# TUMSAT-OACIS Repository - Tokyo

# University of Marine Science and Technology

(東京海洋大学)

A study on analysis of ship's navigation using OZT

| メタデータ | 言語: eng                                   |
|-------|-------------------------------------------|
|       | 出版者:                                      |
|       | 公開日: 2018-04-17                           |
|       | キーワード (Ja):                               |
|       | キーワード (En):                               |
|       | 作成者: 周, 靖恩                                |
|       | メールアドレス:                                  |
|       | 所属:                                       |
| URL   | https://oacis.repo.nii.ac.jp/records/1540 |

## **Master's Thesis**

# A STUDY ON ANALYSIS OF SHIP'S NAVIGATION USING OZT

## September 2017

Graduate School of Marine Science and Technology
Tokyo University of Marine Science and Technology
Master's Course of Marine Technology and Logistics

Zhou Jingen

## TABLE OF CONTENTS

| TABLE OF CONTENTS                                     |
|-------------------------------------------------------|
| CHAPTER I Introduction2                               |
| CHAPTER II AIS                                        |
| 2.1 AIS Overview4                                     |
| 2.2 AIS Messages 4                                    |
| 2.3 The Advanced Navigation System [3]                |
| CHAPTER III Theory and Algorithm                      |
| 3.1 The OZT Theory <sup>[5]</sup> 9                   |
| 3.1.1 Definition of OZT9                              |
| 3.1.2 Calculation of OZT                              |
| 3.2 Ship Movement Parameters                          |
| 3.3 The Mercator Projection                           |
| 3.3.1 Mercator Projection                             |
| 3.3.2 Inverse Mercator Projection                     |
| CHAPTER IV Ship Encounter Situations and Data Sieving |
| 4.1 Ship Encounter Situations                         |
| 4.2 AIS Data Sieving                                  |
| 4.2.1 The Choice of The Own Ship                      |
| 4.2.2 Data Sieving Criterion                          |
| CHAPTER V Analysis                                    |
| 5.1 OZT Distribution Analysis                         |
| 5.2 Ship Encounter Situations Statistic               |
| 5.3 Navigation Characteristics Analysis               |
| CHAPTER VI Conclusions                                |
| ACKNOWLEDGEMENTS                                      |
| DIDI IOCD ADUV                                        |

## **CHAPTER I Introduction**

With the development of AIS (Automatic Identification System), massive amounts of AIS data have been accumulated, which provides a promising approach to investigate and analyze ship's navigation behaviors. As Tokyo Bay is one of the most congested water areas in the world, it is crucial to analyze the AIS data in Tokyo Bay. The Obstacle Zone by Target (OZT) <sup>[5]</sup> is an evaluation method of collision risk. It can show the dangerous areas of other ships around the own ship, which means it can present the collision risk visually and concretely. This paper studies the navigation characteristics of the training ship Shioji Maru as well as the maritime traffic characteristics of the Tokyo Bay using OZT.

The traditional collision avoidance process is that the navigators use the Radar and APRA, though inter-ship communication to prevent collision between vessels. This collision avoidance process highly relies on navigators' experience and seamanship, which requires a long time accumulation. Many seafarers, especially new crew members only possess a vague perception of collision risk, they are unable to aware the different levels of risk let alone when to take avoidance actions and what kind of collision avoidance manipulation they need to take, which probably lead to collision accidents. As is known to all, ship technology is far behind the aviation, high-speed train and other modes of transport technology, and because the ship and the loading cargo itself are high valued property, once the ship collision accident happened, the economic loss is disastrous. Therefore, studying the dangerous areas and perceiving the existence of ship collision risk are of vital importance. The conventional DCPA (Distance of the Closest Point of Approach) and TCPA (Time to the Closest Point of Approach) which are used to check the risk of collision with the other ships are abstract and indistinct for navigators compared to the OZT theory. With the aid of the OZT technology, navigators can determine whether the existence of ship collision risk, how to take collision avoidance behaviors and what kind of actions should be taken.

Hayama Imazu [20] proposes an approach to improve the evaluation and expression of

collision risk, and the expression of OZT will be easy to trace the origin target of OZT and to check the fault information transmitted by the target. He raises a computation of OZT by using collision course <sup>[5]</sup>, and proposes the theory of Line of Predicted Collision (LOPC) and Obstacle Zone by Target (OZT) for evaluation of collision risk <sup>[17]</sup>. He believes that using those methods to evaluate collision risk with true motion has many advantages such as it is easier to find out a safety pass in congested water areas. Junji Fukuto <sup>[9]</sup> studies the algorithm for collision alarm using OZT and evaluates its reduction rate using recorded AIS traffic data. Jun Kayano <sup>[18]</sup> proposes and discusses collision avoidance support system which can warn the watch officer of the danger and starts planning collision evasion route with the collision avoidance algorithm when the ship faces the risk of collision. He also analyzes the data obtained by ship-handling simulation experiments using OZT algorithms for examining the differences of the characteristics of look-out methods between experienced navigators and inexperienced navigators <sup>[19]</sup>. Kei Kumagai <sup>[10]</sup> uses OZT to analyze the results of ship maneuvering simulation.

This paper attempts to apply the OZT theory in studying the navigation environment of the Tokyo Bay and ship navigator's handling behaviors. The author picks up several typical collision avoidance situations of the Shioji Maru and studies the collision avoidance actions of each ships in each situation using the OZT theory and the dynamic ship data from the AIS. Moreover, using the OZT theory, this paper studies the relative safety zones and dangerous areas in Tokyo Bay along the ship route of the Shioji Maru, the relative safety distance of the Shioji Maru, the normal distance between the Shioji Maru and the OZT areas and the ordinary heading when notable encounter situation appears.

According to the research, the navigator of the Shioji Maru is of good maneuvering and ship operation behaviors. The OZT theory is an effective way for ship collision avoidance and the OZT theory can improve the navigators' collision avoidance behaviors.

## **CHAPTER II AIS**

#### 2.1 AIS Overview

The Automatic Identification System (AIS) is a maritime transponder/receiver system defined by the IMO (International Maritime Organization). The AIS operates in the VHF frequency band. It uses the Very High Frequency (VHF) radio broadcasting system to transfer data. AIS equipped vessels and shore-based stations can send and receive identification information that can be displayed on an electronic chart, computer display or compatible navigation radar. The main objectives of AIS are to improve navigation safety and to protect maritime environment by assisting in the effective navigation of ships. The information provided by AIS can help in situational awareness and provide a means to assist in collision avoidance. In addition, AIS can be used as an aid to navigation by providing location and additional information on buoys and lights.<sup>[11]</sup>

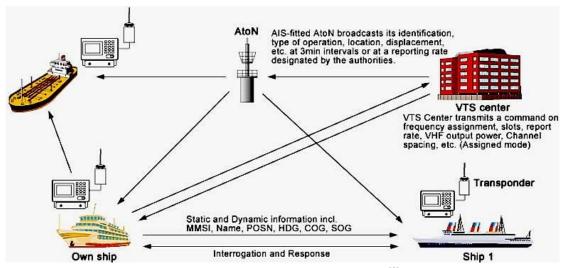



Figure 2.1 Automatic Identification System [2]

#### 2.2 AIS Messages

The AIS has six different types: Class A, Class B, Search and Rescue Aircraft, AIS Aid to Navigation (ATON), AIS Search and Rescue Transmitter (SART) and AIS Base Station. [15]

Table 2.1 Six different AIS types [15]

|                                          | Tuble 2.1 Bix uniforent Find types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class A                                  | Shipborne mobile equipment intended to meet the performance standards and carriage requirements adopted by IMO. Class A stations report their position (message 1/2/3) autonomously every 2-10 seconds dependent on the vessel's speed and/or course changes (every three minutes or less when at anchor or moored); and, the vessel's static and voyage related information (message 5) every 6 minutes. Class A stations are also capable of text messaging safety related information (message 6/8) and AIS Application Specific Messages (message 6, 8, 25, 26), such as meteorological and hydrological data, electronic Broadcast Notice to Mariners, and other marine safety information.                                                                                                                                                              |
| Class B                                  | Shipborne mobile equipment which is interoperable with all other AIS stations, but, does not meet all the performance standards adopted by IMO. Similar to Class A stations, they report every three minutes or less when at anchor or moored, but, their position (message 6/8) is reported less often and at a lower power. Likewise, they report the vessel's static data (message 18/24) every 6 minutes, but, not any voyage related information. They can receive safety related text and application specific messages, but, cannot transmit them. There are two types of Class B AIS, those using carrier sense Time-Division Multiple Access (CS-TDMA) technology and those like the Class A using Self-Organizing Time-Division Multiple Access Technology (SO-TDMA). Class B/SO is generally more capable; Class B/CS is generally less expensive. |
| Search and<br>Rescue Aircraft            | Aircraft mobile equipment, normally reporting every ten seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AIS Aid to<br>Navigation<br>(ATON)       | Shore-based or mobile station providing location and status of an aid to navigation (ATON); which may also broadcast Application Specific Messages (message 6/8).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIS Search and Rescue Transmitter (SART) | Mobile equipment to assist homing to itself (i.e. life boats, life raft). An AIS SART transmits a text broadcast (message 14) of either 'SART TEST' or 'ACTIVE SART'. When active the unit also transmits a position message (message 1 with a 'Navigation Status' = 14) in a burst of 8 messages once per minute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIS Base Station                         | Shore-based station providing identity, time synchronization, text messages, which can also act as an AIS ATON station or transmit Application Specific Messages (message 6/8) for meteorological or hydrological information, marine safety information, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

A Class A AIS unit broadcasts the position report information every 2 to 10 seconds while underway, and every 3 minutes while at anchor at a power level of 12.5 watts. <sup>[16]</sup> In addition, the Class A AIS unit broadcasts the ship static and voyage related data information every 6 minutes. Should only be used by Class A shipborne and SAR aircraft AIS stations when reporting static or voyage related data.<sup>[1]</sup>

Table 2.2 Class A AIS position report  $^{[16]}$ 

| Parameter              | Bits | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID             |      | Identifier for this message 1, 2 or 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Repeatindicator        | 2    | Used by the repeater to indicate how many times a message has been repeated. See Section 4.6.1, Annex 2; 0-3; 0 = default; 3 = do not repeat any more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| User ID                | 30   | MMSI number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Navigational<br>status | 4    | 0 = under way using engine, 1 = at anchor, 2 = not under command, 3 = restricted maneuverability, 4 = constrained by her draught, 5 = moored, 6 = aground, 7 = engaged in fishing, 8 = under way sailing, 9 = reserved for future amendment of navigational status for ships carrying DG, HS, or MP, or IMO hazard or pollutant category C, high speed craft (HSC), 10 = reserved for future amendment of navigational status for ships carrying dangerous goods (DG), harmful substances (HS) or marine pollutants (MP), or IMO hazard or pollutant category A, wing in ground (WIG); 11 = power-driven vessel towing astern (regional use); 12 = power-driven vessel pushing ahead or towing alongside (regional use); 13 = reserved for future use; 14 = AIS-SART (active), MOB-AIS, EPIRB-AIS; 15 = undefined = default (also used by AIS-SART, MOB-AIS and EPIRB-AIS under test) |
| Rate of turn           | 8    | 0 to +126 = turning right at up to 708 deg per min or higher; 0 to -126 = turning left at up to 708 deg per min or higher Values between 0 and 708 deg per min coded by ROTAIS = 4.733 SQRT(ROTsensor) degrees per min, where ROTsensor is the Rate of Turn as input by an external Rate of Turn Indicator (TI). ROTAIS is rounded to the nearest integer value.+127 = turning right at more than 5 deg per 30 s (No TI available); -127 = turning left at more than 5 deg per 30 s (No TI available); -128 (80 hex) indicates no turn information available (default).ROT data should not be derived from COG information.                                                                                                                                                                                                                                                           |
| SOG                    | 10   | Speed over ground in 1/10 knot steps (0-102.2 knots); 1 023 = not available, 1 022 = 102.2 knots or higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Position accuracy      | 1    | The position accuracy (PA) flag should be determined in accordance with the table below: $1 = \text{high } (\le 10 \text{ m}); 0 = \text{low } (> 10 \text{ m}); 0 = \text{default}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Longitude              | 28   | Longitude in 1/10 000 min (+/-180 deg, East = positive (as per 2's complement), West = negative (as per 2's complement). 181= (6791AC0h) =not available = default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Latitude               | 27   | Latitude in 1/10 000 min (+/-90 deg, North = positive (as per 2's complement), South = negative (as per 2's complement). 91deg (3412140h) = not available = default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| COG                    | 12   | Course over ground in $1/10 = (0-3599)$ . $3600 (E10h) = not available = default$ . $3601-4095$ should not be used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| True heading           | 9    | Degrees (0-359) (511 indicates not available = default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time stamp             | 6    | UTC second when the report was generated by the electronic position system (EPFS) (0-59, or 60 if time stamp is not available, which should also be the default value, or 61 if positioning system is in manual input mode, or 62 if electronic position fixing system operates in estimated (dead reckoning) mode, or 63 if the positioning system is inoperative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Special maneuvre       | 2    | 0 = not available = default; 1 = not engaged in special maneuver; 2 = engaged in special maneuver; (i.e.: regional passing arrangement on Inland Waterway)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Spare                  | 3    | Not used. Should be set to zero. Reserved for future use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RAIM-flag              | 1    | Receiver autonomous integrity monitoring (RAIM) flag of electronic position fixing device; 0 = RAIM not in use = default; 1 = RAIM in use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Communication state    | 19   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of bits         | 168  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## 2.3 The Advanced Navigation System [3]

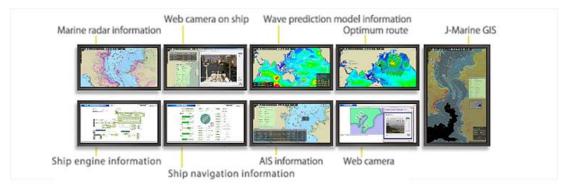
The Advanced Navigation System was introduced by Tokyo University of Marine Science and Technology in March 2011. As shown in Figure 2.2 and Figure 2.3, this system creates databases of all types of information gathered as necessary from onshore radar stations, onshore AIS stations, ships and weather support sites, and displays this information on multiple monitors and computers. It is equipped with functionality that can show information on ships in Tokyo Bay, real-time display that aids in grasping ship movement conditions within the bay, and playback capability for redisplaying previous conditions. It is also used for instruction on confirming the wake of the training ship and observing changes in marine traffic flow. There are four main information can be obtained: Marine GIS, Tokyo Bay current condition, Weather and ocean condition information and Ship information.

#### 1. Marine GIS

The system is equipped with marine GIS functionality, featuring superimposed displays of weather and ocean condition information with all types of gathered information. Combination (layer selection) of data types selected according to the research objective with multiple information samples is now easily performed, and visual recognition of analysis and testing results is available as well. Moreover, with the measurement tools that are a basic GIS feature, it is now possible to carry out measurements of route distance and area.

#### 2. Tokyo Bay current condition

By displaying radar images from onshore radar stations and ship information from AIS receiving stations, it is possible to grasp the situation of ship movement in Tokyo Bay.


#### 3. Weather and ocean condition information

Information on wave value predictions announced by the Meteorological Agency is displayed here, making it possible to estimate effects on ships.

#### 4. Ship information

Ship information gathered through Tokyo University of Marine Science and Technology training ship's internal network is acquired via satellite connection, and ship handling conditions and mechanical operation conditions can be observed by displaying in real time. IP

## phone and videoconferencing communication equipment is available as well.



Display Examples on Monitors

Figure 2.2 The Advanced Navigation System  $^{[3]}$ 



Figure 2.3 Configuration of Advanced Navigate System [4]

## **CHAPTER III Theory and Algorithm**

## 3.1 The OZT Theory [5]

#### 3.1.1 Definition of OZT

OZT is an abbreviation for "Obstacle Zone by Target". <sup>[5]</sup> It is a method of visually expressing areas that have a high possibility of colliding with obstacles such as other ships. As showed in Figure 3.1, Point A denotes the position of the own ship, while Point B denotes the position of the target ship. As ships are not dots but are with length and breadth, they should be considered of the safety passing distance (SD). The OZT areas can be obtained by the following steps:

- 1. First, draw a circle of radius SD centered on the own ship's position.
- 2. Draw tangent lines to this circle from the target ship's position, and set the intersection points with T1 and T2.
- 3. Draw the velocity vector of the target ship with the end of this vector is Point B, as indicate "OB" in the figure, and  $C_B$  denotes the course of the target ship.
  - 4. Draw a circle of radius of the own ship's velocity centered on point O.
- 5. Suppose the TCPA1 and TCPA2 are obtained, with the time of TCPA1 and TCPA2, the target ship arrives at the point of M1 and M2 respectively. Draw two circles of radius SD centered on the point of M1 and M2. Then draw the parallel lines of BT1 and BT2 that are tangent to Circle M1 and Circle M2, with the most external tangency points of Q1 and Q2 separately. The direction of line connecting Point A and Point Q1 (CA1) and Point A and Point Q2 (CA2) become collision courses to be obtained.

