution of the slow system be w̄(t) and that of the full singularly
perturbed system be w(t, ϵ). Theorem 1 means that for all initial state in
Ω, the limit

w(t, ϵ) → w̄(t) (4.20)

is hold as ϵ → 0 uniformly in t for all t ≥ 0. Note that the constants µ0

and σ0 are chosen satifying

Ω1 = {w|W (w) ≤ µ0} ⊂ D1, (4.21)

Ω2 = {e|V (e) ≤ σ0} ⊂ D2. (4.22)

In order to apply Theorem 1, the assumptions (4.17) and (4.18) have to
be confirmed. Assuming β6 = β7 reduces the number of constants, and β5
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and β6 over D1 ×D2 are calculated by

∥f̃(w,N(ϵ)e)∥
∥e∥

≤ β5, (4.23)

∥g̃(w,N(ϵ)e)∥
∥w∥+ ∥e∥

≤ β6. (4.24)

Each range of the variables is divided by ten for searching over D1×D2. To
successfully perform the above computation, the argument of arccos(·) in
the inverse transformation T−1(z) is bounded within ±1, because the esti-
mation error can vary independently of the practical geometric constraints.
Consequently, the resulting β5 = 10 and β6 = 107 verifies that the CEP is
asymptotically stable.

4.3.2 Estimates of Region of Attraction

Finally, an estimate of the region of attraction is considered. A conventional
method, e.g., explained in [99] as in the following lemma is attempted first:

Lemma 1 (estimate of region of attraction) Consider a simply con-
nected closed set D containing the origin on the Euclidean space ℜn. Then,

rwmin = min
w∈∂D

∥w∥ (4.25)

σw = λmin(P )r2wmin (4.26)

Ωw = {w | wTPw ≤ σw, w ∈ ℜn}, (4.27)

where ∂(·) denotes the boundary of the set and P ∈ ℜn×n is a positive-
definite matrix, so that Ωw ⊆ D.

Proof: See Appendix B.1.

Note that compared with products of hyper rhombusesD1×D2 by (4.12)
and (4.14), w and e in the coupled form (4.19) are not desirable to grasp the
specific region of attraction particularly with higher than three-dimensional
space. Therefore, to calculate products of hyper rhombuses independently,
Ω′

1 × Ω′
2 ⊂ Ω are defined as

Ω′
1 = {w|W (w) ≤ µ0 ∗ 0.9} ⊂ Ω1, (4.28)

Ω′
2 = {e|V (e) ≤ σ0 ∗ 0.1} ⊂ Ω2. (4.29)
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It should be remarked that the region of attraction in our case consists of
two parts, the slow system and fast one, which are completely different in
the following point. Since the slow system adopts the controller based on
the approximate linearized system, the condition (4.9) constrains its closed-
loop stability within a vicinity of the origin. Meanwhile, the global stability
is ensured for the fast system for sufficiently small ϵ and, as long as D1 and
D2 are bounded, the coupled conditions (4.17)-(4.18) are satisfied invariably
due to the global continuousness in their arguments of the functions f̃ and
g̃. Hence, in the prospect of the entire singularly perturbed system, Ω′

1 for
the slow system can not be extended arbitrarily, but Ω′

2 for the fast system
is not the case.

Utilizing Lemma 1 and calculation in Chapter 8 of [99], µ0 and σ0 are
determined as µ0 ≤ λmin(P ) ∗ r2w = 4.0 ∗ 10−7 and σ0 ≤ λmin(Pe) ∗ r2e =
4.4 ∗ 1013, where rw = 0.007 = ∥w∥min and re = 1.107 ∗ 105 = ∥e∥min on
each boundary D1 and D2, respectively. Resulting estimates in the form of
(4.28)-(4.29) are

Rh(0.01, 0.03, 0.01, 0.28) ⊂ Ω′
1 (deg, deg, deg/s, deg/s), (4.30)

Rh(290, 1.4 ∗ 104, 2.9 ∗ 105, 1.7 ∗ 107) ⊂ Ω′
2 (m, deg, m/s, deg/s), (4.31)

which means that original region Ω̄′
2 is

Rh(2.9, 140, 2.9 ∗ 105, 1.7 ∗ 107) ⊂ Ω̄′
2 (m, deg, m/s, deg/s). (4.32)

From the viewpoint of practical use, the above result Ω′
1 is quite con-

servative and not available. This is due to the unbalance between the
eigenvalues λ, and hence a “state-space scaling method” justified theoret-
ically by the following theorem is devised to improve the estimate in the
sense of less conservativeness:

Theorem 2 (state-space scaling method) Consider the same situation
as in Lemma 1 and Eqs. (4.25)–(4.27). Taking the matrix square root P 1/2

results in a linear map TP : ℜn → ℜn defined as

TP (w) = P 1/2w. (4.33)
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Then,

Dw′ = TP (D) (4.34)

rw′ min = min
w′∈∂D′

w

∥w′∥ (4.35)

σw′ = r2w′ min (4.36)

Ωw′ = {w | wTPw ≤ σw′, w ∈ ℜn} (4.37)

so as to hold σw ≤ σw′ and Ωw ⊆ Ωw′ ⊆ D.

Proof: See Appendix B.2.

Thus the estimate of the region of attraction can be expected to be
expanded by this scaling method. The minimum distance from the origin
to the boundary of the transformed polytope, rmin, is searched to apply
Theorem 2 and the new constant µ0 = r2min = 3.7 ∗ 10−4 yields

Rh(0.22, 0.97, 0.17, 8.55) ⊂ Ω′
1 (deg, deg, deg/s, deg/s). (4.38)

According to the scaled results, the value for the vehicle attitude w2 is
larger than that for the cable w1. This tendency is proper considering the
configuration of the TUV and is clarified compared to the conventional
result (4.30). The comparison between the conventional estimate and the
scaled one is also shown in Fig. 4.1, which is the projections onto the
w1-w2 plane with w3 = w4 = 0, and the validity of the proposed scaling
method is explicit. Note that the essence of Theorem 2 is to rebalance
the minimal and maximal eigenvalues of a positive-definite matrix included
in the Lyapunov function, so that the state-space scaling method can be
widely employed for other stability analyses.
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Figure 4.1. Projections of the estimates of region of attraction with w3 =
w4 = 0: W (w) ≤ 4.0 ∗ 10−7 ∗ 0.9 (no scaling) and W (w) ≤ 3.7 ∗ 10−4 ∗ 0.9
(with scaling).
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Further, Table 4.2 presents the analysis results for all the cases C1-
C6, where D1, the estimates by the conventional and proposed scaling
method are listed by utilizing the same procedure in this chapter. First,
the estimates by both methods for C1 show the best results compared to
other estimates, which is due to the shortness of the cable length, L = 30
m. Second, the results for C2-C4 become worse according to the extension
of the cable length. In particular, the values of w3 in D1 are the smallest in
the deviation w and restrict the results of the estimates. Then the estimates
for C5 and C6 are more conservative than those of C3 and C4. This is due
to the methodology of choosing the Lyapunov function and there might
be some additional linear transformation methods for a positive-definite
matrix P so as to improve the analysis result. In any case, it can be
concluded the state-space scaling method has improved the estimate of
region of attractions compared to the conventional method.

