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 ABSTRACT 
 

Sediment transport in the coastal environment usually occurs under the combination 

influence of various hydrodynamic processes. It is important to understand these 

sediment transport processes, for the purpose of coastal defense, for the design of 

various types of coastal structures, for the solution of sedimentation problems in the 

near shore zone. Hence, an accurate estimation of sediment flux is of great importance 

for understanding sediment transport processes under numerous conditions. While 

despite its importance, there are few effective instruments and techniques that can 

quantify sediment flux precisely with high temporal and spatial resolution. 

In this study, an improved sediment flux measurement system was developed. It 

consists of two image-based techniques respectively for sediment concentration and 

transport velocity measurement. Motion images of sediment particles in target flow are 

recorded by a high-speed camera at a large frame rate with an electro luminescence 

sheet as a backlight source. The stroboscope is synchronized with the camera through a 

time delay generator at half of the frame rate. Thus, normal (backlight only) and strobe-

illuminated images are alternatively obtained at half of the camera frame rate. Sediment 

concentration is estimated from the normal images using pre-calibrated relationship on 

the basis of the Lambert-Beer law. By applying PIV technique to each set of the normal 

and strobe-illuminated motion images, two different results of sediment particle 

velocities are obtained. Sediment flux then can be figured up by multiplying the 

concentration and velocity at respective locations. 
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Verification tests show that the improved system is successful in measuring sediment 

transport of high concentration. It is confirmed that highly concentrated sediment denser 

than 190 g/l in the path length of 1.5cm could be measured accurately, far more than 

existing measurement system. Limitation in the factor of light attenuation of the existing 

system has been broken through in the improved system.  

Laboratory experiment of sediment transport in the swash zone under dam-break waves 

was carried out. 20 dam-break bores were generated in total to investigate the 

hydrodynamics of a moveable fine sand beach under discrete swash event. A laser 

distance measurement system was used for determining the bed profile variation. The 

improved sediment flux measurement system was applied for study the sediment 

transport process. Temporal and spatial distribution of sediment concentrations, 

transport velocities and sediment transport rates were obtained by the light extinction 

method and a special designed MATLAB-based PIV program, including multiple pass 

cross-correlation interrogation algorism, parabolic peak fit method, normalized local 

outlier detection technique and PCHIP interpolation process.  

It is found that the wave down rush period is much longer than the up wash and sand 

bed close to the toe is eroded significantly while the further bed is accreted. Variation of 

the initial profile slowed down and turned out to be not proportional to the number of 

dam-break waves but it did not achieve equilibrium even until 20 waves scouring. 

Vertical distribution of horizontal velocity shows that the velocity profiles have a 

typical shape of the turbulent flow close to the bed and the velocity gradients decayed 

during the wave run up while increased along with the rush down and it decreased again 

in the final stage of wave reverse. Sediment concentration and transport rate decreased 
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with the increase of elevation. Differences among elevations were extremely different 

and it is expected to be further illustrated. Sediment transport close to the bottom is 

regarded as the dominant role of bed profile change. 
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 Chapter1. Introduction 

1.1Overview of sediment transport  

Approximately 44% of the world‟s population lives within 150 km of coastal line 

(Syvitski et al., 2005). Due to the continually growing of large cities, harbors, port 

facilities, waterways, railroads, more and more of the world‟s people are migrating to 

the coastal regions. 

Coastal regions have major implications for human beings, while it is also facing with 

many natural and human-induced environmental problems. One of the most important 

issues is the coastal morphologies. Changes of the coastal morphologies are of great 

importance not only to the residents but also to the nature eco-systems in the coastal 

regions. The strip of land along the seashore can be classified into rocky coasts and 

sandy beaches according to the land-forming materials (Kiyoshi et al., 1988). Coastal 

morphologies are highly dynamic. The behavior of coastal may be studied over a range 

of scales, both temporal and spatial, which vary from grain to grain interactions over 

seconds to the scale of shoreline evolution over centuries (Masselink and Kroon, 2009).  

The beach form can be reshaped by earthquake, tsunami, storm events drastically in 

several minutes, also may be transformed by tides and waves gradually in a time scale 

of years or even centuries. In addition, it is associated with coastal engineering 

constructions closely.  

Fig. 1-1 illustrates the behavior of coastal morphological changes in the near shore zone. 

All of the elements impact on each other intensively and cannot be analyzed isolated. 
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One important factor of the coastal morphologies is sediment transport. It is defined as 

the movement of solid particles caused by the gravity acting on the particles and the 

force of moving fluid imparted. It occurs in natural systems such as rivers, lakes, oceans, 

where the particles can be sand, gravel, mud or clay. The ability of a particle to move is 

then related to shear stresses, frictional forces, water depth, and specific weight.   

Sediment transport in the near shore region is usually divided into cross-shore and long 

shore by direction. Cross-shore transport is mainly produced by wave orbital motion, 

whereas long shore transport is primarily associated with wave-induced long shore 

currents. The long shore transport is considered as a chief mechanism for long term of 

beach evolution, while the cross-shore transport is related to the short term changes.  

Fig. 1-2 illustrates the transition of sediment transport mode in the littoral zone. There 

are several classification methods of sediment transport mode in the littoral zone. A 

generally acceptable classification method is dividing sediment transport modes into 

wash load, suspended load and bed load, based on the transport mechanism. The wash 

load consists of very fine particles which are transported by water and normally they are 

Figure 1-1 Nearshore zone morphodynamic system (Masselink and Puleb, 2006) 
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not represented in the bed. Therefore, it is usually neglected when we calculate or 

simulate the total sediment discharge. There are no precise definitions of suspended load 

and bed load as there is no clear boundary between them. Roughly speaking, the 

suspended load is the sediment that is moving without continuous contact with the bed, 

and the sediment particles follow the motion fluid very well. The bed load is defined as 

the sediment that is in more or less continuous contact with the bed during the transport. 

In the bed load transport mode, inter-particle forces play an important role. Sediment 

transport in the coastal region makes an important contribution to the morphologic 

change and it is essential to understand the process well. 

1.2 Overview of sediment flux measurement  

Sediment transport is a complex process and development of suitable methods for 

sediment transport measurement that contribute to understanding the process is a still-

evolving science. Generally speaking, sediment transport may be envisioned either as a 

rate or as a concentration. In respect of sediment transport rate, sediment flux is used for 

defining the transport rate, which has a unit of mass per unit time or volume per unit 

time (e.g., kg/s or m
3
/s). In which, sediment concentration and transport velocities are 

usually measured simultaneously for describing the sediment transport rate. Sediment 

flux and the concentration and velocity have the relationship as follows:                                                              

                                   
dydzcuQ s

(1-1) 

where Q is sediment flux, c is sediment concentration, us is sediment transport velocity. 

Once the sediment concentration and transport velocities are measured, sediment flux 

can be calculated through the above equation. 
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Various kinds of measurement instruments have been developed for both laboratory 

experiments and field survey in order to provide insight into the sediment transport 

process. The first method developed is manual sampling of suspended sediment and 

analyses of characteristics of the material collected. Grab sampling, pump sampling, 

isokinetic sampling and other manual sampling methods are still popular in field 

Figure 1-2 Cross-shore sediment transport modes (Asano, T. etc., 2000) 
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surveys nowadays (e.g. Bothner and Valentine, 1982; Lewis, 1996; Dark and Allen, 

2005; Yang, 2008). Generally, these instruments are reliable and accurate and remain a 

reference for calibration of other methods, while temporal resolution of these 

instruments is usually limited by available manpower or instrument operating time. And 

these instruments are flow intrusive and laboratory analysis is necessary to determine 

sediment concentration and particle characteristics. 

Over the last three decades, the application of acoustics (Hanes et al., 1988; Hay and 

Sheng, 1992; Thorne and Hardcastle, 1993, 1995, 1997; Thosteson and Hanes, 1998) 

and optics (Downing et al., 1981; Ludwig and Hanes, 1990; Sternberg et al., 1991; Bunt 

et al., 1999; Agrawal and Pottsmith, 1993, 1994, 2000) to the measurement of sediment 

transport, especially small scale sediment process have been gaining increasing 

acceptance. Because some of the acoustics and optics measurement instruments have 

the potential to measure non-intrusively, with high temporal and spatial resolution, 

profiles of suspended sediment size and concentration, profiles of flow, and the bed 

form morphology. Thorne and Hanes (2006) gave an intensive review of acoustic 

measurement, including the principle, calibration and illustrations. And a series of 

experiments, both in coastal zone and laboratory flumes have been conducted to 

simultaneously and non-intrusively measure seabed morphology, the suspended 

sediment particle size, concentration profile, and the velocity profile with required 

resolution, based on acoustic instruments such as Acoustic or Ultrasonic Sand Transport 

Meter (AUSTM), Acoustic Sand Transport Monitor (ASTM), UHCM-instrument (e.g. 

Libicki et al., 1989; Lynch et al., 1991; Traykovski., 1999). In respect of optical 

measurement methods, optical backscatter sensor (OBS) is the most widespread 
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instrument. Since the first OBS introduced by Downing et al. (1981), many OBSs have 

been developed to estimate sediment concentration and fluid turbidity for studying of 

sediment transport. Various OBSs are desired for satisfying different research 

conditions, while the principles of all OBSs are same. Downing (2006) discussed the 

features of OBSs in detail, including the principle, advantages and shortages. Optical 

Laser diffraction point sensor (LISST) is another optic based instruments. Various 

LISSTs are commercially available for measure the particle size and concentration of 

suspended sediments. Although numerous acoustic and optical measurement 

instruments have been developed to study the sediment transport, and they contribute us 

to understand the sediment process indeed, there are still many factors influence the 

acoustic and optical measurements. One critical problem is that both of the acoustic and 

optical instruments are strong particle size dependent, which brings significant troubles 

for the calibration and measurement (Ludwig and Hanes, 1990; Conner and Devisser, 

1992). For homogeneous sediments, most acoustic and optical sensors response to 

varying concentrations of them is nearly linear, whereas in reality, sediments are usually 

mixture of mud, clay, sand and rocks. In these cases, acoustic and optical sensors are 

likely to give large errors. In addition, backscattering signal do not response to the small 

changes of concentration at high and low particle concentrations in regard to some 

sensors.  