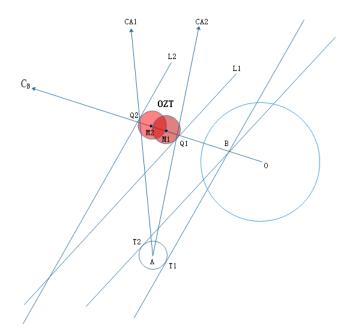



Figure 3.1 Definition of OZT

The course between CA1 and CA2 would be the situation that the DCPA is less than SD, so that this course is called collision courses. Since the own ship will collide with the target ship when passing through this zone, which means that the OZT areas are the collision places between the own ship and the target ship.

#### 3.1.2 Calculation of OZT

In order to make the results of OZT meaningful, one basic requirement should be met-the Distance of Closest Point of Approach (DCPA) is equal or lesser than the radius SD (r).

$$DCPA \leq r$$
 (1)

From the relative research experience, the SD (r) is usually calculated by

$$r = \frac{L_{own} + L_{t \arg et}}{2} \tag{2}$$

Where  $L_{own}$  denotes the length of the own ship,  $L_{target}$  denotes the length of the target ship.

The angle between tangent lines to the position of the own ship  $\alpha$  , the distance between the own ship and the target ship  $\ d$ 

$$\alpha = \sin^{-1} \frac{\mathbf{r}}{d} \tag{3}$$

The bearing of the target ship  $A_Z$ , the course of the target ship  $C_T$ , the velocity of the target ship  $V_T$ , the collision courses  $C_O$ , the velocity of the own ship  $V_O$  meet the requirement of the following equation

$$\frac{\sin(A_Z \pm \alpha - C_O)}{V_T} = \frac{\sin(C_T - (A_Z \pm \alpha) - \pi)}{V_O}$$
(4)

Therefore,

$$C_O = A_Z \pm \alpha - \sin^{-1}\left(\frac{V_T}{V_O}\sin(A_Z \pm \alpha - C_T)\right)$$
 (5)

$$\left(\frac{V_T}{V_O}\sin(A_Z \pm \alpha - C_T)\right) \le 1 \text{ and } 0 \le C_O \le 2\pi$$

In order to calculate the TCPA, relative motion equation is introduced here.

$$\Delta X = V_T \sin C_T - V_O \sin C_O \tag{6}$$

$$\Delta Y = V_T \cos C_T - V_O \cos C_O \tag{7}$$

$$V_R = \sqrt{\Delta X^2 + \Delta Y^2} \tag{8}$$

$$C_R = \tan^{-1} \frac{\Delta X}{\Delta Y} \tag{9}$$

(the relative velocity vector in the first quadrant,  $C_R = C_R$ 

the relative velocity vector in the second quadrant,  $C_R = C_R + \pi$ 

the relative velocity vector in the third quadrant,  $C_R = C_R + \pi$ 

the relative velocity vector in the fourth quadrant,  $C_{\rm R} = C_{\rm R} + 2\pi$  )

$$DCPA = d*\left|\sin(C_R - A_Z + \pi)\right| \tag{10}$$

$$TCPA = \frac{d * \cos(C_R - A_Z + \pi)}{V_R}$$
(11)

Based on the four  $C_0$ ,  $C_{01}$ ,  $C_{02}$ ,  $C_{03}$ ,  $C_{04}$ , four TCPA, TCPA<sub>1</sub>, TCPA<sub>2</sub>, TCPA<sub>3</sub>, TCPA<sub>4</sub> could be determined, so four OZT circles could be obtained.

## 3.2 Ship Movement Parameters

Suppose the own ship position  $(x_o, y_o)$ , the own ship velocity  $V_o$ , the own ship heading  $H_o$ . The target ship position  $(x_t, y_t)$ , the target ship velocity  $V_t$ , the target ship heading  $H_t$ .

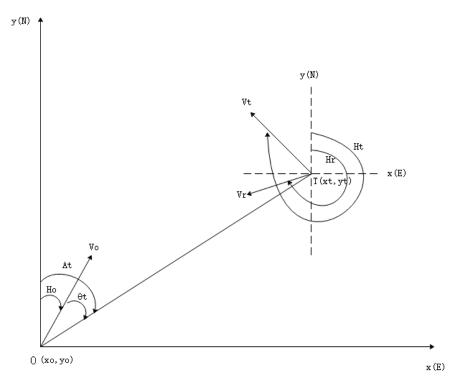



Figure 3.2 Ship movement parameters

The x component and y component along the x axe and y axe of the own ship velocity

$$V_{xo} = V_o \cdot \sin H_o$$

$$V_{\text{yo}} = V_o \cdot \cos H_o$$

The x component and y component along the x axe and y axe of the target ship velocity

$$V_{xt} = V_t \cdot \sin H_t$$

$$V_{\text{yt}} = V_t \cdot \cos H_t$$

The x component and y component along the x axe and y axe of the ship relative velocity

$$V_{xr} = V_{xt} - V_{xo}$$

$$V_{yr} = V_{yt} - V_{yo}$$

The ship relative velocity magnitude

$$V_r = \sqrt{V_{xr}^2 + V_{yr}^2}$$

The heading of the ship relative velocity

$$H_r = \arctan \frac{V_{xr}}{V_{vr}} + H_a$$

$$H_{a} = \begin{cases} 0^{\circ}, V_{xr} \ge 0, V_{yr} \ge 0\\ 180^{\circ}, V_{xr} < 0, V_{yr} < 0\\ 180^{\circ}, V_{xr} \ge 0, V_{yr} < 0\\ 360^{\circ}, V_{xr} < 0, V_{yr} \ge 0 \end{cases}$$

The true bearing of the target ship relative to the own ship

$$A_{t} = \arctan \frac{x_{t} - x_{o}}{y_{t} - y_{o}} + H_{b}$$

$$H_b = \begin{cases} 0^{\circ}, x_t - x_o \ge 0, y_t - y_o \ge 0\\ 180^{\circ}, x_t - x_o < 0, y_t - y_o < 0\\ 180^{\circ}, x_t - x_o \ge 0, y_t - y_o < 0\\ 360^{\circ}, x_t - x_o < 0, y_t - y_o \ge 0 \end{cases}$$

The true bearing of the own ship relative to the target ship

$$A_o = \arctan \frac{x_o - x_t}{y_o - y_t} + H_c$$

$$H_c = \begin{cases} 0^{\circ}, x_o - x_t \ge 0, y_o - y_t \ge 0\\ 180^{\circ}, x_o - x_t < 0, y_o - y_t < 0\\ 180^{\circ}, x_o - x_t \ge 0, y_o - y_t < 0\\ 360^{\circ}, x_o - x_t < 0, y_o - y_t \ge 0 \end{cases}$$

The relative bearing of the target ship

$$\theta_t = A_t - H_0 \pm 360^\circ$$

The relative bearing of the own ship from the target ship [7]

$$\theta_0 = A_0 - H_t \pm 360^\circ$$

The relative heading angle

$$H_{R} = H_{t} - H_{0} - 180^{\circ}$$

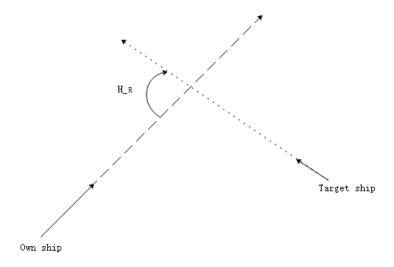



Figure 3.3 The relative heading angle

## 3.3 The Mercator Projection

The Mercator projection is a cylindrical map projection. It became the standard map projection for nautical purposes because of its ability to represent lines of constant course, known as rhumb lines or loxodromes, as straight segments that conserve the angles with the meridians. The linear scale is equal in all directions around any point, thus preserving the angles and the shapes of small objects (which makes the projection conformal).<sup>[6]</sup>

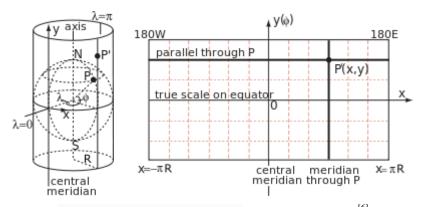



Figure 3.4 Basal principle of the Mercator projection [6]

As the calculation of OZT method is based on the projected coordinate system, and the AIS data is based on the geographic coordinate system, it is necessary to convert the coordinate system. With the advantage of rhumb lines, the Mercator projection is commonly used in the ships' positioning and heading determination.

#### 3.3.1 Mercator Projection

 $(lon, lat) \rightarrow (x, y)$ , latitude of reference b0, origin of latitude 0, origin of longitude 0.

Mercator projection is a method to convert the (lon, lat) in the geographic coordinate system to (x, y) in the projected coordinate system. <sup>[12]</sup>

$$N = \frac{a}{\sqrt{(1 - e^2 * (sin(b0))^2)}}$$

$$R = N * cos(b0)$$

$$q = \ln\left(\tan\left(\frac{\pi}{4} + \frac{lat}{2}\right)\right) - \ln\left(\frac{1 + e * \sin(lat)}{1 - e * \sin(lat)}\right) * \frac{e}{2}$$

x = R\*lon

$$y = R * q$$

a -- Semi-major axis of the ellipsoid

b0 -- Latitude of reference

e -- First eccentricity

N -- Radius of curvature in prime vertical

R -- Radius of circle of latitude in latitude of reference

q -- Isometric latitude

x, y -- Orthogonal coordinates (in meters) in the Mercator projected coordinate system
lon, lat -- Longitude and latitude in the geographic coordinate system

## 3.3.2 Inverse Mercator Projection

 $(x, y) \rightarrow (lon, lat)$ , latitude of reference b0, origin of latitude 0, origin of longitude 0.

$$q = \ln\left(\tan\left(\frac{\pi}{4} + \frac{lat}{2}\right)\right) - \ln\left(\frac{1 + e * \sin(lat)}{1 - e * \sin(lat)}\right) * \frac{e}{2}$$

$$lon = \frac{x}{R}$$

$$lat = 2\arctan(\exp(q)) - \frac{\pi}{2}$$

- e -- First eccentricity
- R -- Radius of circle of latitude in latitude of reference
- q -- Isometric latitude
- x, y -- Orthogonal coordinates (in meters) in the Mercator projected coordinate system
- lon, lat -- Longitude and latitude in the geographic coordinate system

## **CHAPTER IV Ship Encounter Situations and Data Sieving**

#### **4.1 Ship Encounter Situations**

Based on the COLREG-1972 (Regulations for Preventing Collisions at Sea 1972) <sup>[14]</sup>, the ship encounter situations are categorized into three fundamental situations: Crossing, Head-on and Overtaking. In order to meet the requirement of collision avoidance decisions and considered the different characteristics of coming target ship bearing, here the ship encounter situations are classified into 6 situations: Head-on, Port crossing, Starboard crossing, Overtaking, Overtaken and Stationary.

- (1) Head-on: the relative bearing is less than or equal to 6 degrees, the heading difference is between 174 degrees to 186 degrees.
- (2) Port crossing: the relative bearing is equal or greater than 247.5 degrees but less than 292.5 degrees.
- (3) Starboard crossing: the relative bearing is equal or greater than 6 degrees but less than 112.5 degrees.
- (4) Overtaking: the own ship locates in the areas between the bearing of equal or greater than 112.5 degrees but less than 247.5 degrees of the target ship;  $V_o \cos \Delta C > V_t$  ( $V_o$  and  $V_t$  denote the own ship velocity and target ship velocity,  $\Delta C$  denotes the encounter angle).
- (5) Overtaken: the target ship locates in the areas between the bearing of equal or greater than 112.5 degrees but less than 247.5 degrees of the own ship;  $V_t \cos \Delta C > V_o$  ( $V_o$  and  $V_t$  denote the own ship velocity and target ship velocity,  $\Delta C$  denotes the encounter angle).
- (6) Stationary: the target ship keeps in a condition while velocity is less than or equal to 0.1 knots.

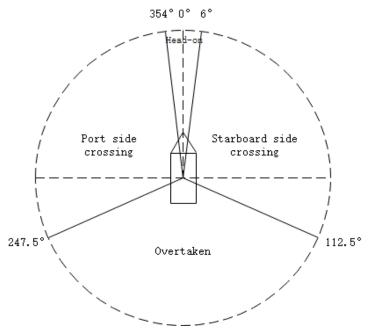



Figure 4.1 Ship encounter situations

## 4.2 AIS Data Sieving

## 4.2.1 The Choice of The Own Ship

In order to select the appropriate data, it is important to decide the own ship first. The training ship Shioji Maru of Tokyo University of Marine Science and Technology is an ideal own ship for research for two features: the relative fixed ship route and relative fixed schedule. As shown in Figure 4.2-4.6, the Shioji Maru has regular shipping line from Tateyama to Tokyo on every Thursday. The departure time is around 9 o'clock and the ETA is around 14 o'clock. Figure 4.2-4.6 shows the Shioji Maru shipping route April 27<sup>th</sup>, May 11<sup>th</sup>, May 25<sup>th</sup>, June 8<sup>th</sup> and June 15<sup>th</sup> in 2017. This paper selects the AIS data on April 27<sup>th</sup>, May 11<sup>th</sup>, May 25<sup>th</sup>, June 8<sup>th</sup> and June 15<sup>th</sup> in 2017.

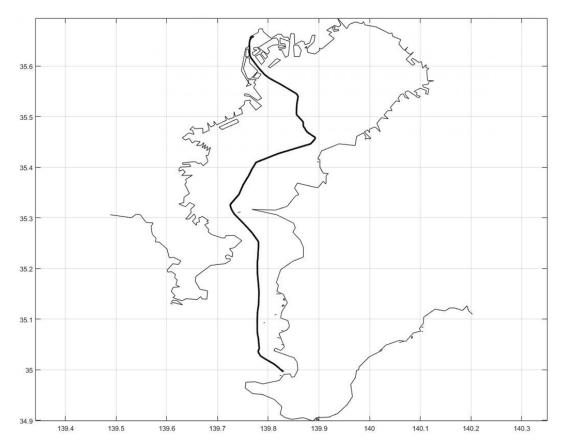



Figure 4.2 The Shioji Maru route on April  $27^{th}$ , 2017

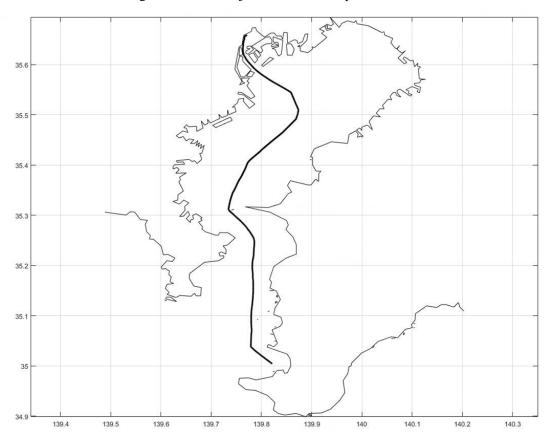



Figure 4.3 The Shioji Maru route on May 11<sup>th</sup>, 2017

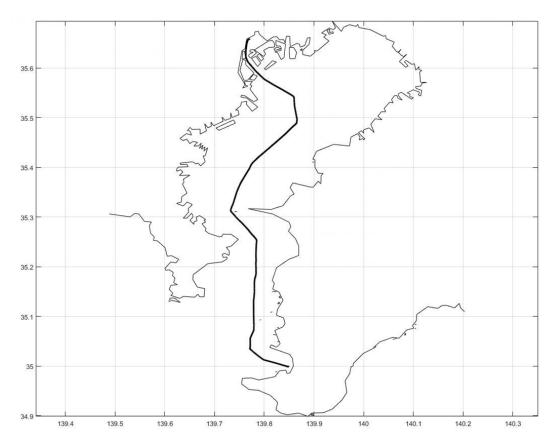
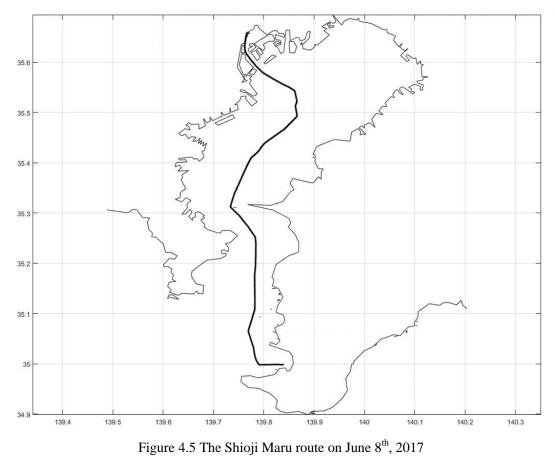




Figure 4.4 The Shioji Maru route on May  $25^{th}$ , 2017



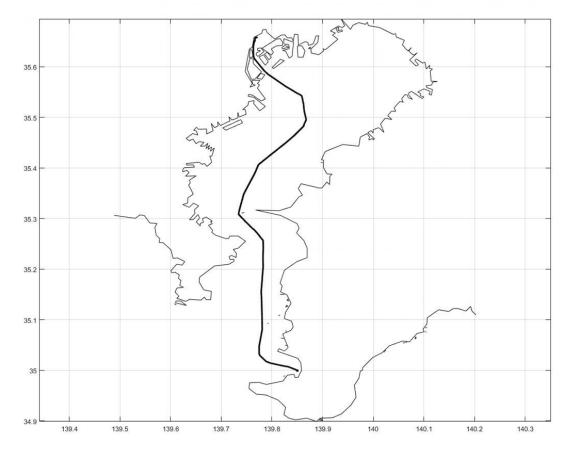



Figure 4.6 The Shioji Maru route on June 15<sup>th</sup>, 2017

## 4.2.2 Data Sieving Criterion

As the data are too large amount of that sieving data is essential, this paper sets a standard including four basic procedures to filter the data.