At the end of this chapter, estimates of the region of attractions of C2
by the proposed method for other equilibriums near the CEP are presented
in Fig. 4.2, where the obtained estimates as the projections onto the x1-
x2 plane similar to Fig. 4.1 are depicted. The equilibriums are selected
corresponding to the depths (a) 49.7 m, (b) 50.0 m, (c) 50.2 m (CEP), (d)
50.4 m and (e) 50.7 m, respectively. As seen from the figure, not only (c)
with red line but also (b) and (d) with blue lines contain the origin of the
coordinates, which represents the CEP of C2. In other words, the local
regions of attraction indicate overlap and subsume the next equilibriums
each other. Such a sequence implies the feasibility of the switching control
system for the full operating range by switching multiple controllers in
accordance with the respective equilibriums. This analysis reveals that
the local regions of attraction relate to the reachable operating range and
supplies a highly suggestive perspective on the relationship between them
theoretically, although those estimates of the region of attraction are still
conservative. Thus, the next question that how many controllers are needed
to cover the full operating range in the actual switching control system of
C2 will be investigated in Section 5.2 by simulations.
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Table 4.2. Results of the analysis

Case C1

D1 Rh(25.3, 7.5, 1.4, 26.8)
Conventional estimate Rh(0.04, 0.10, 0.06, 0.92)

Scaled estimate Rh(0.4, 0.92, 0.56, 8.33)

Case C2

D1 Rh(28.3, 7.6, 0.4, 28.3)
Conventional estimate Rh(0.01, 0.03, 0.01, 0.28)

Scaled estimate Rh(0.22, 0.97, 0.17, 8.55)

Case C3

D1 Rh(23.4, 7.4, 0.2, 23.5)
Conventional estimate Rh(0.002, 0.016, 0.001, 0.147)

Scaled estimate Rh(0.15, 0.92, 0.09, 8.20)

Case C4

D1 Rh(20.2, 7.2, 0.1, 19.3)
Conventional estimate Rh(0.001, 0.008, 0.001, 0.078)

Scaled estimate Rh(0.09, 0.67, 0.05, 6.26)

Case C5

D1 Rh(100, 16.4, 0.06, 27.0)
Conventional estimate Rh(0.0005, 0.0021, 0.0025, 0.053)

Scaled estimate Rh(0.01, 0.04, 0.05, 1.09)

Case C6

D1 Rh(96.9, 18.6, 0.03, 27.5)
Conventional estimate Rh(0.0002, 0.0001, 0.0009, 0.027)

Scaled estimate Rh(0.01, 0.03, 0.03, 0.75)
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Figure 4.2. Estimates of region of attractions with C2 and w3 = w4 = 0 for
the different equilibriums: the depth corresponding to (a) 49.7 m, (b) 50.0
m, (c) 50.2 m (CEP), (d) 50.4 m and (e) 50.7 m.
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5 Simulation Results for the LQ-Control-Based Ap-

proach

This chapter presents control performance evaluation simulations on the
LQ-control-based approach presented in Chapter 3. Demonstrations of
regulation in terms of initial deviations of the state variables are performed
for the n = 1 model, where the comparison of the results with the stability
analysis in Chapter 4 is included. Additionally, depth tracking by switching
controllers is investigated to show the full operating range for C2 and to
justify the perspective from the stability analysis.

5.1 Depth and Attitude Regulation

5.1.1 Settings

First, an “allowable initial deviation” as the pair (id1, id2) is defined to
focus on regulation performance with initial deviations of the states, where
considering the combinations of the signs, all the simulations with the initial
deviation set w(0) = [±id1,±id1,±id2,±id2]

T succeeds in regulating the
system to the CEP. In order to evaluate the controllers, id1max and id2max

are investigated by following two-step way.

Step1 Set w = [0.1, 0.1, 0.1, 0.1]T as the initial deviation and simulate with
all the signs. According to the simulation results, increase (id1, id2) by
0.1◦ and 0.1◦/s, and repeat the procedure to find the maximal allowable
value id1max for id1 and id2.

Step2 Set id1max for id1 and id2 as the initial deviation in order to investigate
the maximal allowable value for id2. By only changing id2 in a similar
manner to the second step, find the maximal allowable value id2max

for id2.

Therefore, a “maximum allowable initial deviation” idmax = (id1max, id2max)
for each case obtained by the procedure can be regarded as a kind of crite-
rion with respect to the region of attraction. Note that idmax suggests that
Ω′′

1 = Φ1 × Φ2 might correspond to an estimate of the region of attraction
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for the state-feedback controller:

Φ1 = [−id1max, id1max]× [−id1max, id1max] (deg)× (deg), (5.1)

Φ2 = [−id2max, id2max]× [−id2max, id2max] (deg/s)× (deg/s), (5.2)

and Ω′′
1× Ω̄′′

2(Ω̄
′′
2 = T (Ω′′

1)) might be also an estimate of that for the output-
feedback controller.

5.1.2 Results

Table 5.1 enumerates each maximum allowable initial deviation (id1max, id2max)
and corresponding depth range from the CEPs. For example, the result for
C2 with the state-feedback controller is (3.0, 3.1); that is, pseudo estimation
as Ω′′

1 is obtained by

Φ1 = [−3.0, 3.0]× [−3.0, 3.0] (deg)× (deg), (5.3)

Φ2 = [−3.1, 3.1]× [−3.1, 3.1] (deg/s)× (deg/s). (5.4)

According to the comparison between the theoretical estimate D1 (4.12) in
Chapter 4.2 and Ω′′

1 by (5.3) and (5.4), D1 almost contains Ω′′
1 with respect

to both Φ1 and Φ2. However, some w(0) exterior of D1 but interior of
(5.3) and (5.4) can be regulated. This fact is due to the trajectory of the
Lyapunov function W (w), where W (w) does not decrease monotonically as
shown later (see Fig. 5.8). Hence one of the limitations of the theoretical
estimate and the necessity of the improvement in obtaining better W (w)
are ascertained. Next, the result with the output-feedback controller is
(2.3, 2.4), in other words

Φ1 = [−2.3, 2.3]× [−2.3, 2.3] (deg)× (deg), (5.5)

Φ2 = [−2.4, 2.4]× [−2.4, 2.4] (deg/s)× (deg/s), (5.6)

which implies that

Ψ̄1 = [−3.6, 3.3]× [−2.3, 2.3] (m)× (deg), (5.7)

Ψ2 = [−3.6, 3.3]× [−2.4, 2.4] (m/s)× (deg/s), (5.8)

for Ω̄′′
2 = Ψ̄1 × Ψ2. Comparing Ω′

1 by (4.38) and Ω′′
1 by (5.5) and (5.6)

reveals the conservativeness of the theoretical estimate too.
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As seen from the results of C1 to C4 in Table 5.1, idmax diminishes
along with the elongation of the cable length reasonably. While the results
of C5 and C6 are improved, which implies that the modifications for the
physical design specifications are valid and the proposed control approach
is essentially effectual.