Other measurement instruments such as nuclear sensor (Berke and Racozai, 1981) and 

conductivity sensor (O‟Donoghue and Wright) have also been developed for studying 

sediment transport, while these instruments are not widely used in laboratory study and 
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field survey for some reasons. A conclusion of various measurement instruments, 

including operating principles, advantages and disadvantages are given in Table 1-1.  

Recent years, visualization techniques are appealing to more and more scientists and 

engineers with their obvious merits. High-speed cameras are utilized in various 

sediment transport experiments and numerous post-processing methods have been 

developed for data analysis (e.g. Liu and Sato, 2005; Radice et al., 2006; Shimozono et 

al., 2013). It is possible to study sediment process without disturbing the target flow as 

they are virtually non-intrusive techniques, and temporal and spatial distribution of 

sediment flux can be obtained at high resolution by image techniques, which contributes 

to the verification and calibration of numerical models very much.  

As for sediment transport velocity, few of the above–mentioned instruments are able to 

measure sediment concentration and particle velocities simultaneously. More commonly, 

acoustic Doppler velocimeters (ADV), laser Doppler velocimeters/anemometry 

Table 1-1 sediment measurement techniques 
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(LDV/LDA), ultrasonic velocity profilers (UVP) and particle image velocimetry (PIV) 

are employed in sediment transport experiments combined with various sediment 

concentration measurement instruments to estimate sediment flux (e.g. Dick and Sleath, 

1991, 1992; Ribberink and Alsalem, 1995; O‟Donoghue and Wright, 2004). Among 

these velocity instruments, PIV is considered as the most promising method because it 

is non-intrusive with high temporal and spatial resolution. In addition, ADV and 

LDV/LDA have more limitations and difficulties compared with PIV. For example, 

these instruments are usually performed terrible in high sediment concentration 

conditions.       

In summary, all of the measurement methods have their own specialties and shortages. 

Careful consideration is necessary according to different research objectives and 

complex experimental conditions before selecting suitable instruments for studying 

sediment transport.        

1.3 Motivation and objective of the study 

Up to now, numerous laboratory experiments have been conducted to measure sediment 

concentration and transport velocities on the basis of the above-mentioned instruments, 

while there are few simple instruments can simultaneously measure concentration and 

velocities with high spatial and temporal resolution. Shimozono et al. (2008, 2013), 

Masame (2013) developed an image-based technique that is cable of measuring 

sediment concentration and transport velocities simultaneously. A light extinction 

method was used to measure sediment concentration, and PIV analysis was employed to 

measure transport velocities. It can measure sediment flux with an error of no more than 

10% when the sediment concentration is not very high, while in dense conditions, they 
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found that the disappearance of traceable pattern due to the rising concentration made 

the PIV analysis break down. Therefore, the system could only measure sediment flux 

in a certain concentration range. The current study is on the basis of their work. In this 

study, we focus on extending the existing measurement system for sediment transport of 

much higher concentration and try to apply the improved measurement system to flume 

experiments. 

1.4 Outline of the thesis 

General introduction of sediment transport and measurement methods for sediment 

transport are given in chapter 1. Merit and demerit of various velocity and concentration 

measurement methods for sediment transport are compared in this chapter. 

Improved image-based sediment flux measurement system is presented in chapter 2. 

Measuring principles of the improved system are descripted in detail and measuring 

range of sediment concentration is discussed based on amounts of results in different 

calibration conditions.  

Chapter 3 presents the verification tests for the sediment flux measurement system. It 

includes the determination of the measuring limit of the previous system and validation 

tests of the improved system. 

Laboratory study of sediment transport in the swash zone under dam-break waves is 

introduced in chapter 4. Measurements of the experiments were on the basis of the 

improved system.  

Conclusions of present study and some future plans are given in chapter 5. 
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Chapter2. Improved image-based sediment 

flux measurement system 

2.1 Introduction 

Shimozono et al. (2012) developed the original image-based sediment flux measurement 

system. Sketch of the measurement system is given in Fig. 2-1. An electro luminescence 

sheet (EL-Sheet) was set in the target flow as a backlight source to illuminate the 

sediment particles, which is a planar lighting device with a brightness of 300 cd/m2 and 

central wavelength of 510-520 nm. The EL-Sheet acts like a stiff paper and can be 

placed in water without disturbing the target flow significantly, as its thickness is only 

about 0.5mm. Motion images of sediment particles in target flow were recorded by a 

high-speed camera, and sediment concentration and transport velocities were measured 

from the recorded images. Two image-based techniques respectively for concentration 

and velocity measurements were employed in the measurement system. Sediment 

concentration is estimated form a pre-calibrated relationship with light attenuation 

through water volume containing sediment particles. Transport velocities were 

Figure 2-1 Sketch of the image-based measurement system (Shimozono et al., 2013) 
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simultaneously measured by PIV technique in the same image. Thus, spatial distribution 

of sediment fluxes could be obtained by simply multiplying the sediment concentration 

and transport velocity at respective locations. For low sediment concentrations, the 

system performed well with a measuring error no more than 10%. While they found that 

when the concentration is high, the rising concentration will make the traceable pattern 

disappear from the recorded images, which is essential for PIV analysis. Therefore, 

sediment fluxes cannot be successfully measured in those cases.  

In order to overcome the difficulties of velocity analysis in the previous system, several 

new instruments were applied in the improved measurement system. Fig. 2-2 

illuminates the side view of the improved system. Similar with the previous 

measurement system, there is an electro EL-Sheet set in the target flow as a backlight 

source. A high-speed CMOS camera (IDT Inc., M3) is employed to record motion 

images of sediment movement with a maximum resolution of 1280×1024 pixels. As 

mentioned above, PIV analysis will break down caused by the disappearance of the 

traceable patterns in the recorded images when the concentration is high. The reason is 

that light from the EL-sheet cannot pass through the flow due to a huge amount of 

sediment particles in that case. Therefore, a stroboscope (Nissin Electronic CO., Ltd., 

JX612, 0.3J/F, exposure time is 15-30µs，maximum frequency is 200Hz) is set in front 

of the experimental flume as an additional light source to illuminate the highly 

concentrated sediments. Synchronized by a time delay generator (Stanford Research 

Systems, Inc., DG645), the stroboscope is controlled to give out light at half of the 

camera frequency. Thus, normal (backlight only) and strobo-illuminated images are 

alternatively obtained at the same frequency. Examples of instantaneous normal and 
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strobo-illuminated images are shown in Fig. 2-3. Normal images can be used for 

concentration measurement and strobe-illuminated images are for velocity analysis.  

Once sediment concentration and transport velocity can be obtained simultaneously, 

sediment flux then can be deduced from Eq. 1-1. In short, this chapter will describe the 

image-based concentration and velocity measurement techniques in detail.    

Figure 2-3 Instantaneous images obtained by the improved measurement 

system 

Figure 2-2 Side view of the improved image-based measurement system 
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2.2 Sediment concentration measurement   

2.2.1 Principle of concentration measurement  

The current study utilizes a light extinction method developed by Shimozono et al. 

(2008) to measure the sediment concentration on the basis of the Beer-Lambert law. The 

law states that there is a logarithmic dependence between the light transmissivity and 

the product of the absorption coefficient of the substance, and the path length. It can be 

written as follows: 

                                                   lA ext                                            (2-1) 

                                                                
0

log
I

I
A 

                                               (2-2) 

                                              ext
s

ext NQ
d

4

2
                                   (2-3) 

where A is the light attenuation. σext is the attenuation coefficient. l is the path length 

that stands for the distance the light travels through the material. I0 and I are initial light 

intensity of the EL-sheet and detected light intensity after the presence of sediment 

particles respectively. ds is the particle diameter and N is the particle number density. 

Qext is the absorption coefficient related to the substance the light travel through.  

The particle number density can be transformed into mass concentration as:                                                                                                 

                                           3

6

sd

c
N




                                                (2-4) 
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where c, ρ, ds are concentration, sediment density and particle diameter separately. Then 

(2-1) can be written as follows by substituting Eq. 2-3 and Eq. 2-4 into the equation, 

                                   
s

ext
d

cl
QA

2

3


                                        (2-5) 

Since light attenuation can be obtained from the recorded images, given l, ρ, ds, 

sediment concentration can be deduced from the light attenuation according to Eq. 2-5 if 

the factor of Qext could be determined. The schematic diagram of concentration 

measurement method is shown in Fig. 2-4. Thus, previous calibration is necessary to 

determine the relationship between the sediment concentration and light attenuation 

(e.g. the factor of Qext).  

 
Figure 2-4 Schematic diagram of concentration measurement 
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2.2.2 Concentration calibration    

In current study, a transparent acrylic container filled with precisely known 

concentration was used for calibration experiment. The setup of calibration experiment 

is illuminated in Fig. 2-5. There was an EL-sheet setting in front of the high-speed 

camera. For each time, the container was filled with a certain amount of silica sand with 

a median diameter of 0.16 mm, and it was shaken by hands to uniform the concentration 

throughout it and immediately placed in front of the EL-sheet. After putting in front of 

the EL-sheet, sediment particles started settling and air bubbles went up swiftly, while 

the concentration still remained uniform and kept constant for a while in the middle 

layer of the container (Fig. 2-6). Meanwhile, the high-speed camera was triggered to 

record the process, and then the transmission intensity could be evaluated from the 

averaged light intensity over the corresponding part of the recorded image. In order to 

cover a wide range of concentration, a serious of concentrations were used in the 

Figure 2-5 Setup of calibration experiment 



16 
 

calibration. Moreover, different containers with the width (path length) of 1.0 cm, 1.5 

cm, 2.0 cm, 3.0 cm, 4.0 cm, 4.5 cm and 5.0 cm were used in the calibration. In each case, 

the procedure was repeated several times to minimize the accidental error. Detailed 

calibration conditions are listed in Table 2-1 and example images of different light 

attenuation are illuminated in Fig. 2-7. Specific calibration results of each path length 

are shown in Fig. 2-8. 