- (1) Extract the AIS data of every 30 seconds;
- (2) The distance between the own ship and the target ship is less than or equal to 3 nm;
- (3) TCPA (Time to Closest Point of Approach) is less than or equal to 10 minutes;
- (4) The OZT areas should be hunted between port 60 ° to starboard 60 ° of the own ship.

## **CHAPTER V Analysis**

## **5.1 OZT Distribution Analysis**

This paper picks up five days AIS data, April 27<sup>th</sup>, May 11<sup>th</sup>, May 25<sup>th</sup>, June 8<sup>th</sup> and June 15<sup>th</sup> in the Tokyo Bay in the year 2017, the traffic flow shows in the following figures.

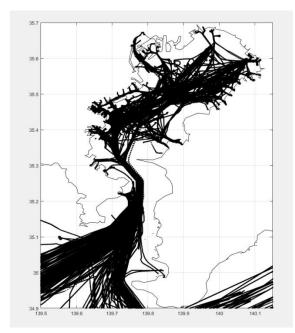



Figure 5.1 The traffic flow on April 27<sup>th</sup>, 2017

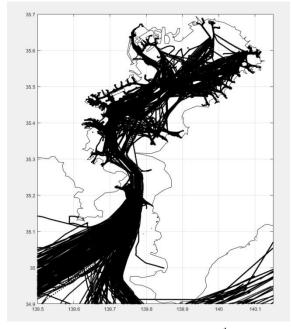



Figure 5.3 The traffic flow on May 25<sup>th</sup>, 2017

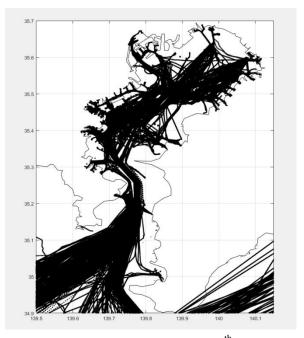



Figure 5.2 The traffic flow on May 11<sup>th</sup>, 2017

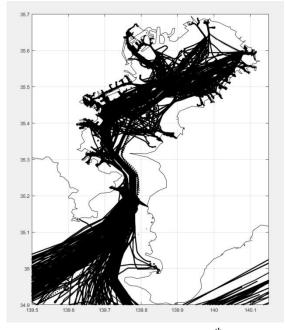



Figure 5.4 The traffic flow on June 8<sup>th</sup>, 2017

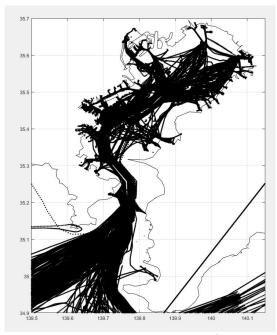



Figure 5.5 The traffic flow on June 15th, 2017

The relative authentic dangerous areas which the within 3 nm from the own ship, TCPA  $\leq$ 10min, exist in Port 60°-Starboard 60° using the OZT theory are shown in the following figures.

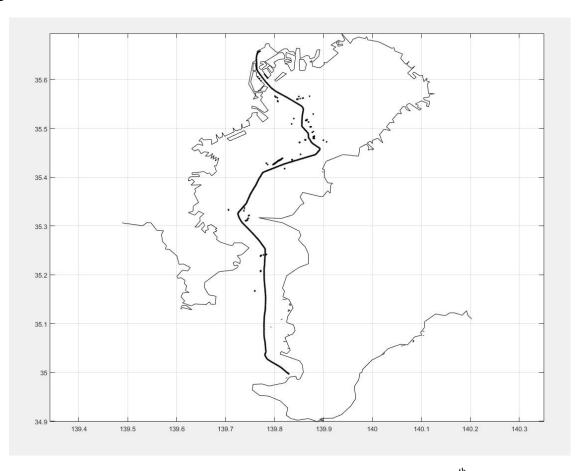



Figure 5.6 The authentic dangerous area for the Shioji Maru on April 27<sup>th</sup>, 2017

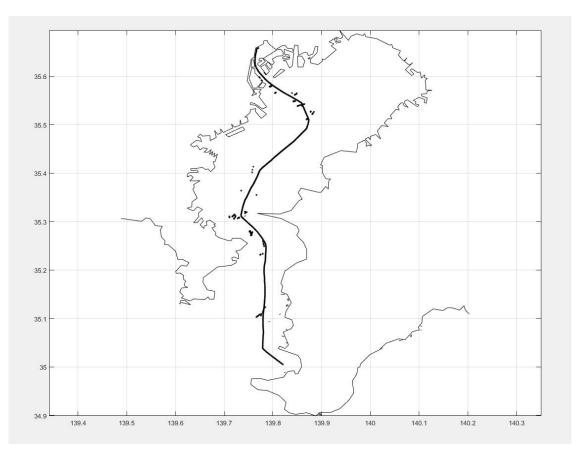



Figure 5.7 The authentic dangerous area for the Shioji Maru on May  $11^{\rm th}$ , 2017

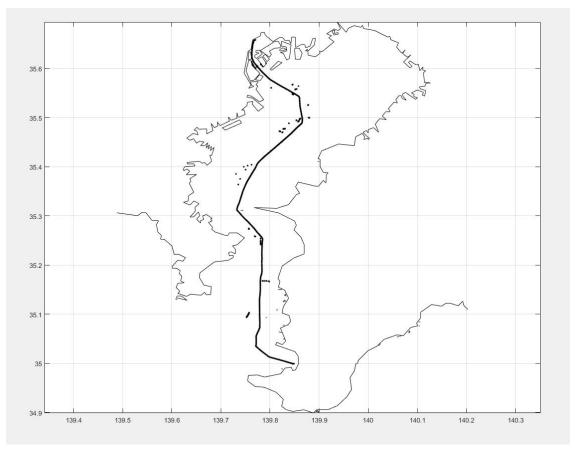



Figure 5.8 The authentic dangerous area for the Shioji Maru on May 25<sup>th</sup>, 2017

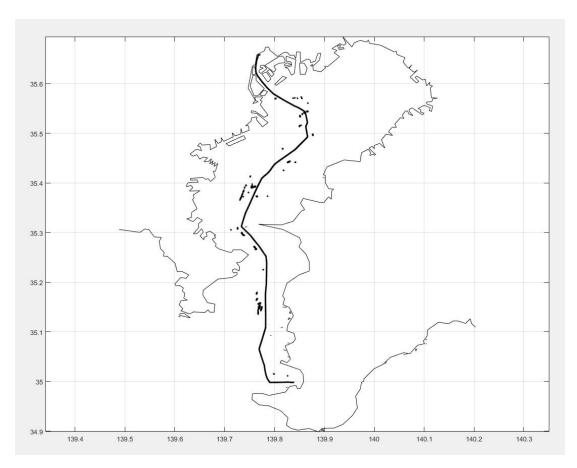



Figure 5.9 The authentic dangerous area for the Shioji Maru on June 8<sup>th</sup>, 2017

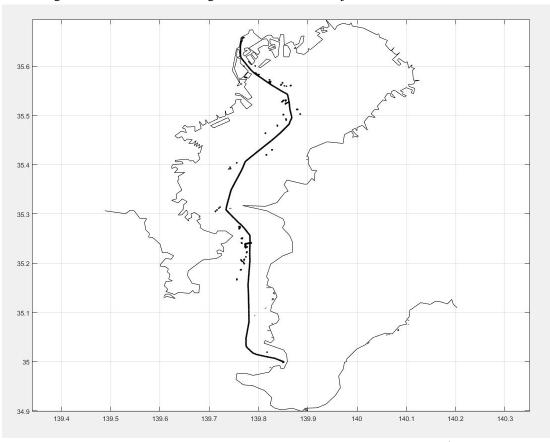



Figure 5.10 The authentic dangerous area for the Shioji Maru on June 15<sup>th</sup>, 2017 25

In Figure 5.6-5.10, the black line indicates the own ship route, while the black dots nearby the black line indicate the OZT areas in the five different days.

The five days OZT data on April 27th, May 11th, May 25th, June 8th and June 15th with and without the Shioji Maru ship route are as shown in the following Figure 5.11 and Figure 5.12. Different colors indicate different OZT areas from different dates. The OZT areas on April 27th, May 11th, May 25th, June 8th and June 15<sup>th</sup> are shown in blue, green, cyan, yellow and red respectively.

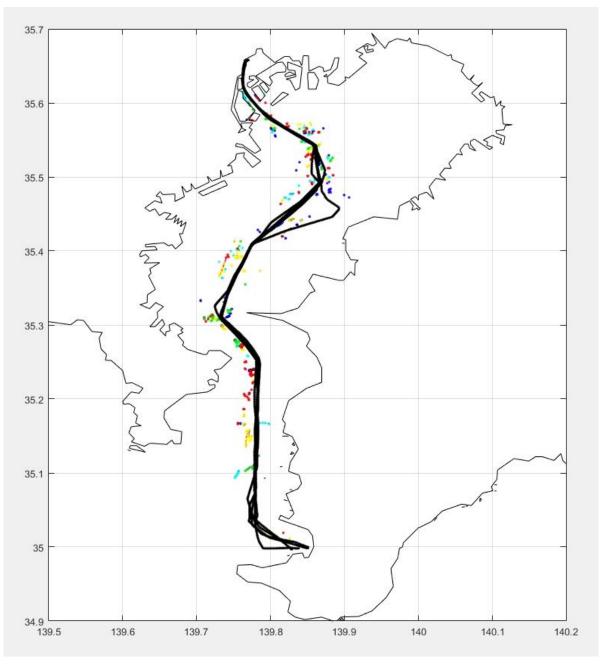



Figure 5.11 The superimposed five days authentic dangerous area for the Shioji Maru with own ship route

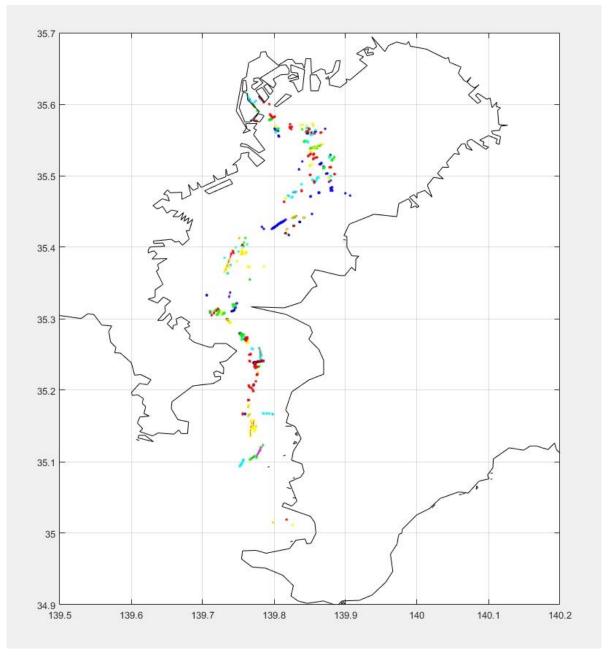



Figure 5.12 The superimposed five days authentic dangerous area for the Shioji Maru

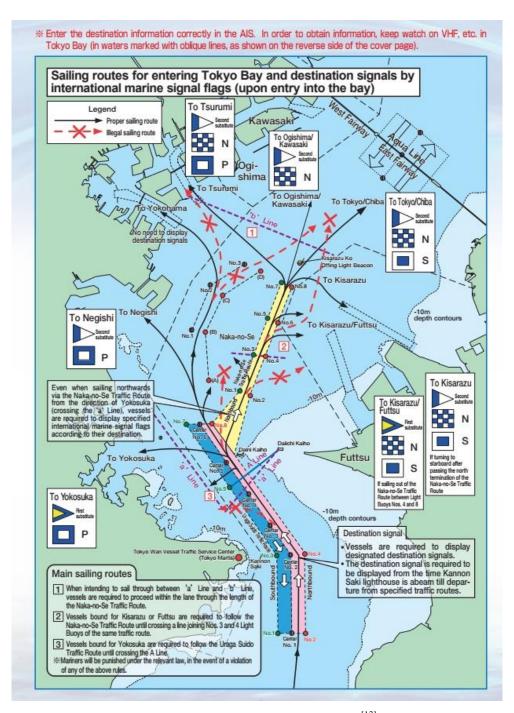



Figure 5.13 Sailing route in Tokyo Bay [13]

Without regard to the already existed traffic control area in Tokyo Bay for navigation safety (Figure 5.13), there are two densely-distributed OZT areas. From the five days data as shown in Figure 5.14, the two densely-distributed OZT areas are mainly in Area D and Area E, which are 139.81 E-139.86 E, 35.41 N-35.49 N and 139.83 E-139.89 E, 35.47 N-35.58 N. The safety area is mainly in Area F as shown in Figure 5.14, with the range of 139.75 E-139.81 E, 34.98 N-35.09°N. From the own ship route's respect, when the Shioji

Maru reaches the areas in 139.845 \(\mathbb{E}\)-139.870 \(\mathbb{E}\), 35.538 \(\mathbb{N}\)-35.557 \(\mathbb{N}\) and 139.850 \(\mathbb{E}\)-139.880 \(\mathbb{E}\), 35.480 \(\mathbb{N}\)-35.518 \(\mathbb{N}\) as shown in Figure 5.16, the own ship has maximum probability estimation to meet with relative dangerous ship encounter situations. Figure 5.15 shows the OZT emerge area on own ship route from five days data, with red areas indicate the own ship position when OZT data emerge and blue areas indicate no OZT data have been found from the own ship perspective.

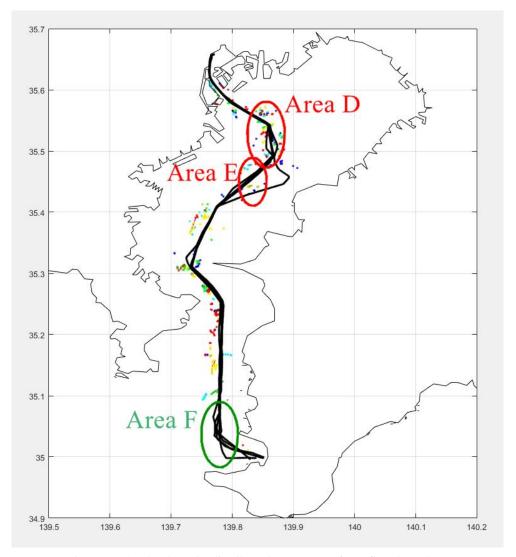



Figure 5.14 The densely-distributed OZT areas from five days data

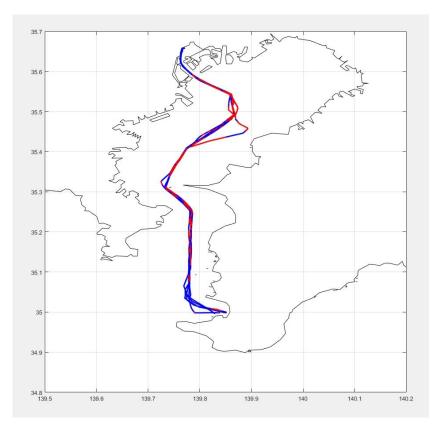



Figure 5.15 The OZT emerge area on own ship route from five days data

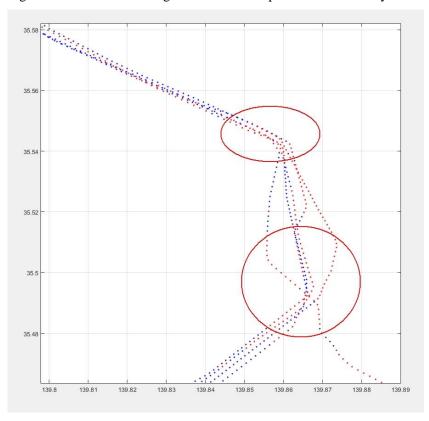



Figure 5.16 The densely-distributed OZT emerge area on own ship route from five days data