Table 5.1. idmax = (id1max, id2max) and corresponding depth range from
CEP for each model

Case State-feedback Corresponding depth range (m)

C1 (28.4, 28.5) [−14.187, 10.527]
C2 (3.0, 3.1) [−4.601, 4.464]
C3 (1.0, 1.0) [−3.038, 3.008]
C4 (0.4, 0.4) [−1.817, 1.810]
C5 (7.7, 7.7) [−24.111, 22.304]
C6 (6.0, 6.0) [−27.980, 26.335]

Case Output-feedback Corresponding depth range (m)

C1 (15.0, 15.0) [−7.242, 6.206]
C2 (2.3, 2.4) [−3.516, 3.435]
C3 (0.5, 0.5) [−1.515, 1.508]
C4 (0.1, 0.2) [−0.454, 0.453]
C5 (7.2, 7.2) [−22.499, 20.918]
C6 (5.6, 5.6) [−26.070, 24.636]
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Here, in order to investigate the time series data in detail, the demon-
stration results of the proposed LQ-based controller for C2 are presented
in Figs. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8. The initial deviation for
both controllers is set as w(0) = x(0)− x∗ = [−2.3, 2.3, 2.4, 2.4]T , which is
corresponding to idmax with the output-feedback controller, and the initial
estimation for the high-gain observer is set as ẑ(0) = [50.205, 0, 0, 0]T , i.e.,
the CEP.

Figs. 5.1 and 5.2 present the outputs by the state-feedback and output-
feedback controller, where both the depth and attitude reveal nearly the
same trajectories. This implies that the performance of the state-feedback
controller is recovered by the high-gain observer in the output-feedback
controller to a certain extent. As illustrated, the attitude y2 in Fig. 5.2
reaches about 45◦, which bounds the idmax for the output-feedback con-
troller compared to that for the state-feedback controller in the amount.
The difference between the graphs would become more clear by comparing
the control inputs as Figs. 5.3 and 5.4, where two time-scale graphs are
prepared; the top one is for full time range and the bottom is for the first 1
second of the simulations. It can be seen from the figures that the input of
the output-feedback controller shows more abrupt change in a short period
of time and the saturation works well. Otherwise, the control input might
extend to impractical value as shown in Fig. 5.5, which are the trajecto-
ries for the same simulation of the output-feedback controller without the
input saturation. Before the convergence, both u1 and u2 largely overshoot
within almost ±500◦. Further, the importance of the input saturation is
also confirmed by Figs. 5.6 and 5.7, where the estimation errors for angles
and angular velocities are depicted with two time-scale graphs. Although
an impulsive response called the “peaking phenomenon” is exhibited in the
bottom graphs for the first 0.4 seconds, the top one for full time range seems
to converge to 0 promptly. Thus the control input saturation is intrinsi-
cally required not only to consider the dynamic stall but to mitigate the
influence of the peaking phenomenon of the high-gain observer so that the
whole proposed control system is stable. In addition, Fig. 5.8 is presented
to depict the example of the gap between the theoretical estimate and the
original region of attraction. There are the trajectories of the Lyapunov
function W (w) for both controllers in two time-scale; the top one is for full
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time range and the bottom is for 5 seconds in start point. It is obvious
that the initial deviation w(0) = x(0) − x∗ = [−2.3, 2.3, 2.4, 2.4]T is out of
D1 and the time series data for W (w) shows an increment in less than first
1 second.

At the end of the demonstrations of the regulation performance, Fig. 5.9
is presented, which indicates the output with the output-feedback controller
and no initial deviation, that is, x(0) = x∗ and w(0) = [0, 0, 0, 0]T . However,
the towing speed v0 is set as 6 m/s, which is faster than that of the nominal
model. In consequence, the regulation completely fails as seen from the
figure. This implies that the proposed controller is not robust enough to
model uncertainties, and therefore an LQI-control-based approach will be
investigated in Chapter 6 and 7 to enhance the robustness of the proposed
controller.
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Figure 5.1. Simulation results of depth and attitude regulation with w(0) =
[−2.3, 2.3, 2.4, 2.4]T by the state-feedback controller.
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Figure 5.2. Simulation results of depth and attitude regulation with w(0) =
[−2.3, 2.3, 2.4, 2.4]T by the output-feedback controller.
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Figure 5.3. Control inputs of depth and attitude regulation with w(0) =
[−2.3, 2.3, 2.4, 2.4]T by the state-feedback controller; top full time range,
bottom in the first 1 second.
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Figure 5.4. Control inputs of depth and attitude regulation with w(0) =
[−2.3, 2.3, 2.4, 2.4]T by the output-feedback controller; top full time range,
bottom in the first 1 second.
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Figure 5.5. Control inputs of depth and attitude regulation with w(0) =
[−2.3, 2.3, 2.4, 2.4]T by the output-feedback controller without saturation;
top full time range, bottom in the first 0.1 seconds.
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Figure 5.6. Estimation errors for angles of depth and attitude regulation
with w(0) = [−2.3, 2.3, 2.4, 2.4]T by the output-feedback controller; top full
time range, bottom in the first 0.5 seconds.
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Figure 5.7. Estimation errors for angular velocities of depth and attitude
regulation with w(0) = [−2.3, 2.3, 2.4, 2.4]T by the output-feedback con-
troller; top full time range, bottom in the first 0.5 seconds.
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Figure 5.8. Trajectories of the Lyapunov function of depth and attitude
regulation with w(0) = [−2.3, 2.3, 2.4, 2.4]T by each controller; top full time
range, bottom in the first 5 seconds.
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Figure 5.9. Simulation results of depth and attitude regulation with w(0) =
[0, 0, 0, 0]T and towing speed v0 = 6 m/s by the output-feedback controller.
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5.2 Depth Tracking via Switching Controllers

5.2.1 Settings

Next, depth tracking control simulations for C2 via switching controllers
are demonstrated to evaluate the full operating range. In this study, the
procedure described as follows is employed to construct a depth tracking
control system:

1. calculating multiple equilibrium points;

2. obtaining the LQ feedback gain Ky1 as Eq. (3.2) in Section 3.2 with
respect to each equilibrium;

3. connecting each state-feedback with the high-gain observer (3.6);

4. switching Ky1 to change the depth of the vehicle y1.

Note that the suffixes of Ky1 denote corresponding depths, e.g., K45 is the
feedback gain for the equilibrium point of the depth 45.205 m, K50 is for the
CEP (see (A.2) in Appendix A), K55 is for the equilibrium point of 55.205
m, and so on. Total 19 equilibrium points corresponding to the depths by
each 5 m, i.e., around 5, 10, · · · , 95 m are targeted.

In Section 4.3, it is demonstrated that the regions of attraction relate
to a switching control system inextricably. For example, suppose that the
TUV is intended to descend or ascend from the initial depth d0 to the
terminus depth d1. The depth can be changed by switching the controller
with Kd0 to that with Kd1 directly only when the region of attraction of the
controller Kd1 with the equilibrium of the depth d1 includes the equilibrium
of the initial depth d0. Otherwise, some controllers of intermediate depths
will be necessary to reach the d1 from the d0.

Accordingly, two patterns of depth tracking paths are set to investigate
the full operating range of the proposed controller by the simulations. One
trajectory begins from the CEP with d0 = 50.205 m and descends to d1 =
50.205 + ∆d m (5 ≤ ∆d ≤ 45) then goes back to d0. In other words, the
trajectory becomes 50.205 m → 50.205 + ∆d m → 50.205 m (Pattern 1).
The other trajectory is the reverse pattern of the former one, that is, 50.205
m → 50.205 − ∆d m → 50.205 m (Pattern 2). ∆dmax for each pattern is
examined by checking all the tracking control trials successful or not for
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∆d = 5, 10, · · · ,∆dmax with no initial deviations. A schedule of switching
controllers is arranged as t = 0 to 10 s for d0, t = 10 to 200 s for d1, and
t = 250 to 400 s for d2. Besides, the vehicle attitude is also controlled to
be horizontal by the controllers during the trials.