It is easy to find that the relationship between the sediment concentration and light 

attenuation do not satisfy the Beer-Lambert law strictly. This phenomenon is caused by 

strong light scattering when the concentration is very high as the silica sand is non-

absorptive material. And it becomes obvious accompany with the increase of the path 

Figure 2-6 Transparent acrylic container used in calibration 
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length. In the case of path length equals to 1.0 cm, the relationship between 

concentration and light attenuation can keep linear until the concentration exceeds 300 

g/l, while in the case of path length equals to 5.0 cm, the linearity can only maintain 

below 40 g/l in the factor of concentration. Thus, suitable path length should be selected 

according to the practical experimental conditions and light attenuation can be 

converted into concentration on the basis of these calibration results.  

Table 2-1 Experimental conditions of calibration (g/l) 

Container Width  (Path 

Length)
1.0cm 1.5cm 2.0cm 2.5cm 3.0cm 4.0cm 4.5cm 5.0cm

Case1 0 0 0 0 0 0 0 0

Case2 1 1 1 1 1 1 1 1

Case3 2 2 2 2 3 3 2 2

Case4 3 5 5 3 5 5 3 5

Case5 4 10 10 4 10 10 4 10

Case6 5 20 20 5 15 15 5 20

Case7 10 30 30 10 20 25 7 30

Case8 20 50 40 15 30 35 10 40

Case9 30 75 50 20 40 45 15 50

Case10 50 100 75 25 60 55 20 75

Case11 80 125 100 30 80 70 30 100

Case12 100 150 125 40 100 85 40 150

Case13 150 175 150 50 120 100 50 200

Case14 200 200 200 60 150 150 60 300

Case15 250 225 250 80 200 200 80

Case16 300 250 300 100 300 300 100

Case17 350 300 350 150 150

Case18 400 350 200 200

Case19 500 300 300
 

Figure 2-7 Example images of different light attenuation 
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What should be noted is that each calibration curve is conducted on different 

experimental conditions, including the camera aperture size, shutter speed, the distance 

between the high-speed camera and EL-sheet. And for current concentration 

measurement method, measurement range can be adjusted according to different 

research objectives. For example, if we enlarge the camera aperture size, than higher 

concentration range can be measureable but low concentration band will be missed. 

Table 2-2 and Fig. 2-9 illuminate the comparison between large and small aperture sizes 

in the path length of 2.5 and 4.5 cm. It is easy to find that two calibration curves are 

completely different. Therefore, when we employ these calibration curves in laboratory 

experiments, the experimental conditions should be same with the calibration conditions 

in principle. However, making the camera setting same with the calibration conditions 

will limit the flexibility of instruments setup as some laboratory experiments need to 

adjust the aperture size and shut speed of the high-speed camera depending on realistic 

conditions. On account of serious tests, we find that it is not necessary to make sure that 

the laboratory experimental conditions and the calibration conditions are completely 

same. There are two sufficient conditions to ensure that calibration curve can be applied 

in laboratory experiment. One is that the distance from the high-speed camera to the EL-

sheet must be same between the calibration condition and laboratory experimental 

condition. Another one is that the initial light intensity of the EL-sheet must be same 

between the calibration condition and laboratory experimental condition, which can be 

achieved by adjust the aperture size and shut speed. However, for the conditions of large 

aperture size, the camera is overexposure and the initial light intensity maintains in 255 

(maximum value of light intensity) despite the increasing of concentration in a certain 

range (e.g. calibration result of large aperture size in the path 
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length of 2.5cm). In that case, initial light intensity of EL-sheet cannot be used as an 

indicator, while the transparent container used in calibration experiments can be applied 

for adjusting the camera aperture size and shut speed. The method is similar with the 

calibration experiments. After fixing the position of the high-speed camera, the 

transparent container loading with precisely known concentration of sediment is put in 

Table 2-2 Difference of light attenuation between small and large aperture 

size 

Figure 2-9 Difference of light attenuation between small and large aperture size 

concentration (g/l) 0 1 2 3 4 5 7 10 15 20

light attenuation 0.00 0.00 0.01 0.02 0.04 0.07 0.14 0.28 0.49 0.74

concentration (g/l) 0 2 4 10 20 30 40 50 60 70

light attenuation 0.00 0.00 0.00 0.00 0.00 0.18 0.65 1.04 1.41 1.80

concentration (g/l) 25 30 40 50 60 80 100 150 200 300

light attenuation 0.95 1.21 1.62 1.99 2.42 3.03 3.29 3.86 4.21 4.29

concentration (g/l) 80 110 130 150 170 190 220 250 300 350

light attenuation 2.08 2.83 3.19 3.43 3.61 3.75 3.83 3.87 3.86 3.97

concentration (g/l) 0 1 2 3 4 5 7 10 15 20

light attenuation 0.00 0.04 0.13 0.21 0.30 0.38 0.56 0.82 1.25 1.65

concentration (g/l) 0 1 5 8 10 20 30 40 50 60

light attenuation 0.00 0.00 0.00 0.00 0.00 0.78 1.50 2.10 2.69 3.09

concentration (g/l) 25 30 40 50 60 80 100 150 200 300

light attenuation 1.96 2.27 2.89 3.28 3.68 4.08 4.26 4.44 4.41 4.45

concentration (g/l) 70 80 110 130 150 170 190 220 250 300

light attenuation 3.41 3.67 3.98 4.06 4.11 4.18 4.21 4.19 4.19 4.23

small

2.5cm

4.5cm

small

large

small

large

large

Path length
Aperture 

size

small

large
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the experimental location to check the light intensity. Once the light intensity is same 

with the calibration result under the same concentration by means of different 

combinations of aperture size and shut speed, the calibration curve is considered  can be 

used in that experimental condition. Thus, the application of these calibration curves 

become much more flexible and light attenuation can be converted into sediment 

concentration based on the calibration results. 

2.3 Transport velocity measurement  

2.3.1 Principle of particle image velocimetry 

In current study, particle image velocimetry (PIV) is employed to measure the transport 

velocity of sediment. In the following, the basic features of this measurement technique 

will be described briefly. 

The experimental setup of a PIV system typically consists of several subsystems. In 

most applications tracer particles have to be added to the flow. These particles have to 

be illuminated in a plane of the flow at least twice within a short time interval. The light 

scattered by the particles has to be recorded either on a single frame or on a sequence of 

frames. The displacement of the particle images between the light pulses has to be 

determined through evaluation of the PIV recordings. In order to be able to handle the 

great amount of data which can be collected employing the PIV technique, sophisticated 

post-processing is required (Raffel et al., 2007). 

Fig. 2-10 briefly sketches a typical setup for PIV recording in a wind tunnel. Small 

tracer particles are added to the flow. A plane (light sheet) within the flow is illuminated 

twice by means of a laser (the time delay between pulses depending on the mean flow 
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velocity and the magnification at imaging). It is assumed that the tracer particles move 

with local flow velocity between the two illuminations. The light scattered by the tracer 

particles is  recorded via a high quality lens either on a single frame (e.g. on a high-

resolution digital or film camera) or on two separate frames on special cross-correlation 

digital cameras. After development the photo-graphical PIV recording is digitized by 

means of a scanner. The output of the digital sensor is transferred to the memory of a 

computer directly. 

For evaluation the digital PIV recording is divided in small subareas called 

“interrogation areas”. The local displacement vector for the images of the tracer 

particles of the first and second illumination is determined for each interrogation area by 

means of statistical methods (auto- and cross-correlation). It is assumed that all particles 

Figure 2-10 Experimental arrangement for particle image velocimetry 

 



23 
 

within one interrogation area have moved homogeneously between the two 

illuminations. The projection of the vector of the local flow velocity into the plane of 

the light sheet (two-component velocity vector) is calculated taking into account the 

time delay between the two illuminations and the magnification at imaging. 

The process of interrogation is repeated for all interrogation areas of the PIV recording. 

High-speed recording on charge coupled device (CCD) cameras and complementary 

metal oxide semiconductor (CMOS) sensors allows for acquisition in the kHz range. 

The evaluation of one digital PIV recording with several thousand instantaneous 

velocity vectors (depending on the size of the recording, the interrogation area and 

processing algorithm) is of the order of a second with standard computers. If data is 

required at even faster rates for online monitoring of the flow, dedicated software 

algorithms which perform evaluations of reduced precision within fractions of a second 

are commercially available. 

2.3.2 Velocity evaluation of PIV 

From the above description, a summary can be concluded that the PIV is a whole field, 

non-intrusive, indirect velocity measurement technique that can obtain the velocity 

information with high accuracy and temporal and spatial resolution. Basic principle of 

this widely used PIV evaluation method will be introduced in the following. 

For a pair of successive images recorded by high-speed cameras, the most we can hope 

for is to measure the straight-line displacement of the particle images since the curvature 

information between the recording instances is lost. Further, the seeding density is too 

homogeneous that it is difficult to match up discrete particles. In some cases the spatial 
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translation of groups of particles can be observed. The image pair can yield a field of 

linear  displacement vectors where each vector is formed by analyzing the movement of 

localized groups of particles. In practice, this is accomplished by extracting small 

samples or interrogation window and analyzing them statistically (Fig. 2-11). The 

method of choice is to locally find the best match between the images in a statistical 

sense. Usually this is done through the use of the discrete cross-correlation function. 
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Figure 2-11 Conceptual arrangement of samples (interrogation windows) (Raffel et 

al., 2007) 
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The variables G and G' are the samples (e.g. intensity values) as extracted from the 

images where G' is larger than the template G. Essentially the template G is linearly 

„shifted‟ around in the sample G' without extending over edges of G'. For each choice of 

sample shift (x, y), the sum of the products of all overlapping pixel intensities produces 

one cross-correlation value RII(x, y). By applying this operation for a range of shifts (-M 

≤ x ≤ +M, -N ≤ y ≤ +N), a correlation plane the size of (2M+1) × (2N+1) is formed. This 

is shown graphically in Fig. 2-12. For shift values at which the samples‟ particle images 

align with each other, the sum of the products of pixel intensities will be larger than 

elsewhere, resulting in a high cross-correlation value RII(x, y) at this position (Fig. 2-13). 

