TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(AR T)

Molecular studies on the genotypic and
temperature-dependent sex determination of
pejerrey Odontesthes bonariensis

S5 eng

HARE:

~rFHHB: 2016-12-22
*F—7—FK (Ja):
*—7— K (En):
ERXE: 3R, 7
X=)L7 FLR:
=

https://oacis.repo.nii.ac.jp/records/1343




Doctoral Dissertation

MOLECULAR STUDIES ON THE GENOTYPIC
AND TEMPERATURE-DEPENDENT SEX
DETERMINATION OF PEJERREY

Odontesthes bonariensis

September 2016

Graduate School of Marine Science and Technology
Tokyo University of Marine Science and Technology

Doctoral Course of Applied Marine Biosciences

YAN ZHANG



Declaration

| hereby declare that this thesis and the work presented in it
are my own and has been generated by me as the result of my own
original research. It has neither been accepted, not submitted for any
other degrees. All sources of information have been duly

acknowledged.

Yan Zhang

09-09-2016



People are illogical, unreasonable, and self-centered.

Love them anyway.

If you do good, people will accuse you of selfish ulterior motives.
Do good anyway.

If you are successful, you will win false friends and true enemies.
Succeed anyway.

The good you do today will be forgotten tomorrow.

Do good anyway.

Honesty and frankness make you vulnerable.

Be honest and frank anyway.

The biggest men and women with the biggest ideas can be shot down by the smallest men and women
with the smallest minds.

Think big anyway.

People favor underdogs but follow only top dogs.

Fight for a few underdogs anyway.

What you spend years building may be destroyed overnight.
Build anyway.

People really need help but may attack you if you do help them.
Help people anyway.

Give the world the best you have and you'll get kicked in the teeth.
Give the world the best you have anyway.

From Dr. Kent M. Keith — The Paradoxical Commandments
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General Abstract

Pejerrey Odontesthes bonariensis is an excellent species for the study of
temperature-dependent sex determination (TSD) in teleosts. In this species, sex ratios reach
100% female or 100% male at the environmentally relevant temperatures of 17°C (female
producing temperature, FPT) and 29°C (male producing temperature, MPT) respectively,
when the thermal exposure occurs between hatching and the onset of histological
differentiation of the gonads (around 5 weeks post hatch). At intermediate temperatures
(around 24-26°C; mixed sex-producing temperatures, MixPT), a large variation in sex
ratios (e.g. 20-80%) is observed between progenies from different parents at a given
temperature. These observations suggest a potential genetic involvement in the sex
determination of pejerrey. In the context of the recent discovery of the presence of a sex
determining gene amhy (male-specific duplication of the autosomal anti-Mullerian
hormone gene) in the congeneric species O. hatcheri (Patagonian pejerrey), the purpose of
this study was to determine the presence of this sex determining gene and its involvement

in the variable sex ratios observed at intermediate temperatures.

In order to study the genetic contribution of amhy in the process of gonadal sex
determination/differentiation in pejerrey, this thesis was divided into three chapters as
follows. I first verified the presence of amhy and its paralogue, the autosomal amha, in this
species. | then investigated the transcriptional profiles of amhy and amha at feminizing and
masculinizing temperatures during early larval development with the aim of evaluating
their relationship with TSD and testis formation. The last chapter of my thesis focused on

the regulation of amhy and amha in vitro by cortisol and 11-Ketotestosterone (11-KT)



using amhy and amha presumptive promoters.

First, an amhy homologue was successfully isolated and cloned from wild and
laboratory-reared pejerrey. Screening of wild and laboratory-reared pejerrey for amhy
revealed a high, although not complete, linkage with phenotypic sex. The sex ratio in an
amhy+/amhy- full sibling progeny reared during the thermolabile period of sex
determination at an intermediate temperature of 25°C was 68.7% male: 31.3% female; all
amhy+/- fish developed as males whereas about 2/3 and 1/3 of the amhy-/- were female
and male, respectively. At 25°C, transcription of amhy in amhy+/- animals persisted in
larvae throughout the period of sex determination and histological gonadal differentiation.
The autosomal amha was expressed in the gonads of all amhy+/- but only in part of the
amhy-/- animals and seemed to be related to maleness in the latter. These observations
suggest that both amhy and amha are important for testicular differentiation in pejerrey.
These findings also represent the first clear genomic evidence that genetic and
environmental sex determinants can coexist in species with marked TSD such as the

pejerrey.

The second chapter examined the relative contribution of amhy and amha to the TSD
process of pejerrey. XY and XX larvae derived from a XX mother and a XY father were
reared at 17°C (female-promoting temperature, FPT) and 29°C (male-promoting
temperature, MPT) during the critical period of thermolabile sex determination and used
for transcriptional analyses of amhy and amha by gRT-PCR. In addition, | analyzed the
expression profiles of ovarian type aromatase cypl9ala (critical for female development)
and amh type Il receptor amhrll (critical for male development), at the FPT and MPT

respectively. Histological analyses at the end of experiment revealed that the MPT yielded



a single-sex male population and that the FPT yielded a mixed sex population whereby
59% of the XY fish developed as males and the remaining as females. amhy mRNAs were
abundant in XY larvae from both the FPT and MPT groups at the beginning of the sex
determination period and then declined. amha expression was highly correlated with
maleness. During the sex determination period, amha was upregulated in a few of the XY
larvae at the FPT and in both genotypes at the MPT. cypl9ala expression was found to be
inversely proportional to temperature in XX fish whereas in XY genotypes a dimorphic
distribution of cypl9ala was observed at the 17°C. amhrll expression did not differ
between XX and XY fish although it was higher at 25°C and 29°C than that at 17°C in both
genotypes. Thus, these results suggest that amhy expression is temperature-independent
while amha and amhrll expression were temperature-dependent. This indicates that
temperature may modulate amha expression though amh receptors which then induce

masculinization in pejerrey.