5.2.2 Results

The simulation results show that the full operating range of the depth with
L = 100 m cable is from 5 m to 85 m, i.e., ∆dmax for Pattern 1 is 35 m and
∆dmax for Pattern 2 is 45 m for both the state-feedback and output-feedback
controllers. Figs. 5.10 and 5.11 show the tracking control results with the
output-feedback controllers for Pattern 1 and Pattern 2, respectively. It is
clear that the switching control system succeeds in tracking the reference
depths smoothly in the both patterns, which means that the full operating
range can be covered by only three controllers with maintaining the attitude
of the vehicle horizontal. The above graphs, which depict the trajectory
of the vehicle depth, also reveal that descending control takes shorter than
ascending control to converge.

Based on this outcome, the direct change of the depth between 5 m
and 85 m are examined. The controllers are switched so that the vehicle
tracks as 50.205 m → 85.205 m → 5.205 m (Pattern 3) and 50.205 m
→ 5.205 m → 85.205 m (Pattern 4), where the schedule of switching the
controllers accords with that for Pattern 1 and Pattern 2. Figs. 5.12 and
5.13 depict the results of Pattern 3 and Pattern 4, and elucidate that this
tracking control is successful for Pattern 3 but not for Pattern 4. From the
theoretical viewpoint, these results imply that the region of attraction of
the controller with K5 contains the equilibrium with K85, but that with K85

does not include the equilibrium with K5. Consequently, the connecting
controllers are necessary to conform the vehicle as Pattern 4 and Fig. 5.14
presents such a successful result, where the controller for d0 = 50.205 m are
employed again between t = 200 to 320 s.

In addition, Figs. 5.15, 5.16, 5.17, 5.18 and 5.19 show the same tracking
control pattern results with the state-feedback controllers, which are almost
similar to those with the output-feedback controller. Reconfirm that the
vehicle attitude never exceeds the limit ±45◦ except in Fig. 5.18. Hence, it
can be concluded that the switching control system can transmit the vehicle
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between the shallowest and deepest depths and the perspective obtained
by the estimate of the region of attraction in Chapter 4 is warranted.
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Figure 5.10. Tracking control simulation results of Pattern 1 by the output-
feedback controller.
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Figure 5.11. Tracking control simulation results of of Pattern 2 by the
output-feedback controller.
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Figure 5.12. Tracking control simulation results of of Pattern 3 by the
output-feedback controller.
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Figure 5.13. Tracking control simulation results of of Pattern 4 by the
output-feedback controller.
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Figure 5.14. Tracking control simulation results of of Pattern 4 with by the
output-feedback controller.
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Figure 5.15. Tracking control simulation results of Pattern 1 by the state-
feedback controller.
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Figure 5.16. Tracking control simulation results of of Pattern 2 by the
state-feedback controller.
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Figure 5.17. Tracking control simulation results of of Pattern 3 by the
state-feedback controller.

57



Figure 5.18. Tracking control simulation results of of Pattern 4 by the
state-feedback controller.
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Figure 5.19. Tracking control simulation results of of Pattern 4 with by the
state-feedback controller.
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6 Robust Motion Control Design Using an LQI-Control-

Based Approach

This chapter presents an LQI-control-based approach with the high-gain
observer. Theoretically, an LQI control scheme reinforces the robustness
of the control system, so that the controller can be expected to regulate
not only the lowest-order system with model uncertainties but also higher-
order systems. Referring to [44], [53]-[56], a linear Kalman observer-based
output-feedback controller is also constructed as a representative of the
conventional control system to compare the performance with the proposed
approach. Note that all the specific values in this chapter are corresponding
to C2.

6.1 Controller Using an LQI State-Feedback Gain

In order to apply an LQI-control-based approach, the expansion of the
linear system (3.1) has to be executed by introducing a reference signal for
the output as r = y∗ = [50.205, 0]T . ẇe = (r− y)T extends the state vector
w as wI = [wT , wT

e ]
T and the augmented system

ẇI =AIwI +BIv

AI =

[
A 0
C 0

]
BI =

[
B

0

]
(6.1)

is derived. Now the LQI state-feedback gain

KI = R−1
I BT

I PI (6.2)

can be calculated from the positive-definite solution PI of the Riccati equa-
tion

AT
I PI + PIAI − PIBIR

−1
I BT

I PI +QI = 0, (6.3)

where the weighting matrices are determined after some trial and error as

RI =

[
40 0
0 1

]
(6.4)
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and the identity matrix I6 for QI . The resulting

KI =

[
−9.0275 0.0014 −1.7780 0.0044 0.0561 0.1478
112.1885 −6.5741 −67.6143 −1.0255 −0.9349 0.3549

]
(6.5)

minimizes the cost function

JI =

∫ ∞

0

(wT
I QIwI + vTRIv)dt (6.6)

and thereby the control input is represented as

v = −KIwI . (6.7)

6.2 Two-Types of Output-Feedback Controllers

6.2.1 Controller A: High-Gain Observer-Based Output-Feedback Controller

Almost the same as (3.8) in Section 3.2.2. The input

v = −KIŵI (6.8)

is used with ŵ = x̂− x∗ = T−1(ẑ)− x∗ and ŵe by numerical integration of
ẇe = (r − y)T .

6.2.2 Controller B: Linear Kalman Observer-Based Output-Feedback Con-
troller

For comparison with the proposed control approach, a conventional linear
Kalman filter-based controller is also constructed. The Riccati equation

PlA
T + APl − PlC

TR−1
l CPl +Ql = 0 (6.9)

grounded on the linear system (3.1) is computed, where the identity matrix
is applied to the weighting matrices Rl and Ql. The solution Pl assigns the
linear Kalman filter gain

L = PlC
TR−1

l (6.10)

as

L =


0.0420 −0.0232
−2.0053 10.8427
0.0995 −0.3566
1.8469 60.7922

 . (6.11)
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Eventually the linear Kalman filter

˙̂w = Aŵ +Bv + L(y − Cŵ) (6.12)

gives ŵ, which is utilized in (6.8).
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7 Simulation Results for the LQI-Control-Based Ap-

proach

This chapter presents control performance evaluation simulations on the
LQI-control-based approach presented in Chapter 6. Focusing on C2, demon-
strations of three types of control simulations are conducted; the first is
regulation simulations with initial deviations from an equilibrium similar
to the ones in Section 5.1, the second is regulation simulations with model
uncertainties to evaluate the robustness, and the last is a depth tracking.
In particular, the LQI-based controllers will be applied not only to the
lowest-order (n = 1) model but also to the higher-order models. All the
evaluations will compare Controller A (the high-gain observer-based con-
troller) with Controller B (the conventional linear Kalman observer-based
controller) to show the superiority of the proposed approach.

7.1 Initial Deviation

7.1.1 Settings

First, similarly to Section 5.1, the “maximum allowable initial deviation”
idmax’s for the both controllers are investigated. In most of previous re-
searches, the towing cable has been approximated by less than five rigid
segments, and hence the higher-order models of n = 2, 3, 5 are constructed
in this study. The procedure is almost the same as in Section 5.1 as follows.