Essentially the cross-correlation function statistically measures the degree of match 

between the two samples for a given shift. The highest value in the correlation plan can 

then be used as direct estimate of the particle image displacement. As long as the time 

intervals between two successive images are already known, velocities can be calculated 

straightforward.  

Typical PIV is designed for studying flow motions, using the motion of seeding 

particles that match the fluid properties reasonably well to calculate the velocity field of 

the fluid being studied. However, the current system focuses on measuring the velocity 

of sediment rather than fluid, so the sediment particles are assumed traceable particles to 

calculate velocities.  

Because of this, one severe problem occurs in the PIV analysis. As Keane and Adrian 

(1992) demonstrated, PIV requires roughly ten tracer particle images per interrogation 

region to accurately resolve local particle displacement using traditional correlation. If 

the seeding density is low, particle tracking velocimetry (PTV) can be used to follow 
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individual particles but he seeding density itself severely limits spatial resolution as 

particles exist within the interrogation region. At high seeding densities, it becomes 

difficult to match pairs of particle images. In current study, the concentration of 

sediment particles is fluctuating and particle densities in the recording region are 

inhomogeneous. Both low seeding density and extremely high density can occur along 

with the changing of flow in laboratory experiments. Moreover, as the current study 

utilizes an EL-sheet as a light source, traceable pattern will disappear due to the large 

concentration, which makes the PIV analyses break down in the previous measurement 

system. Hence, in order to overcome the problem of velocity analysis, a stroboscope is 

introduced as an additional light source to illuminate the highly concentrated sediment 

particles. Detailed explanation of the function of the stroboscope will be introduced in 

the verification test. 
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Chapter3. Verification tests of the 

measurement system  

In order to check the performance of the measurement system, a serious of verification 

tests were carried out. Firstly, similar verification tests with Masame (2013) were 

conducted to determine the measuring limit of the previous system. And then 

verification tests for the improved system were performed to validate the feasibility in 

measuring highly concentrated sediment flux. 

3.1 Determination of the measuring limit of the existing 

system 

As mentioned above, density of tracer particle is an important factor in the PIV system. 

Either high or low tracer particle density will cause troubles in velocity analysis. 

Masame (2013) indicated that the measurement system would break down when the 

sediment concentration is high, and the factor of light attenuation around 2.5 is regarded 

as the measuring limit of the existing system. For the sake of reifying the measuring 

limit, a sequence of verification tests was carried out. 

3.1.1 Verification tests method 

The configuration of verification tests is shown in Fig. 3-1. An EL-sheet (20×15 cm) 

was stuck on the backside wall of a transparent flume. The model flumes were made of 

acrylics with lengths of 50 cm, heights of 15 cm and different widths. On one side of the 

flume there was a PVC tube connected to tap water, which was used for generating flow. 

Silica sands with median diameter of 0.16 mm were released into model flumes through 

a simple sediment fall device, and the sand would move under the resultant force of the 
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gravity and flow. Thus, the process is similar with sediment suspension. The high-speed 

camera was 30 cm from the model flumes. And by using a lens with fixed 50mm focal 

length, the setup gives a resolution parameter λ=100 um/pixel. The camera was set in an 

fps of 500 to record the movement of the sands. Six model flumes with a width of 1.0 

 

Figure 3-1 Experimental setup of verification tests for determine the 

measuring limit 

Table 3-1 Experimental conditions of verification tests for determine the 

measuring limit 

1 1.5 3 4 5 6

1 4.48g 5.11g 5.28g 5.6g 6.38g 8.1g

1.5 7.12g 7.74g 8.33g 8.62g 10.32g 11.42g

2 4.38g 4.45g 6.1g 6.36g 6.93g 7.09g

3 6.58g 7.13g 7.45g 7.92g 9.41g 9.61g

4 8.12g 9.4g 11.36g 13.8g 14.2g 19.13g

5 11.76g 14.22g 14.3g 15.37g 15.84g 17.07g

case
Path Length(cm)
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cm, 1.5 cm, 2.0 cm, 3.0 cm, 4.0 cm and 5.0 cm separately were used in the verification 

tests. For each model flume, six different weights of sands were released into the flow. 

Detailed experimental conditions of verification tests for determine the measuring limit 

of the previous system is listed in Table 3-1. Examples recorded images of verification 

tests are given in Fig. 3-2. 

3.1.2 Verification tests result 

For each case, several inspection lines were set to measure sediment flux and interval 

between two adjacent inspection lines was 40 pixels. On each inspection line, velocity 

was calculated in a distance interval of 12 pixels. Interrogation widow with a size of 24

×24 pixels were applied in PIV analysis. Mean value of the light intensity of the 

interrogation window was used to calculated the concentration based on the previous 

concentration calibration result. Thus, the overlap between interrogation areas was 50%, 

giving a 47×16 velocity vector grid and concentration grid with a spatial resolution 

between 4.7 mm and 1.6 mm. Therefore, sediment flux can be calculated in every 

inspection line, and calculated result can be used for check the stability and accuracy of 

the measurement system. Example results of velocity and concentration measurement 

are shown in Fig. 3-3 and Fig. 3-4. Detailed result of the verification tests for 

determining the measuring limit of the previous system is illuminated in Table 3-2. 

Result of verification tests draws a similar conclusion with Masame (2013) as follows:  

(1) Sediment flux measurement system performs well when the concentration is not 

very high, usually the errors can be within 10% or even smaller, while it will break 

down when the concentration goer high. By comparing the measured weight in different 
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 inspection lines, the system is considered as highly stable when concentration is not 

high. The main reason for failure is the breaking down of velocity analysis due to the 

missing of traceable pattern at that case (e.g. Fig. 3-3(b)). 
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Figure 3-2(a) Examples recorded images of verification tests (images were 

rotated 90 degrees counterclockwise) 
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 (2) The factor of light attenuation in 2.5 can be regarded as the measuring limit of the 

existing system. In most cases, PIV did well below 2.5 of the factor of light attenuation. 

Otherwise, the measurement system would be inaccurate because there is no reliable 
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Figure 3-2(b) Examples recorded images of verification tests (images 

were rotated 90 degrees counterclockwise) 
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velocity result. When the light attenuation exceed 2.5, precise velocity result is difficult 

to obtain even using large interrogation window or other post-processing methods (e.g. 

multiple iteration cross-correlation method) for PIV.  

(3) Measuring range will narrow down along with the increasing of the path length. In 

the section of concentration calibration, it has been indicated that the relationship 

between concentration and light attenuation is not always linear. The relation curve 

levels off after the sediment concentration reaches a critical value. This critical value 

will decrease along with the increasing of the path length, which lead to the decreasing 

of measurable range of concentration. Moreover, because of the short distance between 

the light source and the high-speed camera in small path lengths, traceable patterns will 

disappear in a higher concentration than large path lengths.     

Figure 3-3(a) Example results of velocity and concentration 

measurement for determining the measuring limit 

Path length=2cm case3 

frame index=1071 
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Figure 3-3(b) Example results of velocity and concentration measurement for 

determining the measuring limit 

Path length=3cm case3 

frame index=2014 

Path length=4cm case6 

frame index=1294 
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 (4) Sediment flux measurement system will be unstable when the path lengths are too 

large (e.g. path length=4.0cm). One reason is that the large path length makes the 

traceable patterns disappear in a low concentration. Another reason is that the flow is 

Measured 

weight
Error(%)

Measured 

weight
Error(%)

Measured 

weight
Error(%)

Measured 

weight
Error(%)

Measured 

weight
Error(%)