A previous study has shown that the stress-related hormone cortisol promotes 11-KT
production during high temperature-induced masculinization of pejerrey. The 3" chapter
focused on how the two amh paralogues of pejerrey interact with stress and sex steroid axis
during gonadal differentiation. A luciferase reporter assay was performed with the
presumptive promoters (~3kb 5' upstream fragment) of both amh paralogues. The
glucocorticoid receptor expression plasmid was first co-transfected with luciferase reporter
plasmids containing amhy or amha promoter into endothelial progenitor cells (EPCs).
Transcriptional activity was then measured 48 hours post transfection in cells exposed to
different cortisol and 11-KT doses. Transcriptional activity analyses showed that the amhy
promoter did not respond to any cortisol or 11-KT doses. On the other hand, both cortisol

and 11-KT activated the amha promoter. The transcriptional activity of amha promoter



revealed a cortisol dose-dependent manner, which suggests high water temperature induces

amha expression by elevating cortisol and androgen levels in pejerrey.

This study is the first to show evidence of the co-existence of GSD and TSD in
pejerrey. Although amhy is considered the genotypic sex determinant, the autosomal amha
may also be involved in testis formation in pejerrey. In addition, my study also reveals the
significance of cortisol and androgen signaling, especially at high temperatures, as

transcriptional regulators for the amha gene during the process of masculinization.



General Introduction

Many poikilothermic vertebrates, including reptiles, amphibians, and fishes, exhibit
a sex determination system greatly influenced by environmental factors, such as
temperature, pH and social conditions (Crews, 1996; Rubin, 1985; Baroiller et al., 1999;
Munday et al., 2006a, b; Conover and Kynard, 1981; Janzen and Phillips, 2006; Sandra
and Norma, 2010). In fishes, the most important environmental determinant of sex is
temperature (temperature-dependent sex determination or TSD) (Devlin and Nagahama,
2002) and was first evidenced in the Atlantic silverside Menidia menidia, a gonochoristic
atherinopsid from West Atlantic. To date, TSD has been found in many other species of
genus Apsitogramma (South American Cychlids) (Rémer and Beisenherz, 1996), Japanese
flounder, sea bass, medaka and tilapia with high temperatures leading to male-skewed sex
ratios (Yamaguchi et al., 2010; Pavlidis et al., 2000; Hattori et al., 2007; Abucay et al.,

1996).

Among teleosts, the strongest sexual thermolability is found in the pejerrey
Odontesthes bonariensis, a South American atherinopsid (Fig. 1). In this model, monosex
populations of female and male can be consistently obtained when the larvae are raised
between hatching and the onset of histological differentiation of the gonads (Fig. 2) at low
(17°C; FPT, female producing temperature) and high (29°C; MPT, male producing
temperature) temperatures, respectively, and intermediate temperatures (24~25°C; MixPT,
mixed-sex producing temperature) yield mixed sexes (Strissmann et al., 1996a, 1997). To
unravel the molecular pathways underlying the TSD mechanism, a series of experiments

including the expression profiles of genes universally implicated in the sex differentiation



process and sex differentiation cascade in fish have been carried out and several molecular
processes have been described so far. Larvae at the FPT had lower follicle stimulating
hormone beta fshb and luteinizing hormone beta lhb expression but higher luteinizing
hormone receptor Ihr expression during the sex determining period than those at the MPT
and thus suggested that temperature may signal through the pituitary (differential
expression of fshb and Ihb) down to the gonads (differential expression of lhr), probably
affecting the regulation of steroidogenesis during the TSD process of pejerrey (Shinoda et
al., 2010). The gonad-specific sex-related genes cypl9ala, dmrtl, and amh were also
proved to be involved in primary sex differentiation process during TSD (Fernandino et al.,
2008a, b). In addition, temperature-induced masculinization of pejerrey was mediated via
stress hormone, cortisol, as well as in other teleosts (Hayashi et al., 2010; Yamaguchi et al.,
2010). During the critical period of sex determination, pejerrey larvae at MPT consistently
had higher cortisol, 11-ketotestoterone (11-KT), and testosterone (T) titres than those at a
FPT (citation). Moreover, cortisol-treated animals had elevated 11-KT and T, and showed
typical molecular signatures of masculinization and higher proportion of males (citation).
These reports provides a possible link between stress and testicular differentiation in
gonochoristic TSD species and support the notion that stress responses might be involved
in various forms of environmental sex determination (Hattori et al., 2009). However, while
reproducible sex proportions are obtained at both FPT and MPT, at MixPT (25°C) large
deviations occurs among different crosses, which could be related to the existence of a very

weak genetic component acting on gonadal fate (Striissmann et al., 1996b, 1997).