Step1 Set the initial condition wn(0) = wn+1(0) = id1(0) = 0.1◦, wi(0) =
0 (1 ≤ i ≤ n − 1) and ẇn(0) = ẇn+1(0) = id2(0) = 0.1◦/s, ẇi(0) =
0 (1 ≤ i ≤ n − 1) for all the cases so that the angles of the cable
segment attached to the vehicle and the attitude of the vehicle are
shifted from the equilibrium. Simulate taking into account the four
patterns of signs, (±id1,±id2) and according to the results, increase
(id1, id2) by 0.1◦ and 0.1◦/s. Repeat the procedure for the purpose of
finding the maximal allowable value id1max for id1 and id2.

Step2 Set the initial condition id1max for id1 and id2 to proceed to the max-
imal allowable value for id2. Change only id2 in a similar manner and
find the maximal allowable value id2max for id2.
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Therefore, idmax = (id1max, id2max) represents the maximum initial devia-
tion of the nth cable segment, the attitude of the vehicle and each angular
velocity.

7.1.2 Results

Table 7.1 enumerates the resulting idmax and corresponding depth range
from the CEP, i.e., 50.205 m, for each case. The comparison of each order
of the model reveals that Controller A shows better performance than Con-
troller B from the viewpoint of the larger region of attraction. For example,
the idmax for controller A with n = 1 is (0.7 0.8) while that for controller B
with n = 1 is (0.5, 0.5). Each corresponding depth range is [−1.062, 1.054]
and [−0.758, 0.754], which means that Controller A can regulate the depth
range about 0.3 m wider than that with Controller B. Fig. 7.1 illustrates
the output of the regulation simulations with the n = 1 model, where the
initial condition is set as w(0) = [−0.5, 0.5, 0.5,−0.5]T . The top graph de-
picts the depth of the vehicle and the bottom depicts the attitude. Both
controllers eventually regulate the system, but their transient responses are
different; the peak of the overshoot with Controller A is less than a half
of that with Controller B. This disparity arises from the estimation per-
formance of each observer and Fig 7.2 shows double time scale graphs of
the estimation error of x1 for the both controllers. The top graph is for
full time range and the bottom is for the first 1.5 seconds. It is seen that
the estimation error for Controller A converges rapidly and this behavior
alleviates the overshoot in the output. Thus the superiority of Controller
A is ascertained.

However, Table 7.1 also indicates that the difference of idmax between
the controllers decreases with respect to the order of the system. More-
over, it is opposed to the intuition that the idmax for higher-order cases
is better than that for lower-order cases. For instance, the idmax’s for the
both controllers are almost the same with n = 3, and that for Controller
B with n = 5 is the largest value in the table. These results can be in-
terpreted by how to set the initial condition w(0). In the simulations,
wi(0) = 0 (1 ≤ i ≤ n − 1), so that the impact of the cable segment on
the total dynamics relatively reduces proportionately to the number of the
point of mass. Considering the corresponding depth range in Table 7.1, the
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larger idmax for the higher-order models places the initial condition close
to the equilibrium compared to those with n = 1 model. Recall that Con-
troller B is composed of the linear Kalman observer, whose performance
becomes better near the equilibrium point. Fig. 7.3 compares the output
of the regulation simulations with n = 5 model, where the initial condition
is set as w(0) = [0, 0, 0, 0,−3.1, 3.1, 0, 0, 0, 0, 3.2, 3.2]T . As seen from the
bottom figure, the attitude of the vehicle with Controller A is slightly over
−45◦, while the attitude with Controller B barely stays within −45◦. This
may be due to the presence of the peaking phenomenon as shown in Chap-
ter 5.1, and the corresponding depth range with n = 5 model for the both
controllers are substantially identical. Consequently, the results in Table
7.1 are ensuring that Controller A has a larger or at least as large region
of attraction as Controller B.

Table 7.1. idmax = (id1max, id2max) and corresponding depth range from
CEP with LQI controller for C2

Controller A idmax Corresponding depth range (m)

n = 1 (0.7, 0.8) [−1.062, 1.054]
n = 2 (1.5, 1.6) [−1.142, 1.125]
n = 3 (2.1, 2.2) [−1.069, 1.046]
n = 5 (3.1, 3.1) [−0.952, 0.922]

Controller B idmax Corresponding depth range (m)

n = 1 (0.5, 0.5) [−0.758, 0.754]
n = 2 (1.3, 1.4) [−0.989, 0.976]
n = 3 (2.0, 2.1) [−1.018, 0.997]
n = 5 (3.1, 3.2) [−0.952, 0.922]
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Figure 7.1. Simulation results of depth and attitude regulation with n = 1
model and w(0) = [−0.5, 0.5, 0.5,−0.5]T .
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Figure 7.2. Estimation errors of x1 model with n = 1 and w(0) =
[−0.5, 0.5, 0.5, 0.5]T ; top full time range, bottom in the first 1.5 seconds.
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Figure 7.3. Simulation results of depth and attitude regulation with n = 5
model and w(0) = [0, 0, 0, 0,−3.1, 3.1, 0, 0, 0, 0, 3.2, 3.2]T .
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7.2 Robustness

7.2.1 Settings

Next simulations evaluate robustness of each controller. The both con-
trollers have been already applied to higher-order models, but the previous
section has not considered model uncertainties, which have to be taken
into account for practical purposes. Therefore, whether the controllers can
retain the equilibrium point in the existence of several kinds of model un-
certainties or not is evaluated. In order to admit parametric variations,
three kinds of perturbations are dealt as in the following;

1. the towing speed v0 is altered by two patterns as shown in Fig. 7.4,
where v0 gets slow from 4 m/s to 2 m/s (a) and becomes faster from
4 m/s to 6 m/s (b);

2. all the hydrodynamic parameters are perturbed ±20% from their nom-
inal values; and

3. the payload of the vehicle is set to be +50% from the nominal value.

The towing speed change begins at t = 20 s and is terminated at t = 30
s. Combining these uncertainty conditions, regulation simulations have
been carried out. Table 7.2 summarizes the settings of the conditions for
each simulation, where the “hydrodynamic parameters” is abbreviated as
“HD”. Note that the initial condition w(0) is set at the equilibrium for all
the simulations to make the comparison fair.

7.2.2 Results

Figs. 7.5-7.8 and 7.10-7.17 show the time series data of the output. Ac-
cording to the simulation results, Controller A generally demonstrates de-
sirable performances compared to Controller B. To begin with, Figs. 7.5,
7.6, 7.7 and 7.8 are the results with n = 1 model for both controllers.
It can be seen that the results with Controller B indicate larger over-
shoot than that with Controller A and chattering-like oscillation in the
transient response, particularly in the case with −20% hydrodynamic pa-
rameters, i.e., Figs. 7.6 and 7.8. These differences are due to the estima-
tion performance of each controller and Fig. 7.9 presents the estimation
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errors of x1 for the simulation depicted in Fig. 7.6, where the estima-
tion error for Controller A is almost stable even after the towing speed
change. By contrast, the estimation error for Controller B fluctuates and
does not converge to 0 completely. This can be interpreted from the dy-
namics of the linear Kalman filter (6.12); the eigenvalues of (A − LC),
λ = {−3.5808,−5.8810+5.2966i,−5.8810−5.2966i,−15.6805}, include the
stable but oscillatory modes in λ2 and λ3. While the convergence of the
estimation error of the high-gain observer can be ascertained by the eigen-
values of Hurwitz Ae in (4.3), where λ = {−70.0000+71.4143i,−70.0000−
71.4143i,−70.0000 + 71.4143i,−70.0000 − 71.4143i} with ϵ = 0.01. All
the modes are oscillatory and stable, however, the pole is assigned in far
left-half plane compared to (A−LC) and hence the estimation error of the
high-gain observer converges to 0 smoothly and quickly.