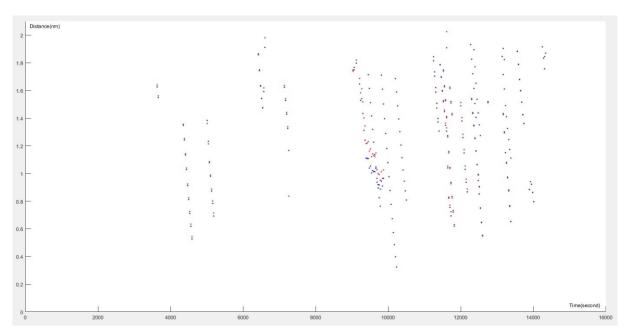



Figure 5.17 The OZT distance distribution diagram on April 27<sup>th</sup>, 2017

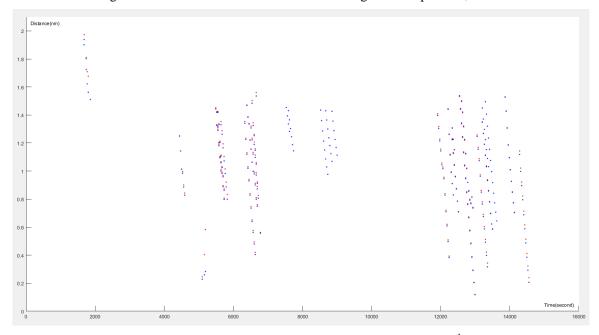



Figure 5.18 The OZT distance distribution diagram on May  $11^{\text{th}}$ , 2017

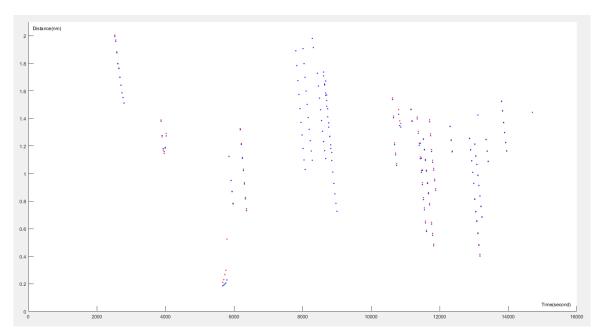



Figure 5.19 The OZT distance distribution diagram on May  $25^{th}$ , 2017

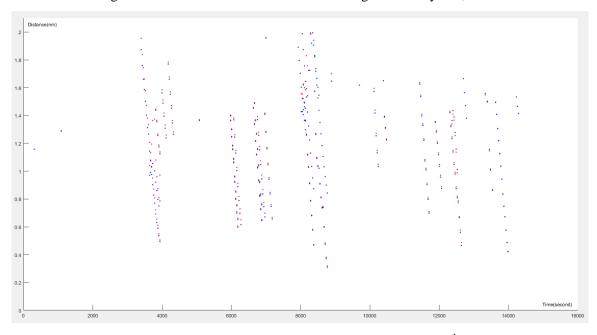



Figure 5.20 The OZT distance distribution diagram on June 8th, 2017

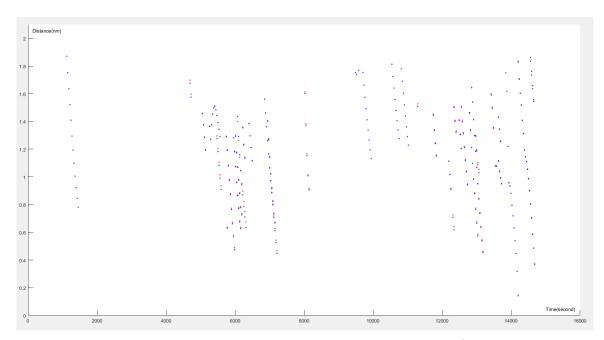



Figure 5.21 The OZT distance distribution diagram on June 15th, 2017

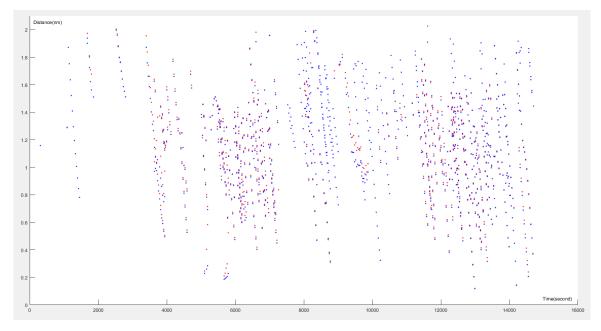



Figure 5.22 The five days superimposed OZT distance distribution diagram

In order to study the dangerous areas for ship collision avoidance, we eliminate the OZT areas which denote the docking ships when entering the harbor, so OZT areas which exist in the north of 35.58 N are removed. From Figure 5.17-5.21, the distance between the own ship and the OZT areas is mainly distributed in from 0.8 nm to 1.7 nm on April 27th, from 0.4 nm to 1.4 nm on May 11th, from 0.7 nm to 1.5 nm on May 25th, from 0.7 nm to 1.5 nm on June 8th, from 0.6 nm to 1.5 nm on June 15th. The generally distributed distance between the own ship and the OZT areas is from 0.6 nm to 1.5 nm as shown in Figure 5.22.

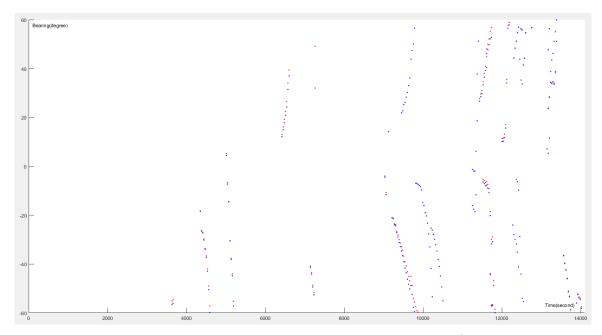



Figure 5.23 The OZT bearing distribution diagram on April  $27^{\text{th}}$ , 2017

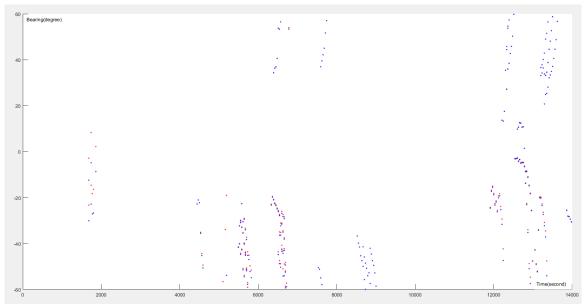



Figure 5.24 The OZT bearing distribution diagram on May  $11^{th}$ , 2017

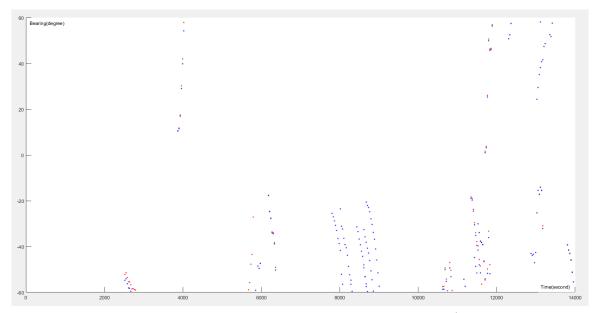



Figure 5.25 The OZT bearing distribution diagram on May  $25^{th}$ , 2017

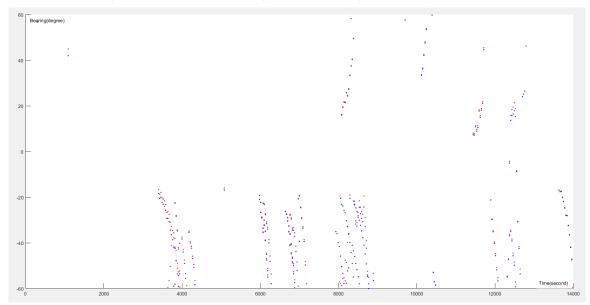



Figure 5.26 The OZT bearing distribution diagram on June  $8^{th}$ , 2017

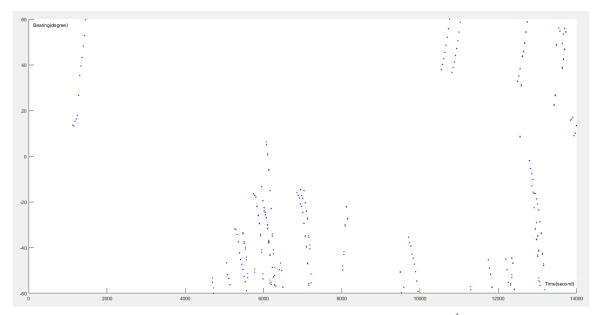



Figure 5.27 The OZT bearing distribution diagram on June 15<sup>th</sup>, 2017

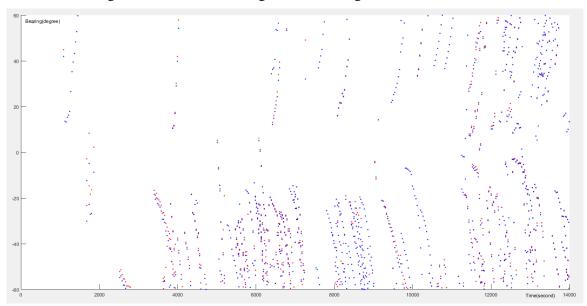



Figure 5.28 The five days superimposed OZT bearing distribution diagram

From Figure 5.23-5.27, the relative bearing between the own ship and the OZT areas is mainly distributed in Port 20°-60° and Starboard 20°-60° on April 27<sup>th</sup>, Port 20°-60° and Starboard 30°-60° on May 11<sup>th</sup>, Port 20°-60° and Starboard 20°-60° on May 25<sup>th</sup>, Port 20°-60° and Starboard 20°-60° on June 8<sup>th</sup>, Port 20°-60° and Starboard 30°-60° on June 15<sup>th</sup>. The generally distributed relative bearing between the own ship and the OZT areas is Port 20°-60° and Starboard 20°-60° as shown in Figure 5.28.

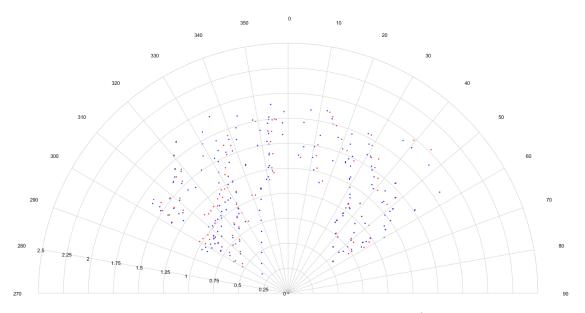



Figure 5.29 The OZT distribution diagram on April  $27^{th}$ , 2017

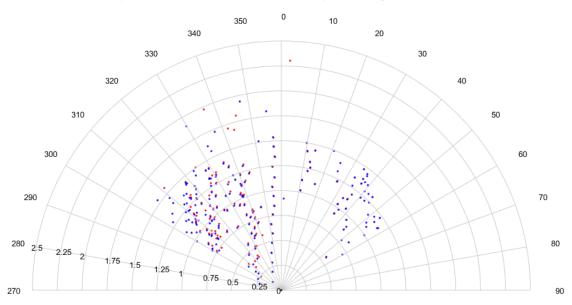



Figure 5.30 The OZT distribution diagram on May 11<sup>th</sup>, 2017

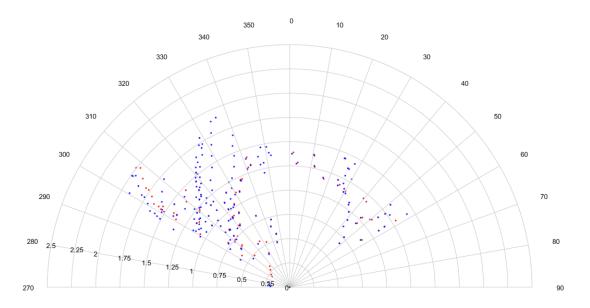



Figure 5.31 The OZT distribution diagram on May25<sup>th</sup>, 2017

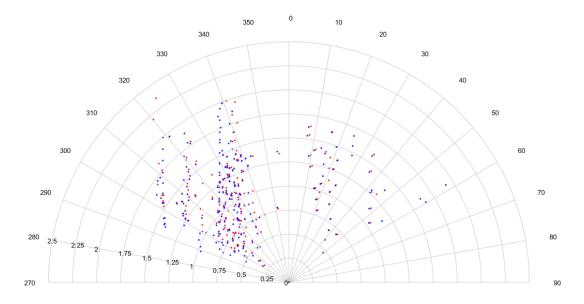



Figure 5.32 The OZT distribution diagram on June 8<sup>th</sup>, 2017

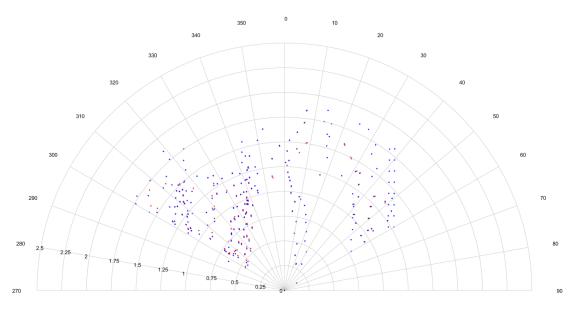



Figure 5.33 The OZT distribution diagram on June 15<sup>th</sup>, 2017

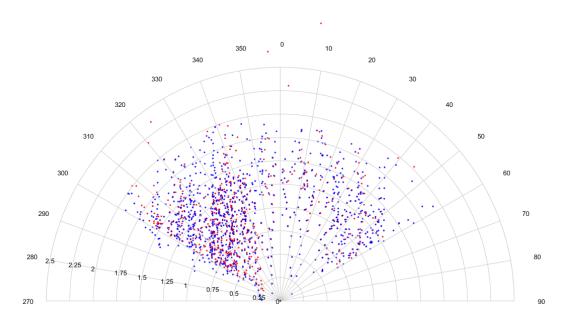



Figure 5.34 The five days superimposed OZT distribution diagram

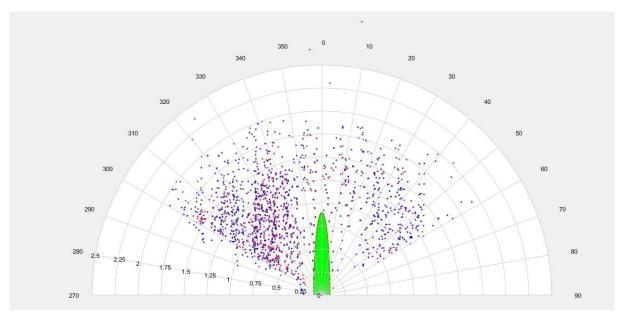



Figure 5.35 The five days superimposed OZT distribution diagram with safety area

From the Figure 5.29 to Figure 5.34, we build a safety area that there is no OZT data intrudes into this area in five days. As shown in Figure 5.35, the green area is what we believe a safety area. This safety area is an ellipse, with the major semi-axis is 0.9 nm and minor semi-axis is 0.09 nm.

### 5.2 Ship Encounter Situations Statistic

Based on the ship encounter situations categorizes we built on Chapter 4.1, here we make a classified statistic of ship encounter situations of the Shioji Maru in relative dangerous conditions.

Table 5.1 The relative dangerous ship encounter situation statistic

| Situation | Head-on<br>(Number<br>of Cases) | Port<br>crossing<br>(Number<br>of Cases) | Starboard<br>crossing<br>(Number<br>of Cases) | Overtaking<br>(Number of<br>Cases) | Overtaken<br>(Number<br>of Cases) | Stationary<br>(Number<br>of Cases) | Total<br>(Number<br>of Cases) |
|-----------|---------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-------------------------------|
| 0427      | 0                               | 7                                        | 5                                             | 2                                  | 0                                 | 8                                  | 22                            |
| 0511      | 0                               | 10                                       | 5                                             | 0                                  | 1                                 | 7                                  | 23                            |
| 0525      | 0                               | 8                                        | 5                                             | 1                                  | 1                                 | 14                                 | 29                            |
| 0608      | 0                               | 8                                        | 2                                             | 0                                  | 1                                 | 6                                  | 17                            |
| 0615      | 0                               | 19                                       | 5                                             | 1                                  | 0                                 | 5                                  | 30                            |

Table 5.2 Ship encounter situation statistic in two areas

| Date | Situation          | Total<br>(Number<br>of<br>Cases) | Traffic Controlled area (Number of Cases) | Percentage (%) | Dangerous<br>area<br>(Number<br>of Cases) | Percentage (%) | Total percentage (%) |
|------|--------------------|----------------------------------|-------------------------------------------|----------------|-------------------------------------------|----------------|----------------------|
|      | Port crossing      | 7                                | 2                                         | 28.57          | 3                                         | 42.86          | 71.43                |
| 0427 | Starboard crossing | 5                                | 1                                         | 20.00          | 1                                         | 20.00          | 40.00                |
|      | Stationary         | 8                                | 0                                         | 0.00           | 5                                         | 62.50          | 62.50                |
|      | Overtaking         | 2                                | 1                                         | 50.00          | 0                                         | 0.00           | 50.00                |
|      | Port crossing      | 10                               | 6                                         | 60.00          | 2                                         | 20.00          | 80.00                |
| 0511 | Starboard crossing | 5                                | 1                                         | 20.00          | 4                                         | 80.00          | 100.00               |
|      | Stationary         | 7                                | 5                                         | 71.43          | 2                                         | 28.57          | 100.00               |
|      | Overtaken          | 1                                | 1                                         | 100.00         | 0                                         | 0.00           | 100.00               |
|      | Port crossing      | 8                                | 2                                         | 25.00          | 4                                         | 50.00          | 75.00                |
|      | Starboard crossing | 5                                | 0                                         | 0.00           | 5                                         | 100.00         | 100.00               |
| 0525 | Stationary         | 14                               | 7                                         | 50.00          | 1                                         | 7.14           | 57.14                |
|      | Overtaking         | 1                                | 1                                         | 100.00         | 0                                         | 0.00           | 100.00               |
|      | Overtaken          | 1                                | 1                                         | 100.00         | 0                                         | 0.00           | 100.00               |
|      | Port crossing      | 8                                | 4                                         | 50.00          | 3                                         | 37.50          | 87.50                |
| 0608 | Starboard crossing | 2                                | 1                                         | 50.00          | 1                                         | 50.00          | 100.00               |
|      | Stationary         | 6                                | 4                                         | 66.67          | 1                                         | 16.67          | 83.33                |
|      | Overtaken          | 1                                | 1                                         | 100.00         | 0                                         | 0.00           | 100.00               |
|      | Port crossing      | 19                               | 8                                         | 42.11          | 6                                         | 31.58          | 73.68                |
| 0615 | Starboard crossing | 5                                | 0                                         | 0.00           | 5                                         | 100.00         | 100.00               |
|      | Stationary         | 5                                | 1                                         | 20.00          | 0                                         | 0.00           | 20.00                |
|      | Overtaking         | 1                                | 0                                         | 0.00           | 0                                         | 0.00           | 0.00                 |

On account of Chapter 5.1 Figure 5.14, here we count the relative dangerous ship encounter situations occur in the Tokyo Bay traffic controlled area and the dangerous area we proposed, from the Table 5.2, most of the relative dangerous ship encounter situations occurs in those two areas.