In a recent study on the genetic sex determining mechanism in the congeneric
species Patagonian pejerrey O. hatcheri, the male-specific amhy (Y-linked anti-Mdllerian

hormone duplication) gene was identified and showed to be implicated in the triggering of



testicular development in this model (Hattori et al., 2012). Because Patagonian pejjerey
and pejerrey are closely related species and share a high genetic identity (Strissmann et al.,
1997), it is conceivable that amhy could exist in pejerrey and be behind the variable sex
ratios observed at the MixPT, as it would be the case for example, if any of the parents is a

(thermally) sex-reversed animal.

In order to probe the existence of genotypic sex determinant and its relative
contribution for temperature-dependent sex determination in pejerrey, | first identified
amhy paralogue in pejerrey and examined the expression profile of amhy and autosomal
amh, amha during sex determination/differentiation period at male-, female-, and mix-sex
producing temperatures, respectively. Further, to examine the relevance of cortisol to amhy

and amha gene expressions, | conducted reporter gene assay.
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Figure 1. Schematic representation of period of sex determination in pejerrey
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Figure 2. Sex ratios of pejerrey under different thermal treatments after hatching



Chapter 1

Genotypic sex determination in pejerrey
O. bonariensis: evidences from the testis-
determining gene amhy



Abstract

In this study, we examined whether a homologue of the master sex determining gene
amhy of Patagonian pejerrey Odontesthes hatcheri is present and plays any role in testis
determination of pejerrey O. bonariensis, a species otherwise known for its strong
temperature-dependent sex determination (TSD). Screening of wild and laboratory-reared
pejerrey for amhy revealed a high, although not complete linkage with phenotypic sex. The
sex ratio in an amhy+/amhy- full sibling progeny reared during the thermolabile period of
sex determination at an intermediate temperature of 25°C was 68.7% male:31.3% female;
all amhy+ fish developed as males whereas about 2/3 and 1/3 of the amhy- were female
and male, respectively. RT-PCR and ISH analyses revealed that transcription in amhy+
animals began during embryo stage and persisted in larvae through the period of sex
determination and histological gonadal differentiation. The autosomal amha was present in
all individuals regardless of amhy genotype; during this period, it was expressed in the
gonads of all amhy+ but only in part of the amhy- animals. After histological gonadal
differentiation, all gonads of amhy- animals with amha ISH signals were testes and those
without it were ovaries. These results suggest that amhy is important for testicular
differentiation in pejerrey, at least at intermediate temperatures. Thus, amhy+ animals
probably differentiate as males by expression of either amhy alone or amhy and amha
together whereas the amhy- rely solely on amha expression, which may itself be

temperature-dependent.

These findings represent the first clear genomic evidence that genetic and

environmental sex determinants can coexist in species with marked temperature-dependent
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sex determination such as the pejerrey. The finding of amhy will make it possible to screen
wild pejerrey populations for the effects of global warming, climate change, and
anthropogenic factors on reproduction and to study the ecological relevance of TSD for

this species.
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Introduction

The pejerrey Odontesthes bonariensis is an excellent model for the study of
temperature-dependent sex determination (TSD) in teleosts. In this species, sex ratios reach
100% female or 100% male at environmentally relevant temperatures of 17°C (female
producing temperature, FPT) and 29°C (male producing temperature, MPT), respectively.
The critical time of sex determination has been estimated between 1 and 5 weeks after
hatching (wah) depending on the water temperature (Strissmann et al., 1997a). The end of
this period coincides with the beginning of the histological differentiation of the gonads,
which occurs first in ovaries and then in testes (Ito et al., 2005). In addition, significant
information on the molecular and biochemical processes underlying its TSD is available.
For example, differential expression of fshb (follicle stimulating hormone beta) and Ihb
(luteinizing hormone beta) in the pituitary and of lhr (luteinizing hormone receptor),
cypl9ala, dmrtl, and amh in the gonads were found to be involved in the sex
differentiation process (Shinoda et al., 2010; Fernandino et al., 2008a; Fernandino et al.,
2008Db). Other studies have shown a connection between environmental temperature and
sex determination that is mediated by the glucocorticoid stress-related hormone cortisol, in
particular during masculinization (Hattori et al., 2009; Fernandino et al., 2012). Thus,
significant advances have been achieved concerning the mechanism of TSD in pejerrey but,

as discussed next, the picture is far from complete.