4.48 4.62 3.19 4.66 3.91 4.59 2.46 4.67 4.17 4.67 4.17

5.11 5.35 4.76 5.36 4.97 5.21 2.02 5.28 3.32 5.32 4.10

5.28 5.35 1.42 5.37 1.75 5.57 5.42 5.54 4.89 5.37 1.61

5.6 5.77 3.07 5.71 2.05 5.89 5.18 5.8 3.60 5.81 3.82

6.38 6.59 3.22 6.66 4.33 6.62 3.76 6.58 3.07 6.6 3.43

12.1 10.03 -17.19 9.82 -18.93 9.64 -20.41 9.91 -18.18 10.12 -16.45

7.12 7.25 1.81 7.24 1.64 7.28 2.23 7.31 2.72 7.22 1.42

7.74 7.97 2.94 7.67 -0.91 7.49 -3.25 7.68 -0.74 7.73 -0.17

8.33 8.5 2.08 8.63 3.55 8.62 3.49 8.66 3.99 8.62 3.52

8.62 8.43 -2.23 8.5 -1.36 8.8 2.12 8.56 0.71 8.35 -3.15

10.32 10.71 3.78 10.78 4.47 10.68 3.53 10.8 4.68 10.75 4.14

15.42 12.13 -21.34 12.04 -21.92 11.03 -28.47 12.44 -19.33 11.57 -24.97

4.38 4.64 3.00 4.66 6.49 4.66 6.49 4.74 8.21 4.56 4.18

4.45 4.69 5.43 4.85 8.98 4.76 7.03 4.78 7.38 4.84 8.77

6.1 6.41 5.07 6.14 0.69 6.4 4.85 6.12 0.41 6.13 0.44

6.36 6.49 2.04 6.73 5.82 6.65 4.53 6.72 5.64 6.6 3.79

9.93 7.41 -25.38 8.02 -19.23 7.37 -25.78 7.11 -28.40 7.6 -23.46

12.09 9.7 -19.77 8.72 -27.87 10.17 -15.88 9.64 -20.26 10.32 -14.64

6.58 7.16 8.77 6.85 4.08 6.88 4.59 7.1 7.94 6.98 6.06

7.13 6.85 -3.88 6.91 -3.05 7.75 8.71 7.35 3.10 7.02 -1.52

7.45 7.54 1.24 7.61 2.11 7.59 1.88 7.54 1.18 7.51 0.77

7.92 8.4 6.10 8.39 5.93 8.46 6.83 8.49 7.19 8.51 7.51

13.41 11.81 -12.00 11.67 -13.04 10.62 -20.86 10.68 -20.42 12.52 -6.71

19.61 16.11 -17.85 15.81 -19.38 15.93 -18.77 16.85 -14.07 15.98 -18.51

8.12 8.56 5.36 8.43 3.82 8.7 -0.68 8.1 -0.21 8.58 5.68

9.4 11.2 19.15 11.19 19.05 11.66 24.01 11.72 25.03 11.75 24.97

11.36 11.56 1.77 12.12 6.65 10.32 -9.19 10.52 -7.16 11.62 2.31

13.8 14.02 1.59 14.9 7.99 14.65 6.16 14.15 2.53 14.62 5.94

14.2 13.15 -4.20 15.06 6.05 14.74 3.81 15.06 6.04 14.91 5.04

19.13 17.31 -9.51 16.4 -14.29 15.3 -20.02 15.62 -18.33 17.34 -9.36

11.76 14.3 21.60 15.21 29.34 13.84 17.69 13.36 13.61 14.53 23.54

14.22 16.28 14.49 10.32 -27.43 12.03 -15.40 11.24 -20.96 12.2 -14.19

14.3 12.35 -13.64 16.36 14.41 10.38 -27.41 10.78 -24.61 10.64 -25.63

15.37 13.28 -13.64 16.36 14.41 10.38 -27.41 10.78 -24.61 10.64 -25.63

15.84 13.28 -13.79 12.24 -20.36 12.58 -18.12 13.32 -13.33 13.11 -14.74

17.07 19.23 12.65 13.54 -20.68 19.33 13.24 20.21 18.39 15.35 -10.09

3

4

5

1

Inspection line

Path 

length(cm)

Input 

weight(g)

1.5

2

1 2 3 4 5

Table 3-2 Detailed result of the verification tests for determining the measuring 

limit 
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significantly turbulent when large budgets of sands fall into the flume in that case, 

which results in the difficulties in velocity analysis.   

In summary, previous sediment concentration measurement system performs well with 

high accuracy and stability in low concentration, while it can only measure a certain 

concentration range of sediment flux. Light attenuation can be used as an indicator of 

the measuring limit. Measuring range decreases with the increasing of the path length 

and large path length is regarded as inadvisable for the measurement system. 

3.2 Verification tests for the improved measurement 

system  

Application scope of the previous system is limited by the measuring range, so an 

improved sediment flux measurement system was developed to enlarge the measuring 

range. It has been described detailed in chapter 2. Main feature of the improved system 

is the stroboscope, which is used as an additional light source to illuminate the highly 

concentrated sediment flux.  The application of the stroboscope is expected to overcome 

difficulties in velocity analysis when sediment concentration is high. Simple verification 

tests were carried out to study the feasibility of the improved measurement system. 

3.2.1 Verification tests method 

Verification tests method for the improved measurement system is similar with that 

conducted for determining the measuring limit for the existing system. Fig. 3-4 

illuminates the side view of the verification test configuration for the improved 

sediment flux measurement system. In current verification test, the width of the 

transparent flume was 1.5 cm, which is regarded as a suitable path length for the 



36 
 

measurement system. Different with the former verification tests for determining the 

measuring limit of the previous measurement system, there was no moving flow 

generated by tap water. In other words, water in the tank was still, which made the test 

condition simpler.  Silica sands in a medium diameter of 1.6 mm were released into the 

tank by a simple fall device, through a simple sediment fall device, which was used for 

falling sand uniformly in cross-flume direction. The high-speed camera was set at 400 

frames per second to record the movement of the sands and the stroboscope was 

synchronized at a frequency of 200Hz. High quality images were obtained by high-

speed camera after appropriate position adjustment of the stroboscope. As the frequency 

of the stroboscope is half of the camera fps, normal (back-light only) and strobo-

illuminated images were alternately obtained at a same rate of 200 Hz. Normal images 

were used for concentration measurement and both of the two sets recorded images 

were employed for velocity analysis. Similar with the former verification tests, three 

Figure 3-4 Side view of the verification tests configuration for the improved 

measurement system 
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inspection lines were set to calculate the sediment flux. As the net amount of input sand 

was known, the performance of the improved system could be evaluated by comparing 

the measured weight and actual weight. The tests were carried out for four cases of 

different amount of input sand. 

3.2.2 Verification tests result 

Examples of measured results of instantaneous velocity and concentration are presented 

in Fig. 3-5 and Fig. 3-6. Color bar on the right-hand side gives the concentration ranging 

from 0 to 200 g/l. It is obvious that velocities measured from strobo-illuminated images 

are better than those from normal images. Fig.3-7 shows the light intensity distributions 

of two adjacent images taken with and without stroboscope respectively at the same 

location (indicated by rectangles in Fig. 3-5). It can be confirmed that the stroboscope is 

capable of forming traceable patterns for operating PIV precisely by enlarging the light 

intensity range in the cases that sediment concentrations are very high. It should be 

noted that light reflection caused by the sidewall was not significant in current case and 

it did not influence the measurement system seriously. Thus, precise velocity analysis 

under the condition of highly concentrated flows was achieved. 

It should be noted that concentrations around the edge area of the moving sediments is 

low in general, and sediment particles in this area usually disappear in the images result 

from the illumination of the stroboscope, such as the locations indicated by circles in 

Fig. 3-5. Meanwhile, velocity measurement in these areas usually fails because of the 

lack of pattern. In contrast, PIV performs well in the edge area of the normal images 

because of the low concentration. Therefore, a post processing method of velocity 

analysis in terms of the strobo-illuminated images was utilized to omit wrong velocity 
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vectors in the edge area. Since the recorded images were in gray-scale, and intensity 

value ranges from 0 (black) to 255 (white), a boundary value of detected light intensity 

was set to recognize the pattern disappearing in the edge area of the strobo-illuminated 

images. In current study, we found that it is appropriate to set the boundary value at 235.  

Once the light intensity value exceeds the boundary value, traceable patterns would 

Figure 3-5 Examples of instantaneous measured velocities  

A A

A A

Figure 3-7 Comparison of light intensity 

distribution between normal image and 

strobo-illuminated image (real size is 

0.5cm×0.5cm) 

Figure 3-6 Examples of 

instantaneous measured 

concentration 
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disappear in the corresponding areas and PIV analysis would break down. After 

recognizing the pattern disappearing areas, the velocity vectors in these areas will be 

replaced by those calculated from the adjacent normal image at the same locations. Thus, 

wrong velocity vectors are eliminated effectively. 

Three inspection lines were set to measure the sediment fluxes. Since all of the input 

sand passed through the inspection lines, net sediment flux measured in each inspection 

lines should be same among each other and same with the actual input weight. The 

calculating formula is similar with Eq.1-1 as the following:     

                                       

ldxdt　cuW
T

AA

ss  
0

'
                                                            (3-1) 

where Ws is the measured weight of sediment and T is the total passing time for each 

inspection line. c, us, l are concentration, velocity and path length respectively. 

Sediment concentration and velocity are measured at an interval of 12 pixels (about 0.1 

cm in reality) along each inspection line. Both velocity results measured from normal 

and strobo-illuminated images were substituted into Eq. 3-1 for calculating sediment 

flux to check the performance of the improved system. 

The results of verification tests are presented in Table 3-3. The two columns at the right 

of the table show the ratio of integrated fluxes to actual input amount in each inspection 

line. It is obvious that the measured sediment fluxes from velocities with stroboscope 

are much better than those from velocities without stroboscope, as all of their errors are 

within 10%. Moreover, those measured results from velocity results with stroboscope at 

each inspection line are close to each other in the same case, illustrating that 
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concentration and velocity measurements are consistent. Maximum and mean values of 

sediment concentration and light attenuation for each inspection line in every case are 

also presented in Table 3-3. It was found that the new system performed well beyond 

the measurement limit of the previous system that is light attenuation of 2.5. The  

maximum and mean values of light attenuation are 4.47 and 3.12 respectively. They are 

far more than the previous system. In this study, maximum value of measurable 

sediment concentration could reach as high as 193 g/l, in a path length of 1.5 cm and it 

is not the measuring limit of the current system. 

In summary, the stroboscope is capable of illuminating the highly concentrated 

sediment well by careful position adjustment. Thus, the camera can capture clear 

particle patterns for PIV analysis and flux measurement for sediment transport of high 

concentrations can be achieved. The limitation of the current stroboscope is its 

Table 3-3 verification tests result for the improved measurement 

system 

Max Ave. Max Ave.

a 193.20 136.61 4.47 3.12 -34.6 -5.2

b 184.37 135.78 4.26 3.11 -27.0 -5.6

c 178.92 130.02 4.15 3.01 -23.1 -7.4

a 176.32 105.45 4.13 2.98 -41.6 -4.7

b 175.20 103.24 4.11 2.76 -35.7 -2.4

c 170.01 98.35 4.04 2.35 -22.2 -8.9

a 149.06 76.79 3.45 1.75 -13.9 -2.6

b 149.56 73.22 3.45 1.67 -16.4 0.8

c 145.46 70.53 3.36 1.60 -15.8 -4.0

a 179.68 111.33 4.47 2.69 -37.1 -7.8

b 177.27 105.76 4.23 2.56 -26.6 -5.5

c 171.11 101.08 4.15 2.45 -20.8 -5.2

Error 

without 

strobo(% )

Error with 

strobo(% )

Sediment 

Concentration (g/l)

2 18.04

Inspection 

line

Light attenuation

3 18.06

4 19.32

Case

Input 

weight  

(g)

1 13.09
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maximum frequency. As PIV requires a short time interval between two consecutive 

images, the current stroboscope cannot fulfill the requirement well when the target flow 

is fast.  