Moreover, the above argument is more conspicuous in the case of higher-
order systems. Figs. 7.10, 7.11, 7.12 and 7.13 are the results corresponding
to Controller A with n = 2, 3, 5 models. For each order case, Controller
A can maintain the system at the target depth and attitude with slight
deflections in the transient state. By contrast, Figs. 7.14, 7.15, 7.16 and
7.17 are the results corresponding to Controller B with the same conditions,
where not all the simulations are successful. Figs. 7.15 and 7.17 reveal that
in the highest-order n = 5 case with −20% hydrodynamic parameters the
control error does not converge, and even in the n = 3 case with towing
pattern (a) the controller fails to keep their depth and attitude in Fig. 7.15.

Hence, it can be concluded that the linearized system-based observer
(Controller B) is not robust to a sufficient degree to model variations and
the estimate by the high-gain observer (Controller A) yields desirable con-
trol performance under the model uncertainties. This is due to the struc-
tural robustness of the high-gain observer itself and thus the robust perfor-
mance of the whole proposed controller is enhanced.
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Figure 7.4. Patterns of towing speed change in robust control simulations.
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Table 7.2. Settings of each robust control simulation

Figure 7.5 7.6 7.7 7.8

Controller A and B A and B A and B A and B
n 1 1 1 1

Towing pattern (a) (a) (b) (b)
HD +20% −20% +20% −20%

Figure 7.10 7.11 7.12 7.13

Controller A A A A
n 2, 3, 5 2, 3, 5 2, 3, 5 2, 3, 5

Towing pattern (a) (a) (b) (b)
HD +20% −20% +20% −20%

Figure 7.14 7.15 7.16 7.17

Controller B B B B
n 2, 3, 5 2, 3, 5 2, 3, 5 2, 3, 5

Towing pattern (a) (a) (b) (b)
HD +20% −20% +20% −20%
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Figure 7.5. Simulation results of robust control performance by both con-
trollers for the lowest-order system with towing pattern (a) and +20%
hydrodynamic parameters.
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Figure 7.6. Simulation results of robust control performance by both con-
trollers for the lowest-order system with towing pattern (a) and −20%
hydrodynamic parameters.
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Figure 7.7. Simulation results of robust control performance by both con-
trollers for the lowest-order system with towing pattern (b) and +20%
hydrodynamic parameters.
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Figure 7.8. Simulation results of robust control performance by both con-
trollers for the lowest-order system with towing pattern (b) and −20%
hydrodynamic parameters.
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Figure 7.9. Estimation errors of x1 for the lowest-order system with towing
pattern (a) and −20% hydrodynamic parameters.
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Figure 7.10. Simulation results of robust control performance by Controller
A for higher-order systems with towing pattern (a) and +20% hydrody-
namic parameters.
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Figure 7.11. Simulation results of robust control performance by Controller
A for higher-order systems with towing pattern (a) and −20% hydrody-
namic parameters.
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Figure 7.12. Simulation results of robust control performance by Controller
A for higher-order systems with towing pattern (b) and +20% hydrody-
namic parameters.
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Figure 7.13. Simulation results of robust control performance by Controller
A for higher-order systems with towing pattern (b) and +20% hydrody-
namic parameters.
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Figure 7.14. Simulation results of robust control performance by Controller
B for higher-order systems with towing pattern (a) and +20% hydrody-
namic parameters.
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Figure 7.15. Simulation results of robust control performance by Controller
B for higher-order systems with towing pattern (a) and −20% hydrody-
namic parameters.
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Figure 7.16. Simulation results of robust control performance by Controller
B for higher-order systems with towing pattern (b) and +20% hydrody-
namic parameters.
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Figure 7.17. Simulation results of robust control performance by Controller
B for higher-order systems with towing pattern (b) and −20% hydrody-
namic parameters.
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7.3 Depth Tracking

7.3.1 Settings

Finally, a depth tracking control and its full operating range are investi-
gated. As demonstrated in Section 5.2, switching controllers is one of the
simplest ways to construct the depth tracking control system; however,
with LQI-control-based approach, the method is not available at least with
no modifications. Fig. 7.18 demonstrates such a result, where Controller A
is merely switched at t = 10 s to change the depth from 50.205 m to 45.502
m, but the control is lost. Owing to this, another approach to design the
depth tracking control system needs to be considered. In Section 6.1, the
output reference signal r vector has been introduced as r1 = 50.205 m and
r2 = 0◦, and the LQI-based controller make the system follow the r. Thus,
it can be expected that changing the r1 gradually will be a facile method to
obtain the depth tracking control system. Fig. 7.19 presents the successful
result of depth tracking by changing the r1 as 50.205 → 45.502, where both
the depth and attitude are regulated smoothly.

Based on the above observations, the full operating range via changing
the reference depth r1 is examined. The initial state is set at the equilib-
rium and, in addition to the nominal conditions, the parametric variations
are considered as the same combination in the previous section except the
towing speed change. Further, as seen from the simulation results in Section
5.2, ascending the vehicle takes longer time but has the wider changeable
range than descending the vehicle. In other words, ascending is more likely
to keep the system stable compared to descending, and this is immutable
in LQI-based-control systems. Therefore, after some trial simulations, it is
determined that the change step of r1 is by 5 m for ascending case and by
2 m for descending case. The timing of the r1 change is set as every 20
seconds.

7.3.2 Results

With the above conditions, the maximum reachable depth ∆dmax from the
50.205 m is examined for each direction. Concentrating on the n = 1 model,
Table 7.3 shows the maximum reachable depth for the both controllers.
When ascending the vehicle, only the result of Controller B with −20%
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hydrodynamic parameters is ∆dmax = 20 m, and the rest of ∆dmax is 45 m.
Fig. 7.20 depicts the outputs for the both controllers with the condition
of +50% payload and −20% hydrodynamic parameters, where Controller
B fails to regulate the attitude and loses control after t = 100 s. While
Controller A succeeds to lead the vehicle to 5 m, although the transient
attitude shows larger overshoot than that with Controller B. Comparisons
have to be also made with the LQ-based control system; the ∆dmax = 45 m
for ascending is the same reachable depth range with LQ-based controller.
In contrast, the ∆dmax becomes smaller than that with LQ-based control
system in case of descending the vehicle. The ∆dmax for Controller A with
nominal condition is 28 m, which is 7 m shorter than the result with LQ-
based switching control system in Section 5.2. As for Controller B, even the
best ∆dmax is 16 m. Fig. 7.21 demonstrates the worst case of descending
the vehicle (+50% payload and −20% hydrodynamic parameters), where
Controller B can not change the depth by just 2 m and Controller A retain
the control within 70.205 m.

In order to expand the operating range for descending the vehicle, two
types of solutions can be suggested. The one is to reduce the change step
of the r1 from 2 m to 1 m at least after t = 220 s. Fig. 7.22 shows such a
result by Controller A with blue line and the ∆dmax becomes 34 m. This
value is equal to the result depicted with red line, where the r1 is changed
by 1 m from scratch. In other words, the proposed combination of the
step change can change the vehicle depth from 50.205 m to 84.205 m under
model uncertainties and can shorten the travelling time about 200 s faster
than the case changing the r1 constantly. Furthermore, ∆dmax = 34 m
for descending the vehicle is almost the same range as that with LQ-based
controller without model uncertainties, ∆dmax = 35 m.