While the reproducible sex ratios consistently obtained at the FPT (all-female) and
MPT (all-male) suggest that genotypic sex determinants in O. bonariensis are virtually

inexistent, this is not a foregone conclusion. For example, at intermediate, mixed sex-

12



producing temperatures (MixPT; around 24-26°C), large variability in sex ratios (e.g. 20-
80%) is observed between progenies from different parents at a given temperature. Such
variability could be related to subtle, hitherto unknown environmental effects besides
temperature or it could be an indication that parents carry some form of genotypic gender
determinant that affects sex determination at sexually neutral temperatures (Striissmann et
al., 1997a). The latter scenario has become more plausible after a recent study on the sex-
determining mechanism of the congeneric species O. hatcheri (Patagonian pejerrey), which
possesses a typically balanced (1:1) sex ratio at intermediate temperatures, revealed a
male-specific duplication of the amh gene (called amhy, for Y-linked anti-Mdllerian
hormone) that triggers testicular development (Hattori et al., 2012). Because the two
species are closely related and share a high genetic identity (Strissmann et al., 1997b), it is
conceivable that amhy could exist in O. bonariensis and be behind the variable sex ratios
observed at the MixPT, as it would be the case for example, if any of the parents is a
(thermally) sex-reversed animal. It is noteworthy that environment and genotype
interactions have been implied before in sex determination of other species with TSD
(Baroiller et al., 1999; Devlin and Nagahama, 2002; Strissmann et al., 2010; Penman and
Piferrer, 2008; Baroiller et al., 2009; Luckenbach et al., 2009), but a clear genotypic factor

has never been identified.

In this context, this study was designed to probe the presence of amhy in the pejerrey
genome and whether it has a role in gonadal sex determination of this species. We
successfully cloned an amhy homolog in laboratory-reared pejerrey, genotyped broodstock
and wild fish based on amhy, and carried out progeny tests to confirm its sex linkage and
Mendelian inheritance. In addition, we examined the ontogeny of amhy expression in

relation to that of the autosomal form amha and to time of histological gonadal sex
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differentiation. The results clearly show that amhy is functionally implicated in testicular
differentiation in pejerrey at intermediate, temperatures, and prove the coexistence of

environmental and genotypic sex determination in this species.
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Materials and Methods

Ethical statement

This study was carried out in accordance with the Guide for the Care and Use of
Laboratory Animals from Tokyo University of Marine Science and Technology
(TUMSAT). Experiments with fish at TUMSAT do not require any special authorization
as long as they adhere to the institutional guidelines, which is the case of this study.
Laboratory fish were procured from the Aquatic Animal Rearing Facilities of TUMSAT,
which is licensed to keep broodstock and propagate fish, and were sacrificed by anesthetic
overdose in order to minimize animal suffering prior to any sampling. All samples of wild
fish used in this study were a kind donation from Dr. Seiichi Kasuga, National Institute for
Environmental Studies (NIES), Ibaraki, Japan and were already dead when provided to us.
These samples were taken in 2001 during routine fisheries resource assessments conducted
by the NIES and have been kept frozen until use. Pejerrey is not an endangered species and

its collection is not subject to permit requirement.

Cloning and sequencing of pejerrey amhy

To obtain the complete cDNA sequence of the amhy gene in O. bonariensis, total
MRNA extracted from the gonad of a laboratory-reared, amhy-positive (amhy+) was used.
Extraction of mMRNA and synthesis of cDNA were performed according to previous studies
(Hattori et al., 2012). 5' and 3' UTR fragments were amplified by the primers listed in

Table S1 using GeneRacer (Invitrogen, Carlsbad, CA) and Smart RACE cDNA

15



amplification (Clontech, Mountain View, CA) kits, following manufacturer’s instructions.
Genomic DNA was extracted following the protocol described by Aljanabi and Martinez
(Aljanabi and Martinez, 1997) and used for intron sequencing. PCR was performed using
primers designed on the basis of the O. hatcheri amhy (Table S1; NCBI accession code
HM153803). All amplifications were done according to the following conditions: 3 min at
94°C, 30 cycles of 30 sec at 94°C, 45 sec at 60°C and 2.5 min at 72°C, then followed by a
final elongation for 5 min at 72°C. PCR products were electrophoresed in 1% agarose gel,
purified, and sequenced in an ABI PRISM 3100 capillary sequencer (Life Technologies,
Carlsbad, CA) using the BigDye Terminator method. Sequences were analyzed with

GENETYX version 11.0 (GENETYX, Tokyo, Japan).

Phylogenetic analysis

The predicted amino acid sequences of pejerrey Amhy and Amha (GeneBank
accession numbers KC847082 and AY763406, respectively) were compared to the Amh
sequences of other teleosts available at GenBank using the software GENETYX version
11.0. The following sequences were compared: Patagonian pejerrey Amhy and Amha
(Odontesthes hatcheri, DQ441594 and HM153803, respectively), Atlantic salmon Amh
(Salmo salar, AY722411), zebrafish Amh (Danio rerio, AY721604), Japanese flounder
Amh (Paralichthys olivaceus, AB166791), blue tilapia Amh (Oreochromis aureus,
DQ257618) and Japanese medaka Amh (Oryzias latipes, AB214971). The phylogenetic
tree was constructed by the Neighbor-Joining method (Saitou and Nei, 1987) using MEGA

software (vers. 5.2.2) (Tamura et al., 2011) with 10000 replicates.
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amhy genotyping of wild fish and laboratory broodstock

A random sample of 90 pejerrey juveniles collected by seine net in the Lake
Kasumigaura (Ibaraki, Japan) on September 2001 and 24 laboratory-reared broodstock fish
from the Aquatic Animal Rearing Facilities, Tokyo University of Marine Science and
Technology (Shinagawa Campus, Tokyo, Japan), were screened for the presence of amhy
using primers designed on the basis of the 5' flanking region of O. hatcheri amhy (Table
S1; NCBI accession code HM153804). The autosomal amh homolog of O. bonariensis
(amha; NCBI accession code AY763406) was analyzed using the primers indicated in
Table S1 as a positive control. Animals carrying the amhy gene (amhy-positives) were
represented by amhy+ when the exact genotype could not be determined and by amhy+/+
or amhy+/- when they were confirmed as homozygous or heterozygous, respectively.
Those without amhy (amhy-negative) were represented by amhy-/-. Genomic DNA
extraction and amplification followed the protocols described in the previous section.
Gonadal sex of each individual was asserted by dissection and visual inspection of the
gonads for wild fish, after sacrificing them through procedures described above, or manual

stripping of gametes/gonadal cannulation for laboratory broodstock.