Combined illumination is essential in the measurement of sediment flux with a wide 

range of sediment concentration. Liu and Sato (2005) have already confirmed that only 

using stroboscope cannot measure the sediment concentration. On the other hand, only 

using brighter lens or stronger backlight sources will result in missing of small 

concentration band.  

The improved system turned out to be successful in measuring sediment transport of 

high concentration. It is proved that highly concentrated sediment denser than 190 g/l in 

the path length of 1.5 cm could be measured accurately. Limitation in the factor of light 

attenuation has been broken through in the improved system. This system is expected to 

be used for future laboratory investigations of sediment dynamics close to the bed. 

 

 

 

 

 

 

 



42 
 

Charpter4. Laboratory study of sediment 

transport in the swash zone under dam-

break waves 

4.1 Introduction 

The importance of the swash zone is widely recognized especially in the presence of a 

movable bottom, as with natural beaches, because a consistent part of the sediment 

transport takes place in it. It is well known that the intense fluid/sediment interaction 

that occurs in the near shore region results in sediment suspension and transport that 

change the coastal morphology. In this regard, the swash zone plays a very important 

role because it is the region of shoreline erosion and accretion. The main physical 

processes in the swash zone consist of flow with different frequencies induced by waves, 

turbulence due to wave breaking and swash-swash interaction, boundary layer flow and 

shear stress, long shore current; interactions with sediments and pore water; and 

infiltration-exfiltration (Longo et al., 2002 ). Hydrodynamics of the swash zone, which 

govern sediment transport mechanisms during wave run-up and run-down, and in large 

part controls beach face morphology, are determined by the above numerous physical 

processes. 

Numerous scientists and engineers have been devoting themselves on sediment 

transport and hydrodynamics in the swash zone during the last several decades. 

However, the swash zone remains a mysterious region for us and complex problems in 

the swash zone make it a still-evolving science. Since the improved sediment flux 

measurement system is regarded as promising in investigating sediment dynamics close 
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to bed, laboratory experiments for study sediment transport in the swash zone under 

dam-break waves were carried out. 

4.2 Methodology 

4.2.1 Experimental setup and instrumentation 

The experiments were carried out in an open channel flume at Tokyo University of 

Marine Science and Technology. It consists of a water reservoir built into one end of a 

7.1 m long, 0.3 m wide and 0.7 high, glass-sided flume. The reservoir is fronted by a 

gate which can be raised to produce a large plunging wave leading to a bore which 

propagates towards an impermeable slope located downstream. The dimensions of the 

reservoir are shown in Fig. 4-1. The reservoir exit is streamlined to ensure a smooth 

transition for the flow from reservoir to the flume. A 1/6 transparent sloping bottom 

made of acrylics with a thickness of 8 mm was constructed at the other end of the flume. 

The slope was mounted to the side-wall of the flume to increase its rigidity. Above the 

slope, there was a movable bed with a thickness of 3 cm, and the sediment used were 

silica sands in a medium diameter of 0.16 mm.  

Two laser distance sensors were employed to measure the change of the bed form 

before and after bore waves. The horizontal sensor is fixed above the flume to measure 

the position of the vertical sensor. The vertical sensor was fixed on a trolley which can 

slide on the track of the flume. Following the moving of the trolley, the vertical laser 

distance sensor can measure the distance between the laser head and the sand bed. Thus, 

the bed form can be determined through two laser distance sensor.  A 20×15 cm EL-

sheet was set upon the slope in 30 cm from the bottom of the slope. It was stuck on a 4 
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mm acrylic board, and the board was glued to the acrylic slope in perpendicular. The 

bottom part of the EL-sheet was under the moveable sand bed, so that sediment 

transport close to the bed can be observed. Distance between the EL-sheet and the side 

wall of the flume was 15 mm, which means the path length in current setting is 15 mm. 

A CMOS high-speed camera was set to record the movement of the sediments. It was 

rotated to be aligned with the 1/6 slope, so that the bed-normal and the bed-parallel 

velocities can be measured. A Nikon PK-11A Auto Extension Ring was mounted 

between the high-speed camera and the lens which has a fixed 50 mm focal length. The 

ring enabled the lens to focus closer than its normal set minimum focusing distance. 

And the camera was 30 cm from the target flow field which gives a resolution parameter 

λ=66 µm/pixel. The size of the recorded images was 520 × 1000 pixels, corresponding 

to a roughly 3.47 cm-by- 6.67 captured areas. The camera was controlled by specified 

software named Motion Studio developed by IDT Corporation. As mentioned above, 

PIV requires a short time interval between two consecutive images. Under bore driven 

swash zone, the flow is significantly turbulent, so the stroboscope used in the 

verification test cannot fulfill the requirement. Therefore, a new stroboscope was 

applied in current laboratory study. It was a double lamp stroboscope (SA-100B-W) 

Figure 4-1 Schematic of the open channel flume  
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designed by Nissin Electronic Corporation. Each lamp has a maximum flash frequency 

of 120 Hz, while the time interval between the flash of two lamps can be controlled by 

externally triggering. After appropriate position adjustment of the two lamps, 

illumination effect between them can be very similar，which ensures velocity analysis 

will not be influenced by the different illumination effect of the two lamps. A Stanford 

DG645 digital delay generator was used in the experiment to accurately trigger and 

synchronize, which is the same one with that employed in the verification test. 

Schematic of the experimental setup is illuminated in Fig. 4-2.  

In current study, the rate of the high-speed camera was set in1000 frames per second, 

and the frequency of the two lamps was 100 Hz. Time interval between two lamps was 

controlled in 1 μs. Thus, every 10 frames, there were 2 successive images illuminated 

by the stroboscope.  

Figure 4-2 Schematic of the experimental setup 
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4.2.2 Experimental condition and procedure 

The experiments were conducted for one initial condition only: a water depth in the 

reservoir of 200 mm and a water depth in front of the gate of 20 mm. The origin of the 

x-z coordinate system is at the initial shoreline position, located 3.2 m from the reservoir 

gate: the x-axis is parallel to the slope and is positive shoreward; the z-axis is 

perpendicular to the slope. The corresponding velocity components are u and w 

respectively. Measurements were triggered at the moment the wave reaches the toe of 

the slope, which is defined as t=0. After installing all of the instruments appropriately, 

experiments were conducted as the following procedures：    

 (1) The gate was closed and the water aspirator began to pump water from the flume to 

the reservoir. Because the sealing between the gate and the reservoir was not good 

enough, there was water leaking to the flume from reservoir. While keeping the water 

aspirator open, water leaking from the reservoir and pumping back to the reservoir 

would reach equilibrium. Since the total amount of water was carefully calculated 

before the experiments, the water depth in the reservoir and flume would be 200 mm 

and 20 mm respectively at last.  

(2) Keeping the pump open, horizontal and vertical laser distance started to work for 

determining the initial bed from before the bore waves.    

(3) The pump and gate were raised at the same time with a high speed by hand to 

generate dam-break wave. Simultaneously, the camera and stroboscope were triggered 

to work. Two lamps would flash at 100 Hz with a time interval of 0.001 s between them. 
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Because the bore waves will propagate about 3 seconds before reaching the slope, the 

camera was set to record images 3 s after getting the triggering signal.  

(4) After the waves rushing down from the sand bed to the reservoir, a temporary baffle 

wall was lowed into the flume to compartmentalize the flume for preventing the sand 

bed scouring by the following seiche. 

(5) Camera and stroboscope stopped to work and motion images would be saved to the 

hard disk. 

These five steps were repeated for 20 times in order to investigate the bed form 

variation after multiple dam-break waves. The change of the bed form was increasingly 

significant with the increase of the dam-break wave number. Example images recorded 

by the high-speed camera were shown in Fig. 4-3. 

4.2.3 Velocity analysis 

Velocity analysis closing to the bottom in the swash zone is widely considered as a 

difficult task even without sediments. Main difficulties in velocity analysis in current 

study are as below, 

(1) Dam-break waves are extremely turbulent, unsteady and highly non-uniform. 

Numerous air bubbles are generated after the break of the waves, which brings troubles 

to the velocity analysis when the air bubbles appear in the PIV images.  

(2) Inhomogeneous suspended sediment particles make the velocity analysis 

distinguished from the standard PIV. It is difficult to choose an appropriate size of the 

interrogation widow as the concentrations of suspended sediments vary greatly. Large 
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interrogation widow is necessary when calculating velocities near the free surface as the 

sediment concentration is low, while this will sacrifice the spatial resolution. And 

t=3.861s                           t=4.320 s                            t=4.321s 

t=3.350s                           t=3.351s                            t=3.860s 

Figure 4-3(a) Example images recorded by the high-speed camera 
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moderate interrogation widows are suitable for the middle layer of the flow. Moreover, 

concentrations of suspended particles are always fluctuation over time. 

t=4.630s                             t=4.631s                              t=4.950s 

t=4.951s                             t=5.200s                              t=5.201s 

Figure 4-3(b) Example images recorded by the high-speed camera 
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Temporal and spatial uncertainty of the concentration of suspended sediments makes the 

velocity analysis difficult. 

(3) Boundary between the unmovable bed and bed-load transporting sediment is hard to 

distinguish. So it is difficult to determine the lowest point to calculate velocity. If the 

lowest location is too close to the unmovable bed, than the interrogation widow will 

cover part of the unmovable bed, which is obviously unreasonable and results in wrong 

velocity vectors. On the other hand, velocity profile near the bottom will be incomplete 

if the lowest location is far away from the unmovable bed. Furthermore, the constantly 

changing bed form aggrandizes the difficulties in velocity analysis near the bottom.  