The other strategy to expand the operating range is accommodating and
constructing the switching control system. Recall the demonstration case
in Fig. 7.18, where the switching controller fails to change the depth of the
vehicle. This seems to be due to the smallness of the region of attraction
compared to the LQ-based controller and to confirm the hypothesis the
combination of the r1 change and the switching controllers are attempted
as illustrated in Fig. 7.23; first the r1 is changed from 50.205 → 45.502
at t = 10 s and then the controller is switched from the one for 50.205
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m to the one for 45.502 m at t = 40 s. Unfortunately, the control is
still not succeeded after switching. It can be found from this result that
the problem arises not only from the region of attraction, but also from
the integral action in the LQI-based control system as indicated in [57].
Thus, the integrator has to be reset in order to realize the switching control
system. Fig. 7.24 expressly reveals the effect of resetting the integral error,
where the controller is switched successfully with the slight deflection in the
attitude around t = 40 s. This modification makes it possible to extend the
maximum reachable depth in descending the vehicle as shown in Fig. 7.25.
The trajectory with blue line is the result of switching control systems,
where the controller is switched at t = 220 s from the one corresponding to
the 50.205 m to the one corresponding to the 70.205 m with resetting the
integrator. ∆dmax = 34 m is the same range as the previous method and
compared to the trajectory with red line, which is the same as Fig. 7.22,
i.e., changing the r1 by 1 m constantly, the switching control system also
achieves the curtailment of the traveling time. Note that the change step
of the r1 is set as 1 m after the switching; otherwise, the ∆dmax almost
never improves. However, this depends on the length of the cable and
the switching control methodology is rather expected to be available and
effective for the TUV system with far longer cables.

In addition, Table 7.4 presents the ∆dmax for Controller A with higher-
order systems. The results for ascending the vehicle are almost changeless,
except only the n = 5 model with +50% payload and −20% hydrodynamic
parameters; however, this conservative result ∆dmax = 5 m is not a serious
issue. It can be improved easily as demonstrated in Fig. 7.26, where the
timing of the r1 change for the n = 5 case is delayed, every 30 s, so that the
depth and attitude are eventually regulated as the results with the n = 2
and 3 cases. Consequently, the reachable depth of the ascending control can
be regarded as the same for n = 1, 2, 3, 5 models for all practical purposes.
On the other hand, the ∆dmax’s for descending the vehicle with n = 2, 3, 5
models are also similar to that with the n = 1 model. According to Table
7.4, each worst ∆dmax is 24 m, 26 m, and 28 m for n = 2, 3, 5 models
respectively when the payload is +50% and the hydrodynamic parameters
are −20%. Fig. 7.27, where the timing of the r1 change for the higher-order
cases is delayed, every 30 s, shows that these values can not be ameliorated
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by extending the time step for the alteration of r1. Therefore, reducing the
change step of the r1 as in Fig. 7.22 and/or the switching controllers as in
Fig. 7.25 will be necessary and effectual to improve the operating range of
the LQI-based controller.

Hence it can be concluded that the results of depth tracking control
assure the superiority of Controller A to Controller B as well, and the
proposed LQI-based-control system takes longer time but is able to cover
almost the same depth range as the LQ-based switching control system,
even under model uncertainties with only one or two controllers.
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Figure 7.18. Demonstration case of depth tracking by switching controllers.

90



Figure 7.19. Demonstration case of depth tracking by changing the refer-
ence depth r1.

91



Table 7.3. Reachable depth from CEP for C2 with n = 1 model by changing
r1; ascending by each 5 m, descending by each 2 m

Ascending payload HD ∆dmax (m)

nominal nominal 45
Controller A +50% +20% 45

+50% −20% 45

nominal nominal 45
Controller B +50% +20% 45

+50% −20% 20

Descending payload HD ∆dmax (m)

nominal nominal 28
Controller A +50% +20% 32

+50% −20% 20

nominal nominal 6
Controller B +50% +20% 16

+50% −20% 0
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Figure 7.20. Simulation results of ascending depth tracking control for n =
1 model by both controllers with +50% payload and −20% hydrodynamic
parameters.
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Figure 7.21. Simulation results of descending depth tracking control for n =
1 model by both controllers with +50% payload and −20% hydrodynamic
parameters.
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Figure 7.22. Simulation results of descending depth tracking control for
n = 1 model by Controller A with +50% payload and −20% hydrodynamic
parameters; blue reduce the change step of r1 from 2 m to 1 m at t = 220
s, red the r1 is changed by 1 m constantly.
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Figure 7.23. Demonstration case of depth tracking by switching controllers
with no integrator reset after changing the reference depth r1.
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Figure 7.24. Demonstration case of depth tracking by switching controllers
with integrator reset after changing the reference depth r1.
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Figure 7.25. Simulation results of descending depth tracking control for
n = 1 model by Controller A with +50% payload and −20% hydrodynamic
parameters; blue switching controllers with integrator reset at t = 220 s,
red the r1 is changed by 1 m.
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Table 7.4. Reachable depth from CEP for C2 with Controller A and higher-
order models by changing r1; ascending by each 5 m, descending by each 2
m

Ascending Payload HD ∆dmax (m)

nominal nominal 45
n = 2 +50% +20% 45

+50% −20% 45

nominal nominal 45
n = 3 +50% +20% 45

+50% −20% 45

nominal nominal 45
n = 5 +50% +20% 45

+50% −20% 5

Descending Payload HD ∆dmax (m)

nominal nominal 30
n = 2 +50% +20% 34

+50% −20% 24

nominal nominal 30
n = 3 +50% +20% 34

+50% −20% 26

nominal nominal 28
n = 5 +50% +20% 32

+50% −20% 28
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Figure 7.26. Simulation results of ascending depth tracking control for
higher-order systems by Controller A with +50% payload and −20% hy-
drodynamic parameters.
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Figure 7.27. Simulation results of descending depth tracking control for
higher-order systems by Controller A with +50% payload and −20% hy-
drodynamic parameters.
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8 Conclusions and Scope for Future Work

This dissertation has presented a high-gain observer-based motion control
method and stability analysis of a TUV with movable wings. The dynami-
cal models of the TUV with different lengths of the towing cable were given
and its explicit state-space representation was derived. Based on the sys-
tem, two types of control schemes, an LQ-control-based and LQI-control-
based approach have been employed and investigated with the high-gain
observer so as to estimate the state by fully considering the nonlinear dy-
namics of the system.

In particular, the most unique contributions of this research are the de-
tailed stability analysis for the LQ-based controller; not only an asymptotic
stability of the system has been confirmed but its region of attraction has
been estimated. The conservativeness of the conventional estimates has
been improved by devising a state-space scaling method, which has high
originalities, and this scaling method is extensively available for various
kinds of control systems, to say nothing of problems of underwater vehi-
cles.

Some control simulations have also been conducted to evaluate the depth
and attitude regulation performances of the LQI-based control systems;
regulation simulations with initial deviations from an equilibrium, regu-
lation simulations with model uncertainties and a depth tracking. The
proposed controller with the high-gain observer has shown the better ro-
bustness especially under model uncertainties compared to the results with
the conventional linear Kalman observer. Consequently, the importance of
the direct consideration of nonlinearity of the system and the effectiveness
of the high-gain observer-based approach in the control system design of
TUVs has been confirmed and proved.