After amhy genotyping, laboratory-reared broodstock were used in single-pair
crosses between one amhy-/- female and nine amhy+ males were produced by artificial
fertilization for testing Mendelian inheritance and whether the males were homozygous
(amhy+/+) or heterozygous (amhy+/-). We also performed a progeny test with one amhy+
female and an amhy-/- male. Incubation until hatching was performed as described below.
Randomly-chosen hatchlings (n= 24-98) from each cross were analyzed following the

same procedures used for wild fish and broodstock genotyping.
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Rearing procedures and sampling for mRNA expression analysis

One of the pairs that yielded a balanced sex ratio in the progeny test (amhy-/- female,
F1, amhy+/- male, M9; Table S2) was selected and allowed to breed naturally in a 650-liter
recirculated-water rearing tank under controlled temperature (20°C), photoperiod
(14L/10D), and salinity (0.2-0.5% NaCl in dechlorinated tap water). Fertilized eggs were
collected, cleaned of chorionic filaments, and transferred to incubators with flowing
brackish water (salinity of 0.2-0.5%) at 19°C. After hatching (about 9 days after
fertilization), approximately 800 to 1000 newly-hatched larvae were stocked in each of two
60-liter tanks and reared at 25°C (MixPT) (Striissmann et al., 1997a; Ito et al., 2005) for up
to 14 weeks. Fish were fed live Artemia nauplii from the first day to satiation three to four
times daily and gradually weaned into powdered fish food (TetraMin flakes, Melle,
Germany) from the third week. Fish were sampled daily (0 to 8 days after fertilization, or
daf; n=10) and weekly (0 to 10 wah; n=20), respectively, for gene expression and
histological analyses (see below for details). Larvae and juveniles were fin-clipped for
genomic DNA extraction and amhy genotyping according to the methods described in the
previous section. The remaining fish (n= 67) were collected at the end of the experiment

(14 wah) for histological determination of sex ratios.

Histological analysis of gonadal sex differentiation and sex ratios

For the histological analysis of gonadal sex, trunks were fixed overnight in Bouin’s

fixative solution, dehydrated in ascending ethanol series, cleared in xylene, and embedded

18



in Paraplast Plus (McCormick Scientific, St. Louis, MO). Cross-sections were cut serially
at a thickness of 5 um, stained with Hematoxylin-Eosin, and analyzed following previously

reported histological criteria (Ito et al., 2005; Striissmann and Ito, 2005).

Tissue distribution and temporal expression analysis of amhy, amha, and cypl9ala

transcripts

The tissue distribution of amhy and amha transcripts was analyzed using total RNA
extracted from testis, brain, gill, heart, trunk kidney, spleen, liver, anterior and posterior
intestine, and muscle of an amhy+/- 20-week old juvenile. For the temporal expression
analysis, whole embryos and trunks of larvae were stored in RNAIlater (Sigma-Aldrich, St.
Louis, MO) at -80°C until use. Trizol Reagent (Life Technologies) was used for total RNA
extraction. Genomic DNA extracted from the remaining interphase was used for
genotyping embryos. All procedures followed the reagent manufacturer’s protocol.
Synthesis of cDNA and transcription analyses of amhy, amha, and f-actin in whole
embryos and juvenile tissues were performed by RT-PCR according to a previous study
(Hattori et al., 2012). In larvae, the same genes were analyzed by qRT-PCR using the
specific sets of primers and probes shown in Table S1. The suitability of g-actin as an
endogenous control was confirmed by gRT-PCR in the same samples (Fig. S1). The
specificity of the primers was confirmed by using plasmids containing amhy or amha
OREFs as controls and also by direct sequencing of PCR products. The transcript levels of
the ovarian differentiation marker cypl9ala were analyzed at 4 and 6 wah following
methods reported in our previous studies (Fernandino et al., 2008a; Fernandino et al.,

2008b; Hattori et al., 2012; see also Table S1).
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Localization of amhy/amha mRNAs by ISH

Samples for in situ hybridization (ISH) in pre- and post-differentiation gonads were
collected at 4 and 10 wah, fixed and processed for preparation of histological sections as
described above. Body trunk sections were hybridized in the automated tissue processer
Hybrimaster HS-500 (Aloka, Tokyo, Japan) using an amh probe that recognizes both amhy
and amha, synthesized according to a previous study (Fernandino et al., 2008b). Final
detection was performed manually with NBT/BCIP according to the manufacturer’s

(Roche Diagnostics, Basel, Schweiz) protocols.
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Results

Cloning and sequence analysis of amhy gene

An amhy homolog was cloned from a laboratory-reared pejerrey and revealed the
amhy-characteristic 0.5 kb fragment within the third intron (Fig. 1A). The deduced Amhy
protein, including the characteristic TGF- domain (amino acids 421-514) with seven
canonical cysteine residues, comprised 514 amino acids. Phylogenetic analysis based on
the amino acid sequence of the open reading frame showed that O. bonariensis Amhy
shared the same clade with O. hatcheri Amhy whereas the Amha in both species were
placed together in another clade (Fig. 1B). Among the outgroup species, the medaka Amh
showed to have the shortest genetic distance to the Odontesthes species Amhs, displaying

similar distances to both Amhy and Amha clades.