In order to achieve high quality velocity results, a MATLAB-based velocity evaluation 

program was applied for calculating the velocity field. The algorithm used a multiple 

pass cross-correlation approach. A normalized local median validation operation was 

used to detect spurious velocity data. A parabolic peak fit was used for determination of 

the particle image displacement with sub-pixel accuracy. And a piecewise cubic hermit 

interpolating polynomial (PCHIP) method was applied for compensating the spurious 

data. Velocity profile with high spatial resolution and accuracy can be obtained finally. 

Detailed calculating processes are as follows: 

(1) PIV images were cropped to cut out the useless region for decreasing the computing 

load. Several inspection lines in a same distance interval of 40 pixels were established 

vertically in the PIV images. Along each inspection line, interrogation points with a 

distance interval of 24 pixels were determined to perform standard cross-correlation 

analysis to calculate the displacement in the unit of integer pixel. Interrogation windows 
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in this step were chosen in 48×48 pixels, so the overlap between interrogation areas was 

50%, giving a displacement grid of about 11 × 34 with a spatial resolution of 2.67 and 

1.6 mm in the direction of parallel and normal to the sand bed respectively. 

Displacement outlier vectors were substituted by a medium value of the displacement 

vectors in the same row after simple outlier detection (Fig. 4-4).  

(2) Second iteration of cross-correlation analysis was carried out. For this iteration, 

interrogation points were established in a distance interval of 16 pixels along the same 

inspection lines in step 1. Interrogation windows were chosen in 48 × 32 pixels, so the 

overlap in this step was 50% too.  Displacement data in the former iteration would be 

used in this step to narrow the search area. For each interrogation point, the search 

would start from the location where the highest correlation value appears of the nearest 

interrogation point in the first iteration. Thus, the speed of this iteration would be 

significantly increased as unnecessary correlation calculations are skipped. 

Displacement vector grid was about 11 × 51 with a spatial resolution of 2.67 and 1.07 

mm in the direction of parallel and normal to the sand bed respectively. Then 

displacement outlier vectors were detected and same substitution was made for these 

outliers (Fig. 4-5). 

(5) Third iteration of cross-correlation analysis was carried out. For this iteration, 

interrogation points were established in a distance interval of 8 pixels along the same 

inspection lines in step 1 and step 2. Interrogation windows were chosen in 48 × 16 

pixels, so the overlap in this step was 50% too.  The displacement data in the former 

step were also used for offset the search area. Displacement vector grid in this step was 

about 11 × 104 with a spatial resolution of 2.67 and 0.53 mm in the direction of parallel 
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and normal to the sand bed respectively. Outlier detection was also carried out for the 

wrong displacement vectors. 

(5)  Correlation peak was estimated on the basis of the parabolic peak fit method to 

improve the accuracy to the order of 0.1 pixels. The equation is as follows: 
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Where, x0 and y0 are the coordinates of the correlation peak location determined by the 

parabolic peak fit method. i and j are the peak coordinates determined in step 4, which is 

in the order of integer pixel and R (i, j) is the maximum correlation value (Fig. 4-6).  

(6) Velocity substitution between the illuminated images and normal images was carried 

out. In the illuminated images, image patterns disappeared where the concentrations 

were low. For these locations, velocities were substituted by the corresponding values of 

the nearest normal image. In the normal images, locations where light attenuations were 

larger than 2.5, velocities were replaced by the corresponding values of the nearest 

illuminated image (Fig. 4-7). 

(7) A universal outlier detection method (Westerweel and Scarano, 2005) adapted from 

the original median test for the diction of spurious PIV data was performed to validate 

the displacement result after the former 6 steps. The advantage of this method is that it 
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is possible to use a single detection threshold that would be applicable for a variety of 

flow conditions without any prior knowledge of the flow characteristics. It is suitable 

for current experiments as the flow was significantly unsteady and unpredictable. The 

threshold value was chosen in 2 as suggested by the author. These spurious vectors were 

substituted by the median value in the same row (Fig. 4-8). 

(8) PCHIP interpolation method was used to do interpolation for the locations where 

velocities vectors missed (Fig. 4-9). 

(9) Outlier detection method same with step 7 was applied again after the interpolation 

(Fig. 4-10). 

4.2.4 Concentration analysis 

Sediment concentration was estimated from the previous calibration result. Sediment 

concentration can be visualized by translate the light intensity of every pixel. Example 

images of measured concentration at different moments are presented in Fig. 4-11. 

While it should be noted that each pixel is 1/225 mm
2
 only and one sand particle 

occupies several pixels. Just using light intensity value of each pixel to calculate the 

concentration or sediment flux will bring large error. Therefore, when calculating 

sediment flux, concentrations were measured at the same locations where transport 

velocities were measured. And the mean values of light intensity of local interrogation 

widows centering in the interrogation point for velocity measurement were applied for 

measuring concentration by substituting to the previous calibration curve. Thus, 

sediment concentration distribution in each image has the same spatial resolution with 

the distribution of transport velocity. 
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Figure 4-4 Velocity result by first iteration of cross-correlation analysis 

Frame index=321 

Frame index=319 
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Figure 4-5 Velocity result by second iteration of cross-correlation analysis 

Frame index=321 

Frame index=319 
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Figure 4-6 Velocity result by third iteration of cross-correlation analysis and 

peak detection 

Frame index=321 

Frame index=319 
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Figure 4-7 Velocity result after substitution 

Frame index=321 

Frame index=319 
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Figure 4-8 Velocity result after first outlier detection  

Frame index=321 

Frame index=319 
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Figure 4-9 Velocity result after interpolation  

Frame index=321 

Frame index=319 
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Figure 4-10 Velocity result after second outlier detection  

Frame index=321 

Frame index=319 
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Figure 4-11(1) Example images of concentration distribution  

Frame index=300 

Frame index=30 
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Figure 4-11(2) Example images of concentration distribution  

Frame index=1500 

Frame index=1000 
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4.3 Experimental results 

4.3.1 Bed form variation 

The sand bed was underwent 20 dam-break waves in total. Variation of the bed profile 

was increasingly great because the bed was not rebuilt after each wave. Fig. 4-12 

presents the initial bed form and the bed profile after 5 waves, 10 waves and 20 waves 

test. The net cross-shore sediment transport is more conspicuous under early waves than 

latter. The change of the initial profile slowed down and turned out to be not 

proportional to the number of dam-break waves. In addition, it did not achieve 

equilibrium even until 20 waves washing. 

The intersection point of erosion and deposition is located about 25 cm from the toe of 

the bed, and it did not change much among the 20 waves. The erosion zone is located at 

x < 25 cm. This part of sediment was picked up by waves and finally deposited on the 

upper bed. The vertical accretion depth was growing but the speed of change was 

smaller than the erosion. It should be noted that the bed profile very close to the toe of 

the slope was not measured successfully. Because this part of sand was under SWL (still 

Figure 4-12 Temporal variation of bed profile  
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water level), and the vertical laser sensor was unable to measure distance when water 

exists. 

4.3.2 Variation of transport velocity and sediment 

concentration 

The 20 dam-break waves were exactly similar, so only one of the analyzed results will 

be presented in the following. As mentioned above, high spatial and temporal 

distribution of sand particle velocity distribution is achieved successfully based on the 

enhanced PIV technique. In addition, distribution of sediment concentration is also 

obtained through the light extinction method. Fig. 4-13 illuminated the temporal 

distribution of horizontal and vertical velocities at four different levels from 2 mm 

above the initial bed level to 30 mm above the initial bed level at inspection line 2 (the 

left-most inspection line in Fig. 4-10 is defined as the inspection line 1, second line on 

the left is defined as the inspection line 2, and so on). Wave run-up and run-down lasts 

longer close to the bed and the duration decreases with the increase of elevation. Wave 

run-up just continues for 0.75 s in the elevation of 2 mm above the initial bed, while the 

wave run-down is much longer, reaching 1.6 s. Velocities in the very beginning of 

uprush is significantly fast, which can be as large as 80 cm/s, while velocities in the 

final stage of down rush is slightly smaller than 80 cm/s because of energy loss due to 

friction, just around 70 cm/s. Large velocity fluctuation appears both in the very initial 

stage of run up and final stage of rush down. Air bubbles bring errors to the velocity 

analysis at the very beginning of run up, which is a ubiquitous problem in turbulent 

conditions. In the final stage of wave rushing down, water level changes moment by 

moment. When the water level is above the interrogation position, velocities can be 

measured probably. Otherwise, when the water level is below the interrogation position, 
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velocities cannot be measured. Moreover, even the free surface is above the 

interrogation point, it is most likely failed to obtain velocities as there are no sediment 

Figure 4-14 (a) Temporal velocity variation at different inspection lines  

Inspection line 2 

Inspection line 6 
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particles or not enough particles close to the water surface. And sometimes the free 

surface is in the middle of the interrogation window, which means that the interrogation 

widow contains both athletic concentrated flow and motionless EL-sheet. This also 

leads to inaccuracy when doing PIV analysis. Fig. 4-14 shows the temporal velocity 

variation in the elevation of 2 mm above the initial bed at the inspection line 2, 6, 10 

respectively. Similar tendency of velocity distributions also illustrated that the enhanced 

PIV technique is quite reliable.  

Fig. 4-15 shows the vertical distribution of horizontal velocity at inspection line of 2 

and 10 from 2 mm below the initial bed level to 12 mm above the initial bed level at 

different phases (from 0.08 s to 2.28 s). The velocity profiles show the existence of 

logarithmic layer during the up-wash and down-rush stages. The vertical profile of 

horizontal velocity has a typical „forward leaning‟ shape. And it is obvious that in the 

Figure 4-14 (b) Temporal velocity variation at different inspection lines  

Inspection line 10 
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Figure 4-15 Horizontal velocity distribution at different phases  

Inspection line 2 

Inspection line 10 



69 
 

very beginning of the wave run up the velocity gradient is largest and it decays until the 

flow starts to go reverse. The velocity profile turns to be „backward leaning‟ shape and 

velocity gradients keeps growing in the stage of down rush, while it decreases again in 

the final stage of down rush. 