Meanwhile, there are remaining works to put the proposed method into
practical applications as follows;

Z1 some dynamics ignored in the present study will have to be considered;

Z2 the robustness to environmental water current and other external dis-
turbance factors should be evaluated; and

Z3 the validity of the study need to be verified; especially the experimental
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evaluation must be performed.

Z1 indicates the qualifications which are made in section 2.1; that is, the
dynamics of the mothership and the wing actuators have been omitted.
The latter includes handling of the dynamic stall, whose strict modeling
requires the consideration of the angles of attack. Besides, the approxima-
tion method of the towing cable also has a room for improvement to model
the physical characteristics of the cable more precisely. These assumptions
will be able to be considered more realistically.

Although the robustness to the model uncertainties of the proposed con-
troller has been examined in this study, the evaluation with disturbance
factors like environmental water current and measurement noise has not
been done yet. Future work should focus on this aspect and Z2 can be
achieved, at least in part, by extending the simulation conditions. For ex-
ample, towing velocity change might be regarded as a kind of water current
and sensor error would be imitated by adding the random noise to the out-
put. To investigate the stability of the control system from the viewpoint
is important to apply the proposed approach to existing equipment.

Moreover, Z3 will be the essential subject of future research to imple-
ment the proposed motion control method in practice. Since the study
in this dissertation is limited to numerical approach and depends on the
specific model of a TUV, the confirmation of the validity of the results
is an important work. Therefore, experimental data and comparison with
simulations are required to demonstrate the effectiveness of the high-gain
observer-based controller.

Additionally, the controller utilized in this research is based on the lin-
earized system corresponding to each equilibrium, and hence it may be
needed to prepare some controllers with respect to each specific model or
situation in advance. This will be inexpedient for real applications. Accord-
ingly, the control system design specification has a room to be improved by,
e.g., introducing an adaptive control scheme. It is also desirable to perform
the comparison simulations with other existing control design method.

Despite remains of these points of improvement, the proposed control
method has a potential for better control of TUVs and will ameliorate
TUVs as more accurate and reliable ocean observatories through further
investigations.
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Appendix

A Coefficient Matrix and LQ State-Feedback Gain

C1

A =


0 0 1 0
0 0 0 1

−0.1215 −1.8432 −12.8184 −0.1147
2.3757 142.2780 947.059 −3.3922



B =


0 0
0 0

−1.3484 −0.0752
27.412 −30.5795


C =

[
25.9766 0 0 0

0 1 0 0

]
K =

[
−0.2167 −2.0583 −13.195 −0.0137
0.9590 −4.2853 −20.506 −0.9572

]
(A.1)

C2

A =


0 0 1 0
0 0 0 1

−0.1058 −0.4796 −12.7549 −0.0284
6.8972 136.15 3123.9 −3.7899



B =


0 0
0 0

−0.3516 −0.0199
27.0915 −30.738


C =

[
86.6025 0 0 0

0 1 0 0

]
K =

[
−0.1579 −1.8100 −37.3134 0.0588
0.9782 −4.3394 −70.6158 −0.9557

]
(A.2)
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C3

A =


0 0 1 0
0 0 0 1

−0.0913 −0.19995 −12.7148 −0.0109
11.9006 128.945 6155.62 −4.2322



B =


0 0
0 0

−0.1471 −0.0085
27.8936 −30.8774


C =

[
173.2050 0 0 0

0 1 0 0

]
K =

[
−0.1383 −1.2947 −51.7839 0.1766
1.0828 −4.5994 −145.9590 −0.9492

]
(A.3)

C4

A =


0 0 1 0
0 0 0 1

−0.0806 −0.1133 −12.7168 −0.0057
15.7717 122.901 9095.73 −4.5824



B =


0 0
0 0

−0.0836 −0.0049
29.6943 −30.9358


C =

[
259.8080 0 0 0

0 1 0 0

]
K =

[
−0.2031 −0.5841 −37.4782 0.3046
1.2487 −4.8329 −218.8875 −0.9276

]
(A.4)
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C5

A =


0 0 1 0
0 0 0 1

−0.3641 −1.4467 −39.2573 −0.0243
47.4748 472.696 11290.4 −19.4075



B =


0 0
0 0

−1.2017 −0.0683
195.5130 −247.3660


C =

[
173.2050 0 0 0

0 1 0 0

]
K =

[
−0.6891 0.3656 −0.8502 0.4688
0.3821 −2.5392 −36.3883 −0.8165

]
(A.5)

C6

A =


0 0 1 0
0 0 0 1

−0.3197 −0.8299 −37.3954 −0.0126
62.5326 437.687 16289.5 −20.1454



B =


0 0
0 0

−0.6920 −0.0398
193.8790 −248.2880


C =

[
259.8080 0 0 0

0 1 0 0

]
K =

[
−0.6272 0.4805 2.8132 0.4864
0.3172 −2.4004 −50.8155 −0.8049

]
(A.6)
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B Proof

B.1 Proof of Lemma 1

Suppose w /∈ D for ∃w ̸= 0 ∈ Ωw. Then, due to w ∈ ℜn \D and the origin
in the interior of D, there exists w0 = tw ∈ ∂D (0 < t < 1). Since w0 ∈ ∂D
with (4.25),

rwmin ≤ ∥w0∥
= t∥w∥.

Thus, ∥w∥ ≥ rwmin/t > rwmin. In contrast, w ∈ Ωw with (4.26) and (4.27)
means

0 < λmin(P )∥w∥2 ≤ wTPw ≤ λmin(P )r2wmin.

because P is positive definite, and hence

∥w∥ ≤ rwmin,

which is a contradiction. Therefore, Ωw ⊆ D. The proof is completed.

B.2 Proof of Theorem 2

Since P is positive definite, P 1/2 is also positive definite and nonsingular.
Then, the linear map TP is continuous and bijective with continuous inverse,
hence is a homeomorphism, which implies that the topological structures of
D andDw′ are equivalent. In particular, not only (4.34) and T −1

P (Dw′) = D,
but also TP (Int D) = Int Dw′ and TP (∂D) = ∂Dw′, and vice versa with the
inverse, where Int(·) denotes the interior of the set.

Therefore, with (4.35) and (4.36)

σw′ =
(

min
w′∈∂Dw′

∥w′∥
)2

=
(
min
w∈∂D

∥P 1/2w∥
)2

≥
(
λmin(P

1/2) min
w∈∂D

∥w∥
)2

= λmin(P )r2wmin

= σw,
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and thus Ωw ⊆ Ωw′.
Next, consider Ω′

w′ = {w′ | w′T Inw
′ ≤ σw′, w′ ∈ ℜn}, then Ω′

w′ ⊆ Dw′

from Lemma 1. Further, for ∀w ∈ Ωw′, using w′ = TP (w) with (4.33) and
(4.37)

w′T Inw
′ = TP (w)TTP (w)
= (P 1/2w)T (P 1/2w)

= wTPw

≤ σw′,

which implies TP (Ωw′) ⊆ Ω′
w′ ⊆ Dw′. Moreover, since T −1

P (Dw′) = D,
TP (w) ∈ Dw′ for ∀w ∈ ℜn implies w ∈ D. Therefore, Ωw′ ⊆ D. The proof
is completed.
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