Genotyping of wild fish, broodstock, and progeny from specific crosses

The analysis of juveniles from Lake Kasumigaura revealed 38 amhy* and 52 amhy™
out of 90 individuals whereas that of our O. bonariensis broodstock revealed 14 amhy* and
10 amhy™ out of 24 individuals (Table 1; Fig. 1C). In both cases, there was a high but not
complete concordance between genotypic and phenotypic sex. The progeny of all 9 amhy*
males crossed pairwise with the same amhy’ female showed sex ratios statistically
undistinguishable from 1:1 (Fisher’s exact test), indicating that all males were
heterozygous (amhy*") for the amhy gene (Table S2). No amhy** male was found among

the tested fish. Likewise, the cross of an amhy* female with an amhy”- male confirmed that
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the former was heterozygous for amhy (Table S2). As expected, amha was detected in all

fish regardless of phenotypic sex or amhy genotype (Fig. 1C).

Tissue distribution and temporal expression analysis of amhy, amha, and cypl19ala

Transcripts of amhy were found in the testis and in the brain whereas amha was
expressed only in the testis of juveniles (Fig. 2A). Transcripts of amhy were detected in
embryos from late blastula stage until hatching in all amhy™ individuals (Fig. 2B). In
larvae trunks, the expression of amhy was highest at 1 wah and decreased until 4 wabh,
when it reached a low but stable plateau (Fig. 3A). amha mRNA expression was
undetectable in amhy*"- embryos (Fig. 2B) and low in larvae between 1 and 3 wah (Fig.
3B) but clearly upregulated between 4 and 6 wah. amha mRNA expression was not
detected in any of the amhy’ embryos (Fig. 2B) and was consistently low in larvae
between 1 and 3 wah (Fig. 3C). In contrast, between 4 and 10 wah the mRNA expression
assumed a bimodal distribution thereby 7 out of 19 amhy’ individuals (37%) had high

values and the remaining ones had low levels (Fig. 3C).

A comparative analysis between the expression of amha and the ovarian differentiation
marker cyp19ala at 4 and 6 wah revealed that all 10 amhy™" individuals had high and low
transcript levels of amha and cyp19ala, respectively (Fig. 3D). The amhy”" animals, on the
other hand, showed either this pattern (4 out of 10 individuals) or the opposite one with

relatively high cypl9ala and low amha levels (6 out of 10 individuals; Fig. 3D).

Localization of amha/amhy mRNAs by ISH
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ISH signals for amha/amhy were detected exclusively in somatic cells of the
medullary region of gonads of all amhy*~ (n=2 for each sampling point) and in 8 out of 14
amhy” individuals from 4 and 10 wah (Fig. 4). At 10 wah, when all gonads had

differentiated as ovaries or testes, only the latter had ISH signals.

Relation of phenotypic sex to amhy genotype under controlled conditions

The remaining fish from the amha/amhy expression analysis at 14 wah (n=67) were
68.7% males and 31.3% females. The ratio of amhy*" to amhy”’ fish was nearly 1:1
(49.3%:50.7%) and all of the formers (n=33) were phenotypically male. Among the 34
amhy™ fish, 21 (61.8%) and 13 (38.2%) were female and male, respectively. The gonads of
all individuals examined, including the testes of both amhy’ and amhy*" males, had no
abnormalities or difference of any kind compared to previously reported criteria (lto et al.,

2005; Striissmann and Ito, 2005) (data not shown).
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Discussion

In this study, we examined whether a homolog of the sex determining gene amhy of
Odontesthes hatcheri (Hattori et al., 2012) is present and plays any role in testis
determination of pejerrey O. bonariensis, a species otherwise known for its strong
temperature-dependent sex determination (Strissmann et al., 1997a). Cloning of the O.
bonariensis amhy revealed a molecule that is 98% and 97% identical in terms of the open
reading frame and TGF-p domain, respectively, to its homolog in O. hatcheri. Wild-caught
pejerrey and captive broodstock were then genotyped on the basis of amhy, showing its
presence in about half of the individuals and, for those that were phenotypically sexed,
with few exceptions, they were males. More importantly, amhy*" was linked 100% to
maleness in a progeny that was reared throughout the critical period of sex determination
under a temperature (25°C) known to produce mixed-sex populations (Striissmann et al.,
1997a; Ito et al., 2005). Conversely, most of the amhy”" individuals were females although
there were clearly more exceptions among those reared at 25°C (e.g., approximately 1/3 of
amhy” males; see further discussion below about the effects of this temperature). In this
context, and keeping in mind the strong effects of water temperature on pejerrey sex
determination (Strissmann et al., 1997a), the results suggest that amhy is sex-linked in O.
bonariensis and that it could be implicated in the sex determination of this species just as it

is in O. hatcheri (Hattori et al., 2012).