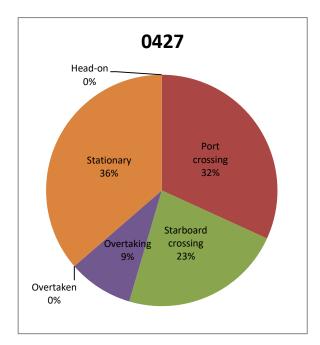



Figure 5.36 The relative dangerous continuous ship encounter situation on April 27<sup>th</sup>, 2017

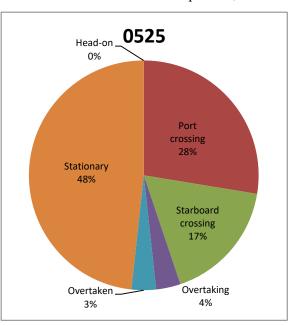



Figure 5.38 The relative dangerous continuous ship encounter situation on May25<sup>th</sup>, 2017

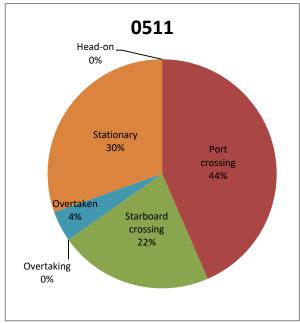



Figure 5.37 The relative dangerous continuous ship encounter situation on May 11<sup>th</sup>, 2017

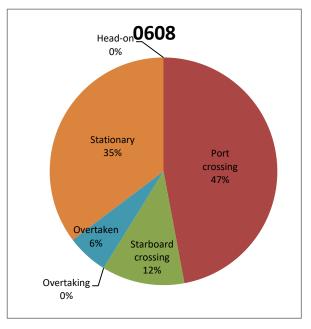



Figure 5.39 The relative dangerous continuous ship encounter situation on June 8<sup>th</sup>, 2017

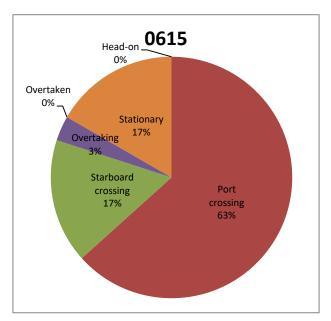



Figure 5.40 The relative dangerous continuous ship encounter situation on June 15th, 2017

From the statistic of relative dangerous ship encounter situation, the port crossing account for a much greater portion, while there is no continuous dangerous head-on situation appears from these five days data statistics. The navigator of the Shioji Maru either takes the collision avoidance actions earlier and finds a safety route to ensure navigation safety or changes the original dangerous head-on situation to crossing situation, those are the reasons no continuous dangerous head-on situation appears. For the higher proportion of port crossing, 50 percent of the continuous dangerous port crossing situations occur in the traffic control areas in Tokyo Bay when the Shioji Maru enters the port.

Here, we propose a simple indicator  $\kappa$  for navigation safety evaluation

$$\kappa = \frac{Time\ of\ Appear\ OZT}{Total\ Navigation\ Time}$$

While the smaller the  $\kappa$  is, the less time for the own ship encountered the dangerous situation, in other words, the relative navigation safety it presents.

Table 5.3 The navigation safety indicator

| K<br>Date | К      |
|-----------|--------|
| 0427      | 0.2955 |
| 0511      | 0.2562 |
| 0525      | 0.2647 |
| 0608      | 0.3149 |
| 0615      | 0.3632 |

On June 15<sup>th</sup>, the  $\kappa = 0.3632$ , which indicates the navigator spends longer time on collision avoidance handling compared to May 11th, while the  $\kappa = 0.2562$ .

#### **5.3 Navigation Characteristics Analysis**

As no continuous head-on collision avoidance encounter situation is witnessed in these five days, we select five kinds of representative ship encounter situations and analyze navigation characteristics using the OZT theory. The five representative ship encounter situations are: Port crossing, Starboard crossing, Overtaking, Overtaken and complex situation. The red and black dots indicate the own ship (Shioji Maru) position, denote the own ship position whether the own ship witnesses the OZT data or not respectively. The asterisk marks indicate the positions of target ships, with different colors represent different target ships. The lilac and ondine circles represent the OZT areas. The time shown in the figures is described by second. For example, 00:00:30 UTC is converted into 30 second.

# (1) Port crossing.

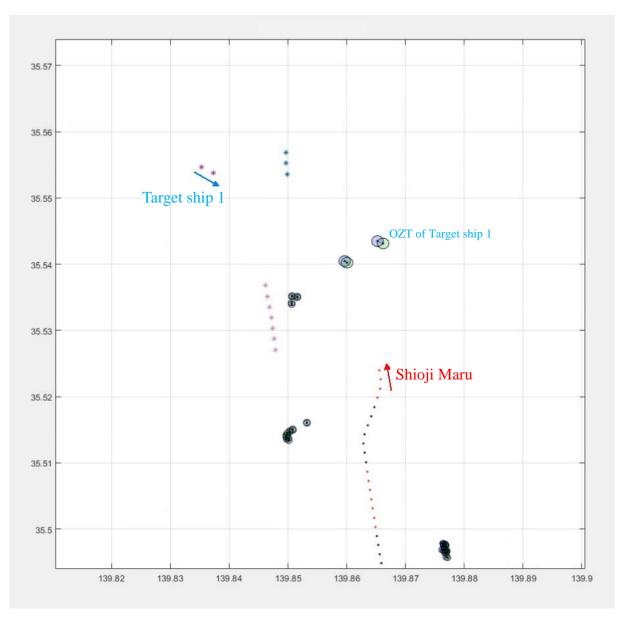



Figure 5.41 Ship encounter situations analysis (Time=12401)

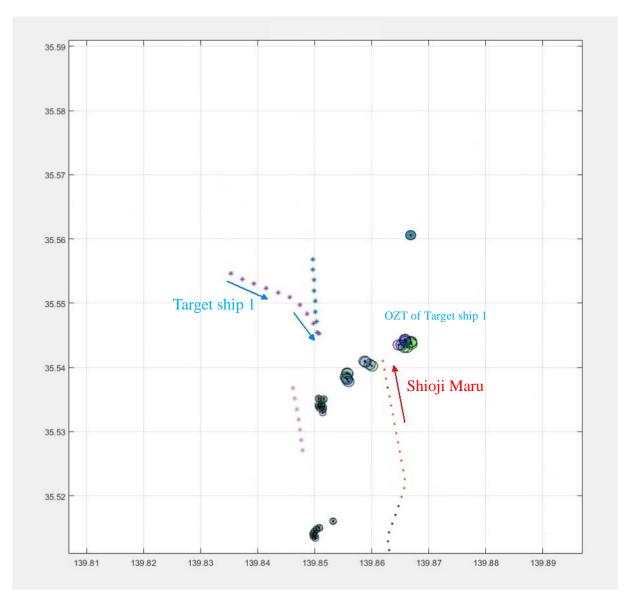



Figure 5.42 Ship encounter situations analysis (Time=12761)

Table 5.4 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 12341     | 10.40526   | 35.52119     | 139.8657      | 11.26316 | 7.473684    |
| 12371     | 10.13333   | 35.52262     | 139.8658      | 356      | 349.3333    |
| 12401     | 10.2       | 35.52397     | 139.8655      | 349.3333 | 345.6667    |
| 12431     | 10.39091   | 35.52549     | 139.8652      | 349      | 345.9091    |
| 12461     | 10.5       | 35.52688     | 139.8649      | 349.9    | 346         |
| 12491     | 10.40909   | 35.52831     | 139.8646      | 349.0909 | 345.9091    |
| 12521     | 10.41      | 35.52975     | 139.8643      | 349.1    | 346         |
| 12551     | 10.5       | 35.53119     | 139.864       | 349.0526 | 345.0526    |
| 12581     | 10.5       | 35.53268     | 139.8637      | 349.1    | 345.1       |
| 12611     | 10.30909   | 35.53408     | 139.8634      | 349.8182 | 345.9091    |
| 12641     | 10.2       | 35.53548     | 139.8631      | 350.1    | 345.1       |
| 12671     | 10.00909   | 35.53686     | 139.8628      | 348.0909 | 343.9091    |
| 12701     | 10         | 35.53823     | 139.8625      | 349.1    | 345         |
| 12731     | 10         | 35.53966     | 139.8622      | 351      | 345.0909    |
| 12761     | 10.09      | 35.54099     | 139.862       | 350      | 345         |

Table 5.5 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude(°) | COG(°)   | Heading(°) |
|-----------|------------|--------------|--------------|----------|------------|
| 12341     | 13.5       | 35.55581     | 139.8334     | 127.4333 | 130        |
| 12371     | 13.6       | 35.55464     | 139.8352     | 125.42   | 128.4      |
| 12401     | 13.41111   | 35.55373     | 139.8373     | 114.2    | 116.3333   |
| 12431     | 13.2       | 35.55305     | 139.8393     | 111.84   | 115        |
| 12461     | 13.38889   | 35.55237     | 139.8414     | 112.1889 | 116        |
| 12491     | 13.5       | 35.55165     | 139.8436     | 112.68   | 116        |
| 12521     | 13.51111   | 35.55089     | 139.8457     | 115.3778 | 119.6667   |
| 12551     | 12.76667   | 35.54979     | 139.8474     | 133.6667 | 139.6667   |
| 12581     | 12.56667   | 35.54833     | 139.8487     | 148.2    | 153        |
| 12611     | 12.88      | 35.54683     | 139.8498     | 150.82   | 154        |
| 12641     | 13.1       | 35.54523     | 139.8508     | 150.7    | 153        |
| 12671     | 13.38      | 35.54357     | 139.852      | 150.66   | 153.2      |
| 12701     | 13.58889   | 35.54189     | 139.8531     | 150.5222 | 154        |
| 12731     | 13.61111   | 35.54027     | 139.8542     | 152.9667 | 156.7778   |
| 12761     | 13.8       | 35.53851     | 139.8552     | 154.8778 | 158        |

At time 12341, the own ship witnesses the OZT area along its course, but the own ship is the stand-on ship according to the COLREG-1972, the target ship 1 is the crossing give-way ship, so the target ship 1 turns to starboard to avoid collision. But the target ship 1 turns to port from time 12401 (as shown in Figure 5.41) and then realizes the collision risk from time 12521 so that it turns to starboard to avoid collision, but this action is relative not timely.

Until time 12761(shown in Figure 5.42), no OZT area is witnessed along the course of the own ship, so collision avoidance actions are completed.

### (2) Starboard crossing.

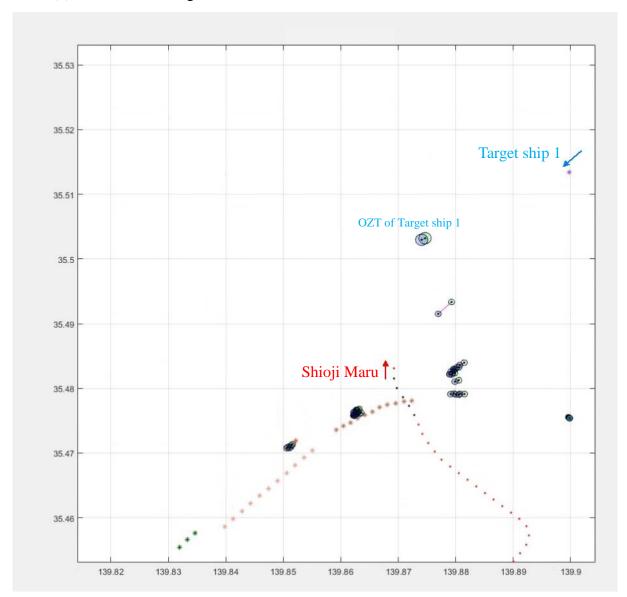



Figure 5.43 Ship encounter situations analysis (Time=12003)

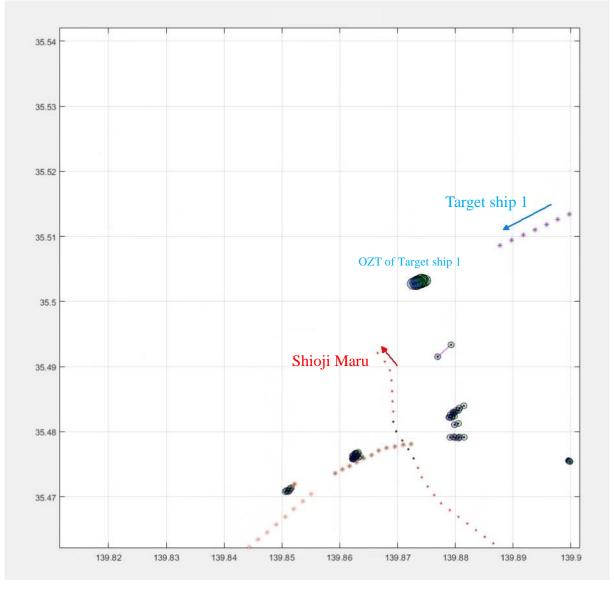



Figure 5.44 Ship encounter situations analysis (Time=12183)

Table 5.6 The own ship information

| Time(sec) | SOG(knots) | Latitude( % | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|-------------|---------------|----------|-------------|
| 12003     | 11.4       | 35.48309    | 139.8693      | 0        | 1           |
| 12033     | 11.3       | 35.48466    | 139.8691      | 356.2    | 0.9         |
| 12063     | 11.3       | 35.48622    | 139.8691      | 358      | 1.363636    |
| 12093     | 11.3       | 35.48787    | 139.869       | 355.3    | 358         |
| 12123     | 11.24286   | 35.48943    | 139.8687      | 343.1429 | 342.1429    |
| 12153     | 11.3       | 35.49076    | 139.8678      | 324      | 324         |
| 12183     | 11.6       | 35.49208    | 139.8666      | 324.8571 | 327.7143    |

Table 5.7 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 12003     | 12.9       | 35.51339     | 139.8997      | 243.5111 | 242.1111    |
| 12033     | 12.9       | 35.51261     | 139.8977      | 244.19   | 242         |
| 12063     | 12.91111   | 35.51183     | 139.8958      | 243.5556 | 243         |
| 12093     | 13         | 35.51106     | 139.8938      | 244.27   | 242         |
| 12123     | 13         | 35.51023     | 139.8917      | 243.7667 | 242         |
| 12153     | 13.01      | 35.50942     | 139.8897      | 243.44   | 243         |
| 12183     | 13         | 35.50864     | 139.8877      | 244.1667 | 241         |

As shown in Figure 5.43, at time 12003, the OZT area is witnessed along the own ship course. According to the COLREG-1972, the own ship is the crossing give-way ship, so the own ship turns to port to avoid collision. As the target ship 1 is the crossing stand-on ship, it keeps its course in this period.