 Fig. 4-16 shows the temporal variation of sediment concentration from 2 mm above the 

initial bed to 30 mm above the initial bed at different inspection lines. When the dam-

break wave comes, sediment concentration reaches a peak rapidly, and then it keeps 

falling even when the flow starts to go reversal. And another peak appears in the final 

stage of back rush. However, this is caused by the uneven water surface in the direction 

perpendicular to the EL-sheet and the side wall. In this condition, light attenuation is 

particularly larger than normal as the space between the side wall and the EL-sheet is 

not filled with water (Fig. 4-3 (b)). Ant it should be noted that at the elevation of 2 mm 

above the initial bed, the concentration actually increased because the free surface 

decreased quickly and suspended sediments at high elevations assemble sharply in the 

final stage of rush down. So the former increase part of the second peak at the elevation 

of 2 mm above the initial bed is regarded as credible while the later sharp peak and the 

other sharp peaks at higher elevations are considered as measuring error. Sediment 

concentration close to the bed is much larger than the up layers. Maximum 

concentration in the elevation of 2 mm above the bed reaches 250 g/l, while it is only 

around 50 g/l in the elevation of 30 mm above the bed (except the second peak caused 

by the measuring error). The EL-sheet is about 30 mm from the toe of the bed and it is 

an accretion region which has been indicated before (Fig. 4-12). Although the down 

rush period is longer than the up wash period, while the region where the EL-sheet 
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Inspection line 2 

Inspection line 6 

Inspection line 10 

Figure 4-16 Horizontal velocity distribution at different elevations  
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  installed is accreted. The reason can be explained like this, transport velocity and 

sediment concentration during the up rush period are much larger than those in the 

down rush, and it offsets the effect of longer wave rush down process. 

Fig. 4-17 shows the time series of measured sediment concentrations and velocities at 

different elevations in inspection line 2. At the elevation of 2 mm above the initial bed, 

when dam-break wave collapsed on the sand bed, a large budget of sediment was 

suspended due the huge wave force, which results in a sudden increase of sediment 

concentration. And then sediment concentration kept decreasing undulated until the 

final stage of the wave rush down. As the free surface decreased rapidly, large vertical 

velocities made the sediment particles aggregate quickly in the thin water layer, which 

leads to the concentration increased again. This phenomenon is not obvious at the 

elevation of 10 mm above the initial bed. At this elevation, after a sudden increase of 

sediment concentration, the concentration fluctuated significantly. At the elevation of 20 

mm above the bed, sediment concentration kept relatively stable for about 0.5 s after a   

fluctuation period. Because at this elevation, the flow was relatively steady and 

sediment particles were almost homogeneously in the whole flow field at the later stage 

of wave run up and initial stage of wave rush down, which made the change of 

concentration kept stable. At the elevation of 30 mm above the initial bed, sediment 

concentration kept growing with the increase of the free surface after the wave arrived. 

Because at this elevation, suspended sediments were lifted by the wave force constantly 

until the free surface reaches highest. And it fell quickly along with the decreasing of 

the free surface, and there is no further increase appears as the last sharp peak has 

already been indicated as measuring error. In summary, sediment suspension 
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Figure 4-17 (a) Variation of transport velocity and sediment concentration at 

different elevations 

2 mm above the initial bed 

10 mm above the initial bed 

20 mm above the initial bed 
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occurs only at the very beginning of the dam-break wave, and characteristics of the 

transporting sediments are various intensively at different elevations.  

4.3.3 Sediment transport rate 

Similar with the sediment concentration and transport velocity, sediment transport rate  

Q was measured at the same spatial and temporal resolution by product the 

instantaneous transport velocity, u (x, z, t), and sediment concentration, c (x, z, t). 

                   

),,(),,(),,( tzxctzxutzxQ 
     

                      (4-3) 

Fig. 4-18 shows the temporal variation of sediment transport rates from 2 mm above the 

initial bed to 30 mm above the initial bed at different inspection lines. Sediment 

transport rate during wave run up is much larger than that in wave rush down. It 

corresponds to the fact that net sediment transport is onshore. And sediment transport 

rate close to the bed is much larger than the upper layers. Tendency of sediment 

Figure 4-17 (b) Variation of transport velocity and sediment concentration at 

different elevations 

30 mm above the initial bed 
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Inspection line 2 

Inspection line 6 

Inspection line 10 

Figure 4-18 Sediment transport rate at different elevations 
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transport rates among different inspection lines are extremely similar, which also 

testifies the accuracy and reliability of the current measurement technique. 

In order to analysis the relationships among the sediment transport rate, transport 

velocity and sediment concentration, these three factors at different elevations are 

plotted in the same figure (Fig. 4-19). At the elevation of 2 mm above the initial bed, 

sediment transport rate reached a peak as soon as the dam-break wave front arrived at 

the bed. Then it kept decreasing even though the sediment concentration was fluctuating   

significantly. When the flow went reverse, sediment transport rate remained stable for 

about 1 s companied with the constantly growing velocity and fluctuated decreasing   

concentration. At the final stage of wave rush down, sediment concentration went up 

rapidly, which results in the increase of transport rate although transport velocity was 

decreasing during that period. At the elevation of 10 mm above the initial bed, sediment 

concentration fluctuated violently in the stage of wave run up, while sediment transport 

rate kept decreasing with the continuously falling velocity. During the wave rush down, 

concentration dropped quickly but sediment transport rate declined more slowly due to 

the increasing transport velocity. In the further upper layers, sediment transport rates 

were significantly smaller than the low layers. Transport rate followed the fluctuation of 

sediment concentration well and it turned to be almost zero in the final stage of wave 

rush down.  

Under the combination influence of sediment concentration and transport velocity, 

sediment transport rate also varies hugely at different elevations and phases. Whereas 

the fluctuation of transport rate is not as significant as the change of sediment 

concentration, and sediment transport close to bed dominants the change of bed profile. 
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Figure 4-19 (a) Variation of sediment transport rate, transport velocity and 

sediment concentration at different elevations 

2 mm above the initial bed 

10 mm above the initial bed 



77 
 

 

Figure 4-19 (b) Variation of sediment transport rate, transport velocity and 

sediment concentration at different elevations 

20 mm above the initial bed 

30 mm above the initial bed 
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Charpter5. Conclusions and 

recommendations 

An improved measurement system was developed to quantify the sediment flux depends 

on two image-based techniques for sediment concentration and velocity measurement 

respectively. Sediment concentration measurement based on the light extinction method 

shows good reliability. Calibration for sediment concentration measurement was carried 

out under a series of conditions, and measuring range for each path length was clarified. 

Transported velocity measurement under dense conditions was achieved by enhanced 

PIV technique with the help of an additional light source, stroboscope. Measuring range 

of the existing sediment flux measurement system was further confirmed. It was found 

that the factor of light attenuation in 2.5 is the measuring limit of the previous system. 

Verification tests for the improved sediment transport measurement system were carried 

out. The results suggest that limitation in the factor of light attenuation has been broken 

through in the improved system, and the system is capable of measuring sediment 

concentration over 190 g/L with an error no more than 10% in the path length of 1.5 cm 

and it is not the measuring limit.  

Laboratory experiment of sediment transport measurement was carried out in an open 

channel flume under dam-break bores based on the improved measurement system. 

Sediment transport is onshore. Bottom of the bed was eroded more and more seriously 

with the increase of dam-break wave number. The erosion area is much narrower than 

the accretion section. The intersection is about 25 cm from the toe of the bed. Change of 

the bed profile slowed down while it did not achieve a balance even after 20 dam-break 

waves. 
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Sediment concentration close to the bed is much larger than the up layers and it 

decreased with the increase of elevation. Sediment suspension appears only at the initial 

stage of wave collapsing and characteristic of sediment concentration at different 

elevations are remarkably different. In the final stage of wave down rush, large error of 

concentration measurement occurs due to the influence of the free surface. Further post 

processing is expected to be developed for avoiding the influence of free surface and air 

bubbles, and increasing the accuracy of sediment concentration measurement in the 

final stage. 

Sediment transport velocities with high resolution and accuracy were obtained by 

employing the advanced PIV technique. Transported velocity decreased rapidly after the 

wave collapsing on the bed. And then it increased constantly with the wave running 

down until the final stage of down rush where the velocity decreased slightly again. 

Velocity fluctuation in the initial stage of up wash final stage of down rush is significant 

due to the influence of changeful free surface and air bubbles, which is one of the 

shortages of the current study. The vertical profile of horizontal velocity has a typical 

„forward leaning‟ shape. And it is obvious in the very beginning of the wave run up and 

then the velocity gradients decays until the flow starts to go reverse. The velocity profile 

turns to „backward leaning‟ shape and velocity gradients keeps growing in the stage of 

down rush, while it decreases again in the final stage of down rush. 

Sediment transport rate close to the bed is also much larger than the up layers. The 

fluctuation of temporal variation of sediment transport rate is much smaller compared 

with sediment concentration change. Transport rate varies significantly at different 

elevations as well, and the sediment transport close to bed dominants the bed transform. 
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In current study, sediment concentration, transport velocity and sediment transport rate 

are only analyzed at elevations of 2 mm, 10 mm, 20 mm, and 30 mm above the initial 

bed. And numerous conclusions have been proposed based on the temporal variation of 

velocity and concentration at these elevations. While in order to understand the 

mechanisms for the difference among different elevations, more detailed analysis for 

wider elevations are necessary. 

Some other factors such as turbulent intensity and bed shear stress are also expected to 

be analyzed for making deeper insight into the boundary layer structure of moveable 

bed. Moreover, net sediment transport rate is expected to be associated with the change 

of bed profile by further analysis. 
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