To address this hypothesis, we examined the ontogeny of amhy expression during
gonadal sex determination and histological sex differentiation in offspring from an amhy”

female and an amhy*™" male raised under controlled laboratory conditions. During
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incubation at 19°C, amhy transcripts were consistently expressed from the late-blastula
stage onwards in all amhy*" genotypes. The amhy transcription was maintained through
hatching and transfer to 25°C, the period considered as critical for sex determination (1-5
wah) (Strissmann et al., 1997a), and finally the appearance of histological signs of gonadal
differentiation (4-7 wah) (Ito et al., 2005). This pattern of expression is consistent with a
role in gonadal differentiation and, considering its sex linkage, the cellular pattern of
expression described below, as well as the known involvement of Amh in testicular
differentiation in several fish species including its congener O. hatcheri (Fernandino et al.,
2008a; Hattori et al., 2012; Piferrer and Guiguen, 2008), with testicular development. Still, the
expression from early embryogenesis, even before the formation of the gonad anlagen, is
intriguing. This is much earlier than in O. hatcheri where amhy plays the master trigger for
testicular differentiation (Hattori et al., 2012). Whether this early sex-specific expression can
affect sex afterwards by epistatic effects on other genes, hence predisposing the amhy*”
genotypes to become males, remains to be assessed. Other questions concerning amhy that
must be addressed are to what degree its expression is affected by water temperature, if it
acts through or independently of amha (see the following discussion), and if the expression

found in the brain is implicated in sex differentiation.

In contrast to amhy, amha was found in all fish regardless of gonadal phenotype,
indicating that it is located in autosomal chromosomes just as it is in O. hatcheri (Hattori et
al., 2012). Yet, it seems to be critical for masculinization in amhy” individuals, perhaps as a
function of temperature and endocrine factors (Fernandino et al., 2008a), and may be a
coadjuvant factor in amhy*”~ genotypes. The first line of evidence that supports a role for
amha is that its expression, although not as early as that of amhy, coincided temporally

with the period when the pejerrey gonads are still sexually labile (see references above).
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This pattern differs from the late amha expression described in O. hatcheri, where it is
considered as irrelevant for testicular differentiation (Hattori et al., 2012). Further, both
gRT-PCR and ISH revealed a bimodal pattern of amha expression in amhy” individuals
where the proportion of animals with high amha expression during the estimated period of
sex determination (37%) closely approximated the proportion of animals with low
cypl9ala during the same period (40%) and that of phenotypic males determined at 14
wah (38%). Also, when the gonads had clearly differentiated by 10 wah, gonads showing
amha expression were testes whereas those without it were ovaries. Finally, all amhy*"
animals had high amha as well as low cypl9ala transcription during the period of sex

determination and all became males.

Taken together, these results strongly suggest that amhy* genotypes differentiate as
males by expression of either amhy alone or amhy and amha together and that amhy may
be implicated in the up regulation of amha. We also hypothesize that amhy” genotypes
rely on amha expression for testis differentiation. Nevertheless, the actual processes
underlying amha regulation in both genotypes remain to be elucidated. In this regard, it
must be noted that the TGF-beta domain, the region that binds to the primary receptor
Amhrll, is highly conserved in both amhy and amha genes of O. bonariensis as in O.
hatcheri (Hattori et al., 2012). Thus, we suppose that Amha may activate the same Amhrll
used by Amhy for the activation of downstream pathway of testis differentiation in amhy™
genotypes. Ongoing studies are focusing on the thermal thresholds for mMRNA expression,

receptor binding, and the relative contributions of amhy and amha for masculinization.

The sex ratio in the controlled rearing experiment was significantly (about 70%)

male-biased and only female-to-male sex-reversals were noted. This highlights the
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importance of the discovery of amhy for unbiased and accurate screening of thermal effects
on gonadal sex differentiation. Thus, the current results suggest that 25°C might not be
exactly neutral for pejerrey in terms of sex effects as previously assumed (Strissmann et al.,
1997a). Alternatively, other forms of stress may have caused elevation in cortisol levels,
which is able to induce testicular differentiation (Hattori et al., 2009; Fernandino et al., 2012),
and thus activated the male pathway leading to sex-reversal. Given the results obtained in
this study, it could be argued that pejerrey possesses a genotypic sex determinant in spite
of having a marked TSD. This finding underscores the difficulty in drawing a line between
GSD and TSD and that these forms are likely part of a continuum (Striissmann and Patitio,
1999; Barske and Capel, 2008). On the other hand, it is intriguing how amhy has been
maintained in the course of evolution in a species whose sex is highly susceptible to
temperature effects. The high thermal dependence of sex associated to the presence of a
marker for genetic predisposition of gender makes O. bonariensis a very attractive model
to study these issues as well as the molecular pathways of high temperature-induced
masculinization and low temperature-induced feminization. Although in low frequency,
both amhy*~ females and amhy” males were found in a wild population, raising concerns
about its causes and the impact of temperature-dependent sex determination and sex-
reversals on the population demographics (Striissmann et al., 2010). The finding of amhy
will make possible to monitor wild pejerrey populations for mismatches between genotypic
and phenotypic sex and may prove instrumental for field studies addressing the effects of
endocrine disruptors or abnormal temperatures on reproduction and the ecological

relevance of TSD for this species.