#### (3) Overtaking.

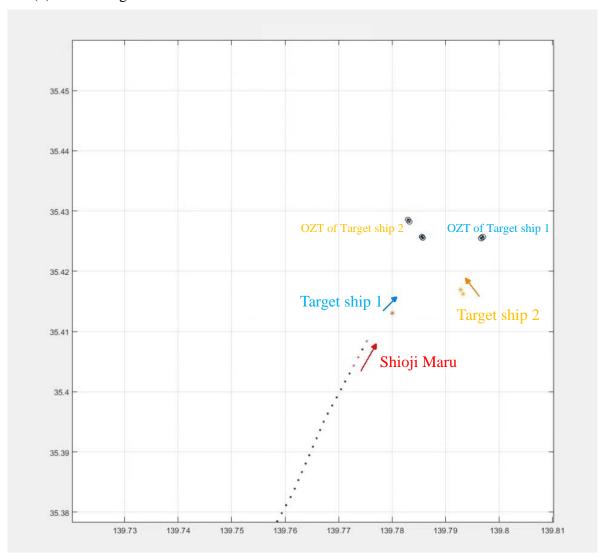



Figure 5.45 Ship encounter situations analysis (Time=9123)

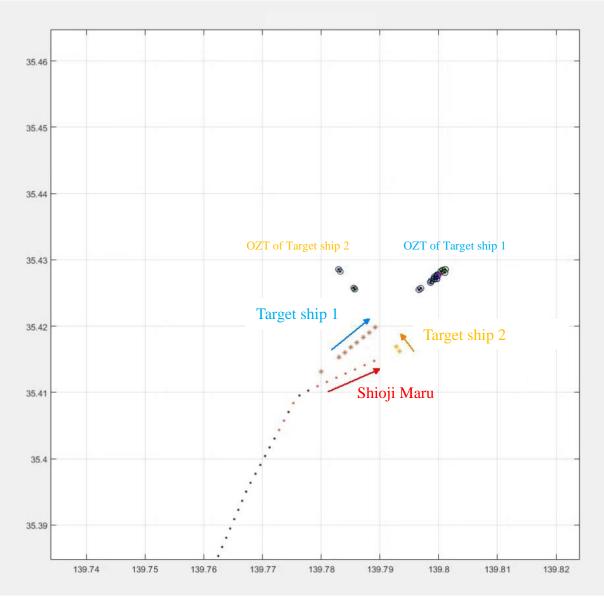



Figure 5.46 Ship encounter situations analysis (Time=9393)
Table 5.8 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 9123      | 10.7625    | 35.40839     | 139.7753      | 25.375   | 31.5        |
| 9153      | 10.1       | 35.40954     | 139.7763      | 51       | 61          |
| 9183      | 10.3       | 35.41026     | 139.7778      | 61.5     | 65.5        |
| 9213      | 10.4       | 35.41092     | 139.7794      | 63.4     | 66          |
| 9243      | 10.4       | 35.41157     | 139.781       | 64       | 65.3        |
| 9273      | 10.44      | 35.4122      | 139.7826      | 64       | 66          |
| 9303      | 10.4       | 35.41282     | 139.7841      | 63.7     | 65          |
| 9333      | 10.4       | 35.41345     | 139.7858      | 64       | 65.55556    |
| 9363      | 10.5       | 35.4141      | 139.7874      | 64       | 66          |
| 9393      | 10.5       | 35.41474     | 139.789       | 64.44444 | 66.44444    |

Table 5.9 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 9123      | 8.14       | 35.4131      | 139.78        | 47.82    | 58          |
| 9153      | 8.1        | 35.41381     | 139.781       | 47.63333 | 57          |
| 9183      | 8          | 35.41456     | 139.782       | 48.46    | 57.7        |
| 9213      | 8.036842   | 35.41531     | 139.783       | 48.2     | 57.63158    |
| 9243      | 8          | 35.41605     | 139.784       | 48.59    | 57          |
| 9273      | 8.177778   | 35.41678     | 139.7851      | 47.68889 | 57          |
| 9303      | 8.1        | 35.41752     | 139.7861      | 47.83333 | 57.66667    |
| 9333      | 8          | 35.41826     | 139.7871      | 47.39    | 57          |
| 9363      | 8.1        | 35.41902     | 139.7881      | 48.13    | 57          |
| 9393      | 8          | 35.41976     | 139.7892      | 49.55    | 58          |

As shown in Figure 5.45, at time 9123, the own ship witnesses the OZT area along its course, but the own ship is the overtaking ship according to the COLREG-1972 for the target ship 1, and the crossing give-way ship for the target ship 2, so the own ship turns to starboard instead of turning to port to overtake the target ship 1 and avoid collision for the target ship 2. Till time 9393 (shown in Figure 5.46), the encounter situation is not overtaking any more.

### (4) Overtaken.

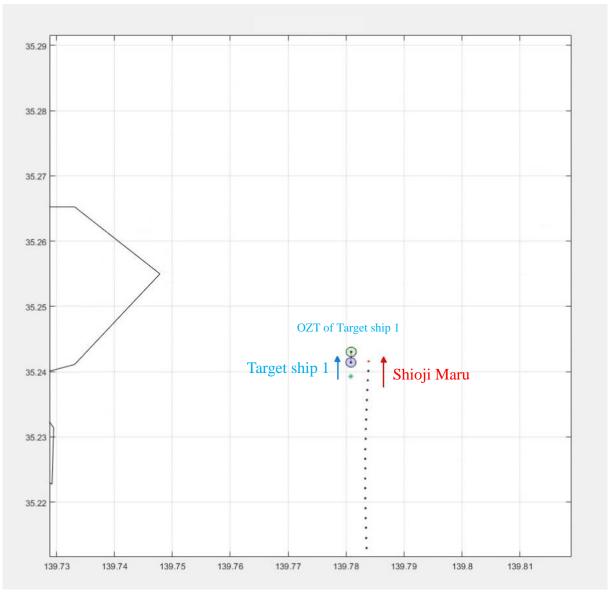



Figure 5.47 Ship encounter situations analysis (Time=5674)

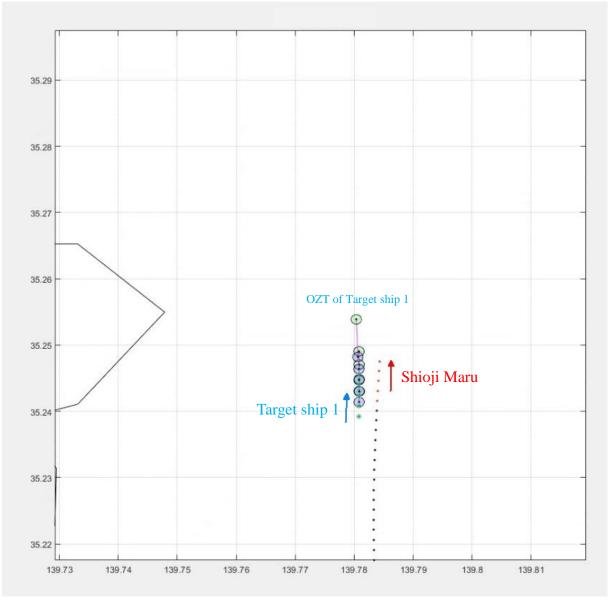



Figure 5.48 Ship encounter situations analysis (Time=5794)
Table 5.10 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°) | Heading(°) |
|-----------|------------|--------------|---------------|--------|------------|
| 5644      | 10.6       | 35.24009     | 139.7838      | 2      | 359        |
| 5674      | 10.6       | 35.24158     | 139.7839      | 2      | 359        |
| 5704      | 10.8       | 35.24307     | 139.784       | 3      | 0          |
| 5734      | 10.6       | 35.2446      | 139.7841      | 3      | 0          |
| 5764      | 10.8       | 35.24609     | 139.7842      | 3      | 0          |
| 5794      | 10.8       | 35.24752     | 139.7843      | 4      | 0          |

Table 5.11 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( <sup>9</sup> ) | Longitude( °) | COG(°) | Heading( °) |
|-----------|------------|--------------------------|---------------|--------|-------------|
| 5644      | 11.46      | 35.23762                 | 139.7807      | 2.08   | 0           |
| 5674      | 11.45      | 35.23922                 | 139.7808      | 1.5    | 358.5       |
| 5704      | 11.44      | 35.24081                 | 139.7808      | 0.58   | 358         |
| 5734      | 11.5       | 35.24236                 | 139.7808      | 0.15   | 358         |
| 5764      | 11.5       | 35.24397                 | 139.7808      | 0.02   | 356.6       |
| 5794      | 11.5       | 35.24551                 | 139.7808      | 357.75 | 355.5       |

As shown in Figure 5.47, at time 5674, the target ship 1 aims to overtake the own ship meanwhile the distance of two ships are quite short. The target ship 1 turns to port while the own ship turns to starboard a little to keep the two routes apart far enough from each other.

### (5) Complex situation I.

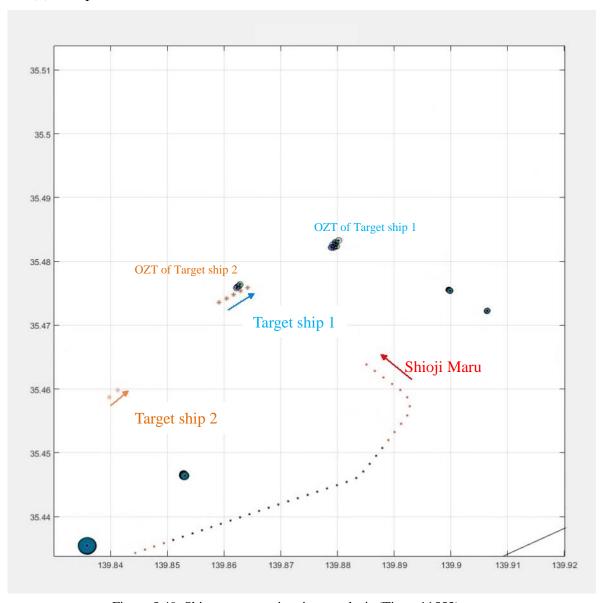



Figure 5.49 Ship encounter situations analysis (Time=11553)

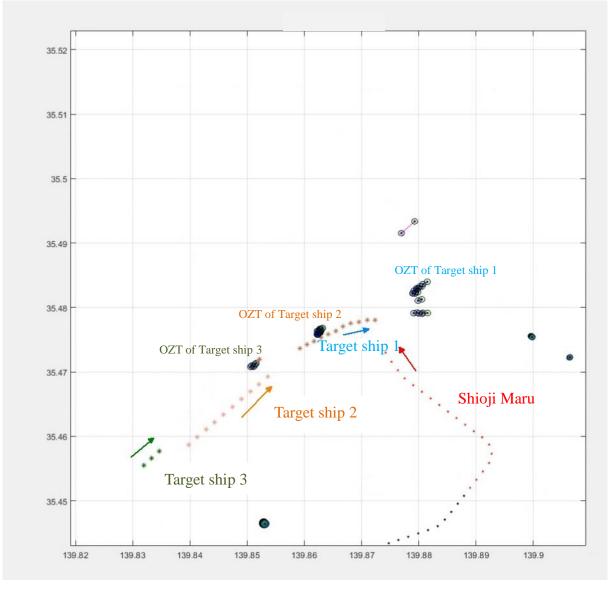



Figure 5.50 Ship encounter situations analysis (Time=11793)

Table 5.12 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 11523     | 11.5       | 35.46283     | 139.8866      | 309.0909 | 309.5455    |
| 11553     | 11.5       | 35.46382     | 139.8851      | 309.6364 | 310.3636    |
| 11583     | 11.5       | 35.46485     | 139.8836      | 309.3    | 311.3       |
| 11613     | 11.5       | 35.46588     | 139.8821      | 309.3333 | 310.3333    |
| 11643     | 11.5       | 35.4669      | 139.8805      | 309      | 310         |
| 11673     | 11.6       | 35.46792     | 139.879       | 309      | 310.6364    |
| 11703     | 11.53      | 35.46899     | 139.8776      | 314.6    | 319         |
| 11733     | 11.5       | 35.47024     | 139.8764      | 325.3    | 328.7       |
| 11763     | 11.45455   | 35.47157     | 139.8753      | 324.0909 | 325.9091    |
| 11793     | 11.37      | 35.47297     | 139.8742      | 334.5    | 339.9       |

Table 5.13 The target ship 1 formation

| Time(sec) | SOG(knots) | Latitude( <sup>9</sup> ) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------------------|---------------|----------|-------------|
| 11523     | 8.522222   | 35.47535                 | 139.8629      | 61.37778 | 70.77778    |
| 11553     | 8.6        | 35.47588                 | 139.8642      | 60.60909 | 70          |
| 11583     | 8.6        | 35.47638                 | 139.8655      | 60.86    | 70          |
| 11613     | 8.666667   | 35.47706                 | 139.8668      | 60.1     | 72.66667    |
| 11643     | 8.5        | 35.4775                  | 139.8681      | 69.7     | 84.75       |
| 11673     | 8.5        | 35.47772                 | 139.8695      | 80       | 89          |
| 11703     | 8.6        | 35.478                   | 139.871       | 81.72    | 90          |
| 11733     | 8.6        | 35.47806                 | 139.8723      | 81.86667 | 88.66667    |
| 11763     | 8.6        | 35.47833                 | 139.8738      | 80.42    | 88          |
| 11793     | 8.6        | 35.4785                  | 139.8753      | 80.53333 | 88          |

Table 5.14 The target ship 2 formation

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 11523     | 12.3       | 35.45867     | 139.8398      | 46.98182 | 48          |
| 11553     | 12.4       | 35.45983     | 139.8413      | 46.84    | 48          |
| 11583     | 12.33      | 35.46103     | 139.8428      | 46.15    | 47          |
| 11613     | 12.36      | 35.46219     | 139.8443      | 46.32    | 48          |
| 11643     | 12.4       | 35.46339     | 139.8459      | 47.3     | 48          |
| 11673     | 12.4       | 35.46455     | 139.8474      | 47.36364 | 48          |
| 11703     | 12.3       | 35.46573     | 139.849       | 47.2     | 48          |
| 11733     | 12.3       | 35.46692     | 139.8505      | 47.00909 | 47.36364    |
| 11763     | 12.4       | 35.46809     | 139.852       | 46.46667 | 47          |
| 11793     | 12.3       | 35.46929     | 139.8536      | 46.30909 | 47.36364    |

As shown in Figure 5.49 and Figure 5.50, the own ship encounters the OZT area near its course. From three target ships, in each condition the own ship is the crossing stand-on ship. The target ship 1 turns to starboard, but the target ship 2 takes no actions although collision risk exists the OZT area displaying along the course. The own ship turns to starboard and finds a safety route to avoid collision.

### (6) Complex situation II.

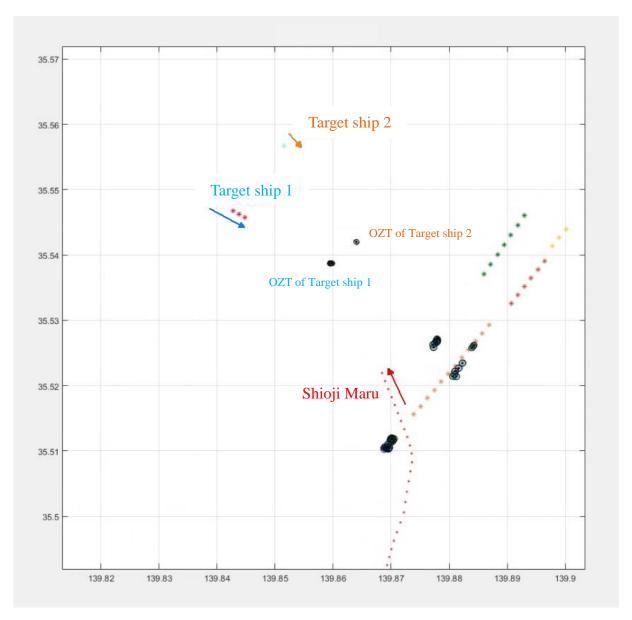



Figure 5.51 Ship encounter situations analysis (Time=12602)

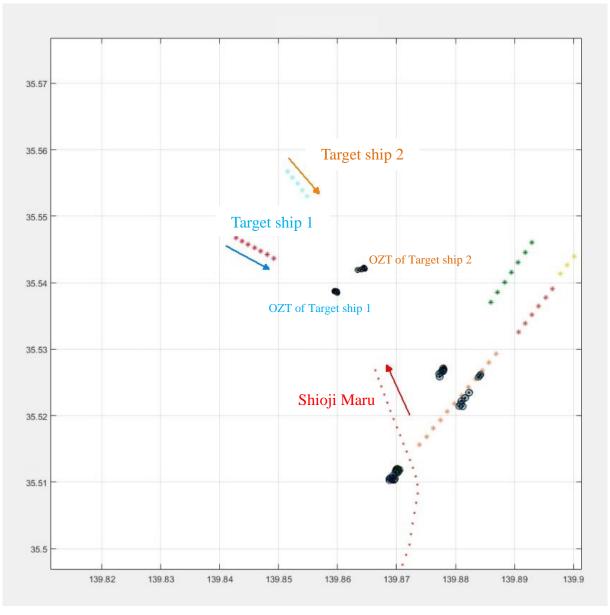



Figure 5.52 Ship encounter situations analysis (Time=12722)

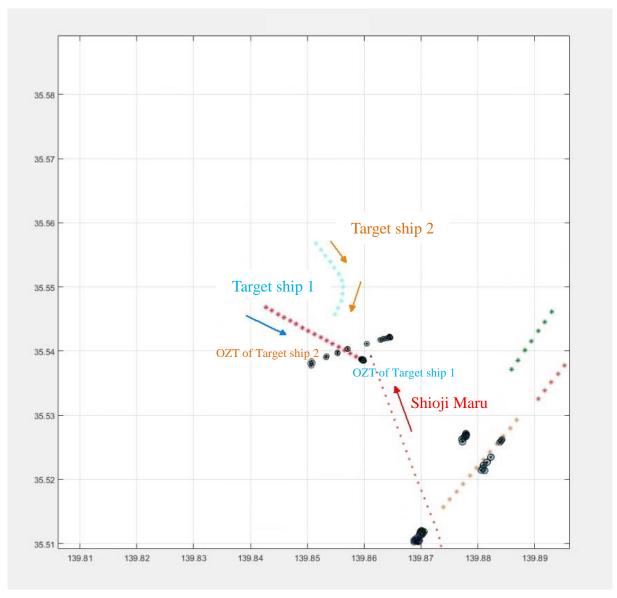



Figure 5.53 Ship encounter situations analysis (Time=13022)

Table 5.15 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 12512     | 9.3        | 35.51822     | 139.8701      | 338      | 338         |
| 12542     | 9.3        | 35.51948     | 139.8695      | 339      | 340         |
| 12572     | 9.4        | 35.5207      | 139.869       | 340      | 340         |
| 12602     | 9.3        | 35.52193     | 139.8684      | 340      | 340         |
| 12632     | 9.4        | 35.52316     | 139.8679      | 341      | 341         |
| 12662     | 9.3        | 35.52439     | 139.8674      | 340      | 340         |
| 12692     | 9.3        | 35.52558     | 139.8669      | 341      | 341         |
| 12722     | 9.4        | 35.52682     | 139.8664      | 341.0909 | 340.0909    |
| 12752     | 9.4        | 35.52809     | 139.8659      | 339      | 339         |
| 12782     | 9.4        | 35.52928     | 139.8653      | 341      | 340         |
| 12812     | 9.4        | 35.53052     | 139.8648      | 341      | 341         |
| 12842     | 9.3        | 35.53176     | 139.8643      | 341      | 340         |
| 12872     | 9.5        | 35.53304     | 139.8638      | 340      | 340         |
| 12902     | 9.4        | 35.53427     | 139.8633      | 341      | 341         |
| 12932     | 9.3        | 35.5355      | 139.8628      | 340      | 340         |
| 12962     | 9.4        | 35.53668     | 139.8622      | 340      | 339         |
| 12992     | 9.4        | 35.53792     | 139.8617      | 341      | 340.0909    |
| 13022     | 9.5        | 35.53916     | 139.8612      | 341      | 341         |
| 13052     | 9.390909   | 35.54045     | 139.8607      | 340      | 339         |

Table 5.16 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 12512     | 7.1        | 35.54729     | 139.8417      | 120.19   | 119.7       |
| 12542     | 7.1        | 35.54677     | 139.8427      | 120.5364 | 119.2727    |
| 12572     | 7.17       | 35.54628     | 139.8437      | 120.18   | 119.7       |
| 12602     | 7.2        | 35.54576     | 139.8448      | 119.8556 | 119         |
| 12632     | 7.3        | 35.54525     | 139.8459      | 119.9364 | 118.7273    |
| 12662     | 7.388889   | 35.54472     | 139.847       | 120.3556 | 119.1111    |
| 12692     | 7.4        | 35.54421     | 139.848       | 120.5091 | 120         |
| 12722     | 7.4        | 35.54367     | 139.8491      | 120.3444 | 119.1111    |
| 12752     | 7.4        | 35.54316     | 139.8502      | 120.94   | 120         |
| 12782     | 7.211111   | 35.54263     | 139.8513      | 120.5    | 120         |
| 12812     | 7.2        | 35.54213     | 139.8523      | 120.6455 | 120         |
| 12842     | 7.1        | 35.54162     | 139.8534      | 119.9167 | 120         |
| 12872     | 7.1        | 35.54113     | 139.8544      | 120      | 120         |
| 12902     | 7.1        | 35.54063     | 139.8555      | 120.1333 | 119         |
| 12932     | 7.1        | 35.54013     | 139.8565      | 120.1    | 119         |
| 12962     | 7.1        | 35.53965     | 139.8576      | 120.34   | 118.2       |
| 12992     | 7.1        | 35.53915     | 139.8586      | 120.3182 | 119         |
| 13022     | 7          | 35.53866     | 139.8597      | 118.5778 | 116.8889    |

| 13052 | 7.1        | 35.53821      | 139.8607         | 117.5455 | 116 |
|-------|------------|---------------|------------------|----------|-----|
|       | Table 5.17 | The target of | hin 2 informatio | 'n       |     |

Table 5.17 The target ship 2 information

| Time(sec) | SOG(knots) | Latitude( <sup>9</sup> ) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------------------|---------------|----------|-------------|
| 12512     | 8.1        | 35.55965                 | 139.8493      | 149.6095 | 152         |
| 12542     | 8.2        | 35.55867                 | 139.85        | 150.76   | 152         |
| 12572     | 8.2        | 35.5577                  | 139.8507      | 147.4111 | 150         |
| 12602     | 8.2        | 35.55677                 | 139.8515      | 145.3    | 147         |
| 12632     | 8.2        | 35.55584                 | 139.8523      | 143.7889 | 148         |
| 12662     | 8.2        | 35.55491                 | 139.8532      | 143.7818 | 147.8182    |
| 12692     | 8.2        | 35.55395                 | 139.854       | 143.9111 | 149.7778    |
| 12722     | 8.1        | 35.55302                 | 139.8548      | 147.5091 | 151.8182    |
| 12752     | 8.111111   | 35.55204                 | 139.8555      | 149.6889 | 156.7778    |
| 12782     | 7.925      | 35.55103                 | 139.8561      | 159.975  | 172.25      |
| 12812     | 7.766667   | 35.54997                 | 139.8563      | 175.8667 | 181.6667    |
| 12842     | 7.9        | 35.54887                 | 139.8562      | 184.52   | 190.6       |
| 12872     | 8.088889   | 35.54778                 | 139.8559      | 193.6556 | 197.5556    |
| 12902     | 7.933333   | 35.54675                 | 139.8554      | 204.7333 | 203         |
| 12932     | 7.9        | 35.54577                 | 139.8549      | 202.78   | 199.8       |
| 12962     | 8.09       | 35.54472                 | 139.8544      | 202.86   | 199.1       |
| 12992     | 8          | 35.5437                  | 139.8539      | 200.98   | 198.8       |
| 13022     | 8.1        | 35.54263                 | 139.8533      | 200.99   | 198         |
| 13052     | 8          | 35.54158                 | 139.8529      | 199.4    | 196.8       |

As shown in Figure 5.51, at time 12602, two OZT areas appear on port and starboard sides of the own ship. As for the encounter situation of the own ship and the target ship 2, it is the near head-on situation, but not head-on and not crossing. Both the own ship and the target ship 2 should take collision avoidance actions. The target ship 2 turns to starboard to avoid collision. Then it is relative safe for the own ship. For the target ship 1, the target ship 1 is the crossing give-way ship, but it does not take any collision avoidance actions which is not good. From the result of time 13022 (Figure 5.53), the distance of the own ship and the target ship 1 is quite close.

# (7) Complex situation III.

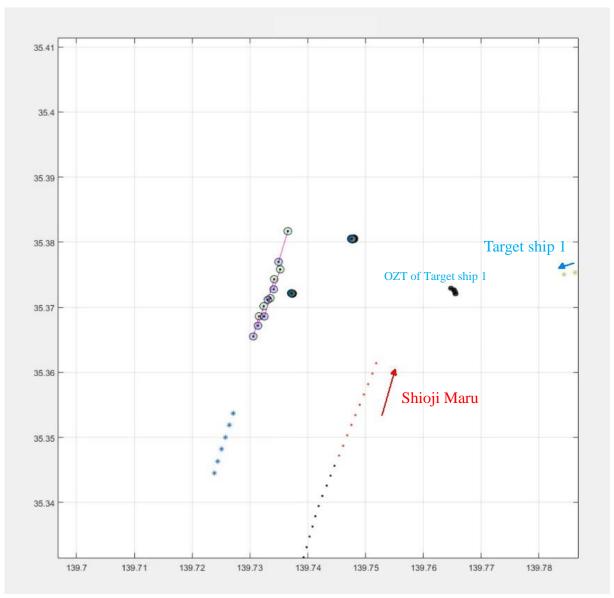



Figure 5.54 Ship encounter situations analysis (Time=8201)

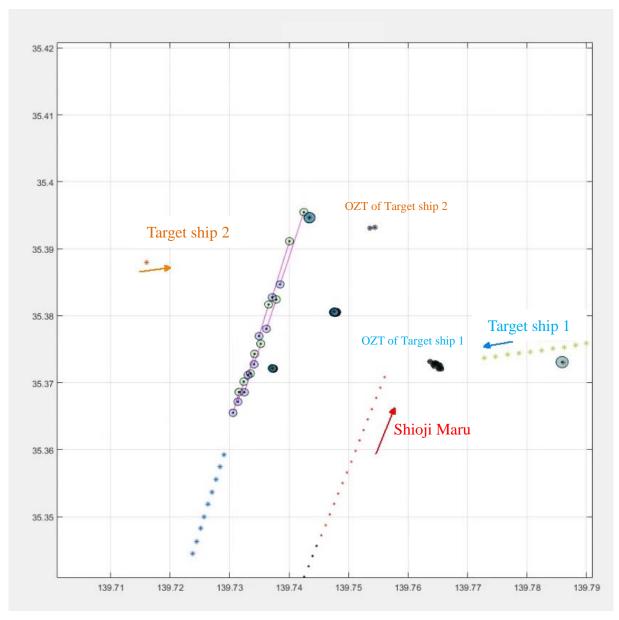



Figure 5.55 Ship encounter situations analysis (Time=8381)

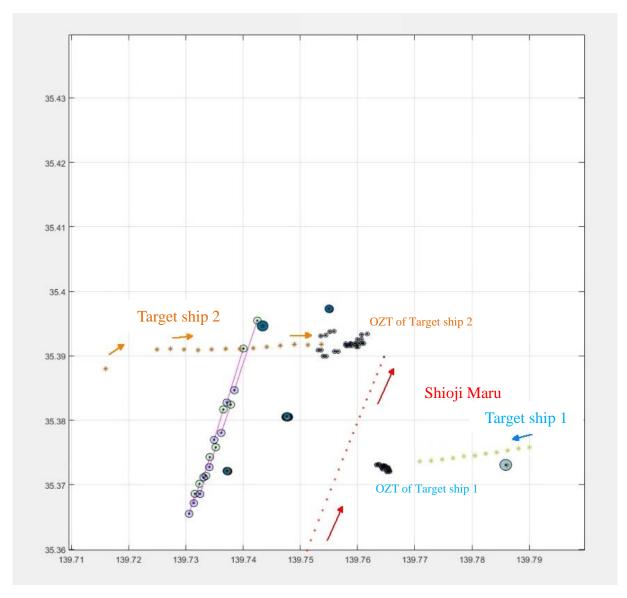



Figure 5.56 Ship encounter situations analysis (Time=8801)

Table 5.18 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°) | Heading( °) |
|-----------|------------|--------------|---------------|--------|-------------|
| 8141      | 12.2       | 35.35818     | 139.7505      | 20     | 20          |
| 8171      | 12.1       | 35.35981     | 139.7512      | 17.2   | 18.9        |
| 8201      | 12.1       | 35.3614      | 139.7518      | 19     | 20          |
| 8231      | 12.1       | 35.36293     | 139.7525      | 19.1   | 19.9        |
| 8261      | 12.1       | 35.36452     | 139.7532      | 20     | 20          |
| 8291      | 12         | 35.36605     | 139.7539      | 20     | 20          |
| 8321      | 12.1       | 35.36773     | 139.7547      | 19     | 20          |
| 8351      | 12.1       | 35.36927     | 139.7553      | 20     | 20          |
| 8381      | 12         | 35.37084     | 139.756       | 19     | 20          |
| 8411      | 12         | 35.37236     | 139.7567      | 20     | 20          |
| 8441      | 11.4       | 35.37396     | 139.7574      | 20     | 20          |
| 8471      | 10.41818   | 35.37536     | 139.7581      | 19     | 19.90909    |
| 8501      | 10.11818   | 35.3767      | 139.7587      | 20     | 20          |
| 8531      | 10.1       | 35.37801     | 139.7592      | 20     | 20          |
| 8561      | 10.08182   | 35.37932     | 139.7598      | 20     | 20          |
| 8591      | 10         | 35.38059     | 139.7604      | 20     | 20          |
| 8621      | 10         | 35.38194     | 139.761       | 20     | 20          |
| 8651      | 10.1       | 35.38324     | 139.7616      | 20     | 20          |
| 8681      | 10.1       | 35.38455     | 139.7622      | 20     | 20          |
| 8711      | 10.1       | 35.38587     | 139.7628      | 20     | 20          |
| 8741      | 10.1       | 35.38715     | 139.7634      | 20     | 20          |
| 8771      | 10.1       | 35.38851     | 139.764       | 20     | 20          |
| 8801      | 10.1       | 35.38981     | 139.7646      | 20     | 19.81818    |

Table 5.19 The target ship 1 information

| Time(sec) | SOG(knots) | Latitude( <sup>9</sup> ) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------------------|---------------|----------|-------------|
| 8141      | 11.3       | 35.37533                 | 139.7862      | 259      | 257         |
| 8171      | 11.38182   | 35.37507                 | 139.7844      | 262.3455 | 259.8182    |
| 8201      | 11.4       | 35.37481                 | 139.7824      | 258.9    | 257         |
| 8231      | 11.4       | 35.37457                 | 139.7805      | 263.1182 | 261         |
| 8261      | 11.4       | 35.37438                 | 139.7786      | 262.9909 | 260.0909    |
| 8291      | 11.4       | 35.37416                 | 139.7767      | 260.3182 | 257.3636    |
| 8321      | 11.3       | 35.37389                 | 139.7747      | 262.3    | 260         |
| 8351      | 11.5       | 35.37373                 | 139.7728      | 265.7    | 263         |
| 8381      | 11.5       | 35.37363                 | 139.7708      | 264.9    | 262         |

Table 5.20 The target ship 2 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 8291      | 13.96667   | 35.38798     | 139.716       | 80.56667 | 76.33333    |
| 8321      | 14.4       | 35.38872     | 139.7183      | 63.9     | 65          |
| 8351      | 14.36      | 35.3897      | 139.7204      | 59.24    | 59          |
| 8381      | 14.2       | 35.39059     | 139.7225      | 70.9     | 74.5        |
| 8411      | 14.1       | 35.39101     | 139.7249      | 83.68571 | 87.14286    |
| 8441      | 14.1       | 35.39107     | 139.7273      | 90.48571 | 92.57143    |
| 8471      | 14.1       | 35.39099     | 139.7297      | 93       | 95          |
| 8501      | 14.2       | 35.39093     | 139.7321      | 90.72857 | 92.42857    |
| 8531      | 14.2       | 35.39099     | 139.7345      | 87.35    | 90          |
| 8561      | 14.2       | 35.39106     | 139.737       | 88.11111 | 89.55556    |
| 8591      | 14.2       | 35.39113     | 139.7394      | 88.53077 | 91          |
| 8621      | 14.1       | 35.39118     | 139.7418      | 87.3     | 88.66667    |
| 8651      | 14.1       | 35.39137     | 139.7441      | 82       | 84.5        |
| 8681      | 14.04286   | 35.39161     | 139.7465      | 85.21429 | 87.57143    |
| 8711      | 14.1       | 35.39175     | 139.7489      | 88.65    | 90.5        |
| 8741      | 14         | 35.39171     | 139.7513      | 92.3     | 93.5        |
| 8771      | 14.07692   | 35.39175     | 139.7537      | 88.15385 | 91.23077    |
| 8801      | 14.05      | 35.3918      | 139.7561      | 88.85    | 92.5        |

As shown in Figure 5.54, at time 8201, the OZT area appears near the own ship route but relative still safety. At time 8381 (Figure 5.55) another OZT area from the target ship 2 emerges on the other side of the ship route. For the own ship, the target ship 2 is the crossing give-way ship, it turns to port and starboard in this period, which is not good for collision avoidance. The own ship slows down which is also relatively not good for collision avoidance in this situation.

# (8) Complex situation IV.

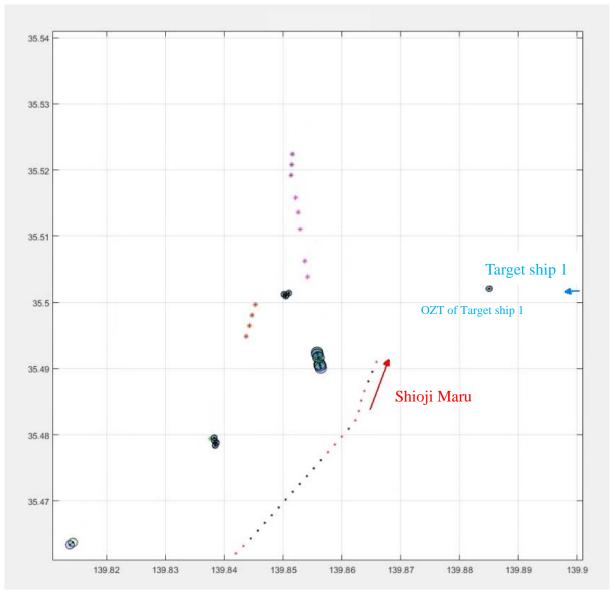



Figure 5.57 Ship encounter situations analysis (Time=12495)

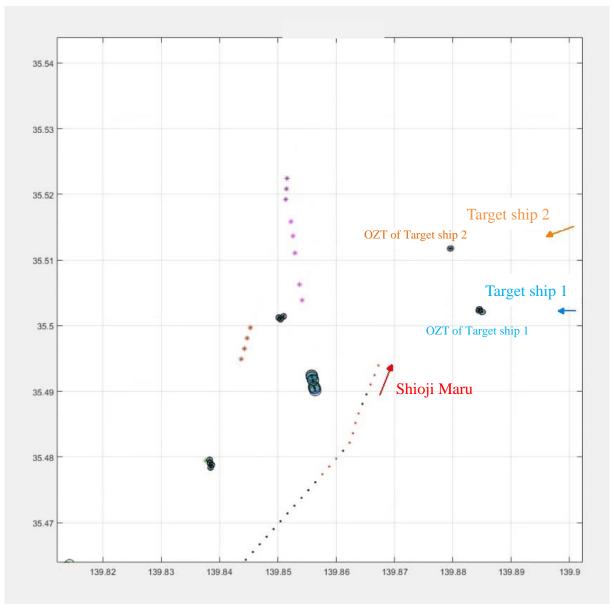



Figure 5.58 Ship encounter situations analysis (Time=12555)

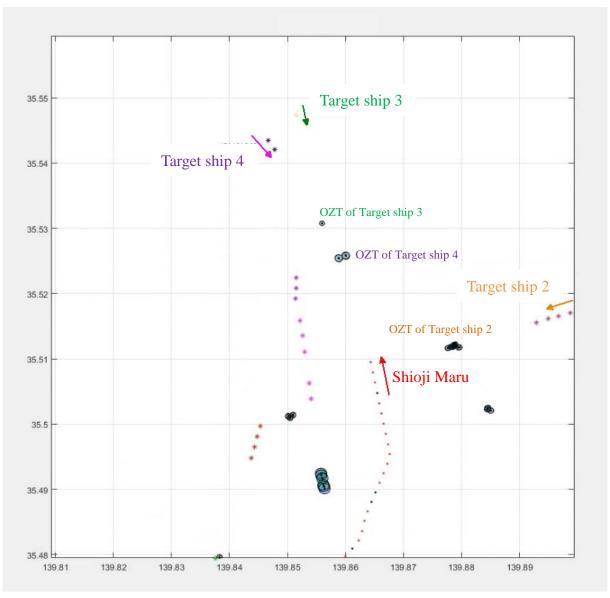



Figure 5.59 Ship encounter situations analysis (Time=12855)

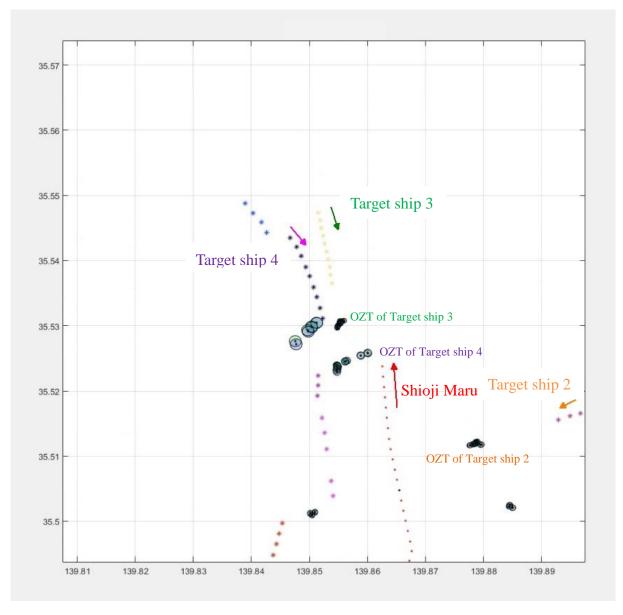



Figure 5.60 Ship encounter situations analysis (Time=13125)

Table 5.21 The own ship information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading(°) |
|-----------|------------|--------------|---------------|----------|------------|
| 12495     | 11.3       | 35.49101     | 139.8659      | 21       | 22         |
| 12525     | 11.3       | 35.49247     | 139.8666      | 19.6     | 20.6       |
| 12555     | 11.3       | 35.49392     | 139.8672      | 20.8     | 21         |
| 12585     | 11.05      | 35.49542     | 139.8676      | 1.5      | 357.5      |
| 12615     | 11.28      | 35.4969      | 139.8674      | 347.2    | 348        |
| 12645     | 11.4       | 35.49852     | 139.867       | 348      | 349.7      |
| 12675     | 11.4       | 35.50007     | 139.8666      | 348.3636 | 350        |
| 12705     | 11.53333   | 35.50162     | 139.8662      | 348.3333 | 349.3333   |
| 12735     | 11.6       | 35.50318     | 139.8658      | 349      | 350        |
| 12765     | 11.5       | 35.50475     | 139.8655      | 349      | 350        |
| 12795     | 11.5       | 35.50637     | 139.8651      | 348.6    | 350        |
| 12825     | 11.5       | 35.5079      | 139.8647      | 349      | 350        |
| 12855     | 11.54      | 35.50949     | 139.8644      | 348.4    | 349.8      |
| 12885     | 11.57273   | 35.51103     | 139.864       | 349.2727 | 350.2727   |
| 12915     | 11.54      | 35.51264     | 139.8637      | 353.4    | 355        |
| 12945     | 11.52727   | 35.51427     | 139.8635      | 354      | 355        |
| 12975     | 11.5       | 35.51589     | 139.8634      | 354.6    | 355        |
| 13005     | 11.5       | 35.51743     | 139.8632      | 355      | 354.7273   |
| 13035     | 11.46      | 35.51902     | 139.863       | 355      | 354.6      |
| 13065     | 11.3       | 35.52057     | 139.8629      | 354.2727 | 354.5455   |
| 13095     | 11.3       | 35.52219     | 139.8627      | 355      | 354        |
| 13125     | 11.4       | 35.52376     | 139.8626      | 355.3333 | 356        |

Table 5.22 The target ship 3 information

| Time(sec) | SOG(knots) | Latitude( °) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------|---------------|----------|-------------|
| 12855     | 8.781818   | 35.5474      | 139.8515      | 167.6    | 165.1818    |
| 12885     | 8.7        | 35.54621     | 139.8518      | 169.54   | 167.8       |
| 12915     | 8.8        | 35.545       | 139.8521      | 169.8444 | 167.1111    |
| 12945     | 8.72       | 35.54381     | 139.8523      | 168.28   | 168         |
| 12975     | 8.71       | 35.54261     | 139.8526      | 169.13   | 167.1       |
| 13005     | 8.816667   | 35.54141     | 139.8529      | 169.8167 | 168         |
| 13035     | 8.89       | 35.54021     | 139.8532      | 169.79   | 167.9       |
| 13065     | 8.9        | 35.539       | 139.8535      | 172.0333 | 170         |
| 13095     | 8.9        | 35.53777     | 139.8537      | 172.92   | 172         |
| 13125     | 9          | 35.53654     | 139.8538      | 173.35   | 171.1667    |

Table 5.23 The target ship 4 information

| Time(sec) | SOG(knots) | Latitude( <sup>9</sup> ) | Longitude( °) | COG(°)   | Heading( °) |
|-----------|------------|--------------------------|---------------|----------|-------------|
| 12855     | 12.1       | 35.54066                 | 139.8486      | 158.16   | 159.7       |
| 12885     | 12.08      | 35.53905                 | 139.8493      | 159      | 160         |
| 12915     | 12.02727   | 35.53756                 | 139.8501      | 159.0455 | 162.1818    |
| 12945     | 12         | 35.53594                 | 139.8507      | 164.7    | 165.8       |
| 12975     | 12.1       | 35.53437                 | 139.8512      | 164.3545 | 165.7273    |
| 13005     | 12.1       | 35.53271                 | 139.8518      | 165.1    | 166         |
| 13035     | 12.1       | 35.53113                 | 139.8523      | 166.1182 | 166         |
| 13065     | 12.1       | 35.52949                 | 139.8528      | 165.54   | 166         |
| 13095     | 12.02727   | 35.52787                 | 139.8533      | 165.2273 | 166         |
| 13125     | 12         | 35.52623                 | 139.8538      | 165.7    | 166         |

From Figure 5.57, at time 12495, the OZT area of the target ship 1 appears near the own ship route, the own ship begins to turn to port. After taking action for the target ship 1, at time 12555 (Figure 5.58), another OZT area of the target ship 2 appears along the own ship route. Consequently the own ship turns to port severely. However, at time 12855 (Figure 5.59), two OZT areas appear near the own ship route, from the target ship 3 and the target ship 4. Comparatively speaking, the OZT area from the target ship 4 has collision risk if takes no actions. The own ship and both the target ships turn to starboard to avoid collision. At time 13125 (Figure 5.60), all the ships pass safely.

#### **CHAPTER VI Conclusions**

- (1) From the five days data, the two densely-distributed OZT areas are mainly in 139.81 \mathbb{E}-139.86 \mathbb{E}, 35.41 \mathbb{N}-35.49 \mathbb{N} and 139.83 \mathbb{E}-139.89 \mathbb{E}, 35.47 \mathbb{N}-35.58 \mathbb{N}. The safety area is mainly in 139.75 \mathbb{E}-139.81 \mathbb{E}, 34.98 \mathbb{N}-35.09 \mathbb{N}.
- (2) The dangerous area proposed along with the Tokyo Bay traffic controlled area can cover most of the relative dangerous ship encounter situations of the Shioji Maru.
- (3) From the own ship route's respect, when the Shioji Maru reaches the areas in 139.845 \mathbb{E}-139.870 \mathbb{E}, 35.538 \mathbb{N}-35.557 \mathbb{N} and 139.850 \mathbb{E}-139.880 \mathbb{E}, 35.480 \mathbb{N}-35.518 \mathbb{N}, the own ship has maximum probability estimation to meet with relative dangerous ship encounter situations.
- (4) The distance between the own ship and the OZT areas is mainly distributed in from 0.8 nm to 1.7 nm on April 27th, from 0.4 nm to 1.4 nm on May 11th, from 0.7 nm to 1.5 nm on May 25th, from 0.7 nm to 1.5 nm on June 8th, from 0.6 nm to 1.5 nm on June 15th. The generally distributed distance between the own ship and the OZT areas is from 0.6 nm to 1.5 nm.
- (5) The relative bearing between the own ship and the OZT areas is mainly distributed in Port 20 °-60 ° and Starboard 20 °-60 ° on April 27th, Port 20 °-60 ° and Starboard 30 °-60 ° on May 11th, Port 20 °-60 ° and Starboard 20 °-60 ° on May 25th, Port 20 °-60 ° and Starboard 20 °-60 ° on June 8th, Port 20 °-60 ° and Starboard 30 °-60 ° on June 15th. The generally distributed relative bearing between the own ship and the OZT areas is Port 20 °-60 ° and Starboard 20 °-60 °.
- (6) The safety area of the Shioji Maru which no OZT data intrudes into in five days is an ellipse, with the major semi-axis is 0.9 nm and minor semi-axis is 0.09 nm.
- (7) From the statistic of relative dangerous ship encounter situation, the port crossing account for a much greater portion, while there is no continuous dangerous head-on situation appears from these five days data statistics. The navigator of the Shioji Maru either takes the collision avoidance actions earlier and finds a safety route to ensure navigation safety or

changes the original dangerous head-on situation to crossing situation, those are the reasons no continuous dangerous head-on situation appears. For the higher proportion of port crossing, 50 percent of the continuous dangerous port crossing situations occur in the traffic control areas in Tokyo Bay when the Shioji Maru enters the port.

- (8) From the navigation characteristics analysis using the OZT theory, the navigator of the Shioji Maru takes the good collision avoidance actions in almost all cases. The navigator of the Shioji Maru is of good maneuvering and ship operation behaviors.
- (9) In conclusion, the OZT theory is an effective way for ship collision avoidance and the OZT theory can help the navigators to be aware of collision risks as well as improve the navigators' collision avoidance maneuvering.

#### **ACKNOWLEDGEMENTS**

Firstly, I would like to express my sincere gratitude to my supervisor Professor Shoji Ruri for the continuous support of my life, studying and related research in Japan, for her care, patience, motivation, aspiring guidance, enthusiastic encouragement, insightful comments and immense knowledge. She helps me, concerns and supports me like a mother. She has taught me, both consciously and unconsciously. I still remember those afternoons talking about the toughness in life and problems encountered in the research. I appreciate all her contributions of concerns, patience and precious time. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study. I feel great honored to be one of your students.

Besides my supervisor, I would like to thank Professor Nishizaki Chihiro and Professor Kayano Jun for their guidance in programming and useful suggestions on the research. Special thanks are given to Ms. Sato Mari for AIS data she has provided.

In addition, I am grateful to my tutors, Kim Hyungi for his help in studying, research and daily life. Also, I take this opportunity to express gratitude to the labmates Ooie Shunpei, Miyaji Kai, Kato Akihiro, Takuya Shimada and Kadowaki Gen who made my master experience something special and colorful.

Last but not the least, I would also like to thank my parents for supporting me throughout and unfailingly. You are always there for me.

#### **BIBLIOGRAPHY**

- [1] AIS CLASS A SHIP STATIC AND VOYAGE RELATED DATA. Retrieved June 29, 2017, from: https://www.navcen.uscg.gov/?pageName=AISMessagesAStatic.
- [2] AIS AUTOMATIC IDENTIFICATION SYSTEM. Retrieved June 29, 2017, from: http://www.bluebird-electric.net/AIS\_automatic\_satellite\_ship\_identification\_system.htm.
- [3] J-Marine GIS Implementation Example. Retrieved June 29, 2017, from: http://www.jrc.co.jp/eng/casestudy/case0002/index.html.
- [4] R. Shoji, F. Kitazawa and H. Nishiyama, "Construction of Advanced Navigation System," 2012 Fifth International Conference on Emerging Trends in Engineering and Technology, Himeji, 2012, pp. 276-280.
- [5] H. Imazu. Computation of OZT by using Collision Course. Japan Institute of Navigation (188):2014.4. 78-81 ISSN 0919-9985.
- [6] Mercator projection. Retrieved June 29, 2017, from: https://en.wikipedia.org/wiki/ Mercator\_projection.
- [7] W. Zhe. The Research on Automatic Collision Avoidance for Unmanned Surface Vessel (2013). Dalian Maritime University.
- [8] K. Hasegawa, J. Fukuto, R. Miyake, M. Yamazaki: An Intelligent Ship Handling Simulator with Automatic Collision Avoidance Function of Target Ships, Proc. International Navigation Simulator Lecturers Conference, (INSL17), pp.F23-1-10, Rostock, Germany, Sep. 3-7, 2012.
- [9] J. Fukuto, H. Imazu, New collision alarm algorithm using obstacle zone by target (OZT), IFAC Proceedings Volumes, Volume 46, Issue 33, 2013, Pages 91-96, ISSN 1474-6670.
- [10] K. Kumagai, T. Mochida, Y. Tanaka and J. Kayano, "Basic Study on Analyzing of Maneuvering for Avoiding Collision in the Congested Sea Area where Many Ships are Crossing by Using OZT," 2012 Fifth International Conference on Emerging Trends in Engineering and Technology, Himeji, 2012, pp. 270-275.
- [11] AIS stands for Automatic Identification System. Retrieved June 29, 2017, from: https://www.easyais.com/en/ais-information/what-is-ais/.

- [12] X. Yixing, HU Li, ZHOU Hong, WANG Leyu. Research on arithmetic of coordinates transformation in ECDIS. Journal of Engineering Design, 2003, 10(5):299-302.
- [13] Safety Tokyo Bay. Retrieved June 29, 2017, from: http://www6.kaiho.mlit.go.jp/tokyowan/info/stb/stbEng.pdf.
- [14] COLREGs Course. Retrieved June 29, 2017, from: http://www.ecolregs.com/index.php? option=com\_k2&view=item&layout=item&id=109&Itemid=359&lang=en.
- [15] TYPES OF AUTOMATIC IDENTIFICATION SYSTEMS. Retrieved June 29, 2017, from: https://www.navcen.uscg.gov/?pageName=typesAIS.
- [16] CLASS A AIS POSITION REPORT. Retrieved June 29, 2017, from: https://www.navcen.uscg.gov/?pageName=AISMessagesA.
- [17] H. Imazu. Evaluation Method of Collision Risk by Using True Motion. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 11, No. 1, pp. 65-70, 2017.
- [18] J. Kayano and H. Imazu, "A study of a collision avoidance support system," 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, 2009, pp. 244-249.
- [19] J. Kayano, H. Imazu, C. Nishizaki and K. Murai, "A study on analysis of characteristics of ships navigators' look-out by using OZT," 2015 10th System of Systems Engineering Conference (SoSE), San Antonio, TX, 2015, pp. 274-279.
- [20] H. Imazu, J. Fukuto and M. Numano, "Obstacle Zone by Target and its Expression", Journal of Japan Institute of Navigation, Vol. 107, pp. 191-197, 2002.