In summary, this study demonstrated that the amhy gene is active in amhy*"

genotypes before, during, and after the critical time-window of TSD. Although some amhy
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" individuals developed as males, no amhy*" females were found among fish reared at
intermediate temperatures, suggesting that under similar conditions amhy is a strong
determinant of testis differentiation. Taken together, the present results provide strong

support for the coexistence of GSD and TSD in O. bonariensis.
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Tables and Figures

Table 1. Relationship between phenotypic (gonadal) sex and amhy genotype in wild
pejerrey and laboratory-reared broodstock.

Phenotype
Source Genotype
Female Male Total n (%)
amhy™” 49 3 52 (57.8)
Wild fish'2
amhy* 1 37 38 (42.2)

(Lake Kasumigaura)
Total n (%) 50 (55.6) * 40 (44.4)

amhy—/— 8 2 10 (417)
Laborator
y amhy*" 5 12 14 (58.3)
broodstock!?
Total n (%) 10 (41.7) 14 (58.3)

INo statistical significance difference in phenotypic sex ratio (Fisher’s test, p>0.05).
2No statistical significance difference in amhy genotype ratio (Fisher’s test, p>0.05).
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Figures Legends

Figure 1. amhy gene structure, phylogenetic relationship, and broodstock genotyping.
A: Structure of the amhy gene in O. bonariensis, size of exons, UTRs, and TGF-beta
domain, and the respective identity values in relation to O. bonariensis amha. The third
intron contains a 0.5 kb insertion in relation to amha. B: Phylogenetic tree (Neighbor-
Joining method) for the amino acid sequences of O. bonariensis and O. hatcheri Amhy and
Amha and the Amh of other teleosts. Numbers indicate bootstrap values based on 10000
replicates. C: amhy-based sex genotyping in O. bonariensis broodstock using primers that
amplify part of the 5' flanking region and part of the amhy gene (1896 bp); amha gene was
used as positive control (2441 bp). The dotted-boxes indicate parents used in the rearing
experiment and asterisks indicate disagreement between the amhy-based genotype and

phenotypic sex. NC: negative control.

Figure 2. Expression of amhy and amha mRNAs in tissues and embryos. A: Tissue
distribution of amhy and amha mRNAs in juvenile pejerrey (RT-PCR). B: Expression
profile of amhy and amha during embryogenesis in amhy*~ and amhy”’" genotypes (RT-

PCR). p-actin was used as endogenous control. NC: negative control.

Figure 3. Quantification of amhy, amha and cypl9ala mRNAs during sex
differentiation. A to C: Abundance of mRNA transcripts of amhy (A) and amha (B) in
amhy*" genotypes and of amha in amhy”’~ genotypes (C) during larval development at 25°C

(n=3 to 6 per time point; gRT-PCR). D: Abundance of amha mRNA transcripts in relation
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to cypl9ala in amhy* and amhy”’ genotypes at 4 and 6 weeks after hatching (QRT-PCR);
arrows indicate two arbitrarily-defined, opposing patterns of gene expression. S-actin was
used as endogenous control. Values with different letters are statistically different from one

another (One-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 4. Spatial expression of amhy and amha mRNAs in differentiating gonads.
Localization amhy and/or amha transcripts by ISH (left panels) and light microscopic
histology (right panels) of gonads in 4 and 10 week old larvae reared at 25°C. Transcripts
were detected in all amhy*- genotypes (presumptive amhy and/or amha signals) and in
about half of the amhy”- genotypes (amha signals). At 10 wah, the expression was detected

in developing testis but not in developing ovaries. Scale bars indicate 10 pm.

Table S1. Details of the primers used for amhy cloning, amhy genotyping and expression

analysis with the respective PCR conditions.

Table S2. Proportion of amhy* and amhy”" genotypes in the progenies produced by single-

pair crosses using laboratory broodstock fish.

Figure S1. Quantification of g-actin mRNA during larval development. Abundance of
S-actin mRNA transcripts in trunks of larvae reared from 1 to 10 weeks after hatching at

25°C (gRT-PCR). Symbols and bars indicate the means and SEM, respectively. Values
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with the same letter are not statistically different from one another (One-Way ANOVA

with Bonferroni's post-test, p>0.05).
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Figure 4
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Table S1.

Oligo sequence ('5

Primer binding

Purpose Oligo name ~3) sites (amplicon PCR conditions
size)
1x 94°C 2 min;
35x 94°C 30
amhy UTRs ?gt"hy SRACE | AGTCTCACCSTS | +1276 10 41209 | sec, 58°C 30
sec and 72°C 90
sec; 72°C 2 min
1x 94°C 2 min;
GGTGGTCATAGA 35x 94°C 30
amplification ?rr]‘réhy SRACE- CTGGAACGAGGA | +1464 to +1488 sec, 56°C 30
' A sec and 72°C 90
sec; 72°C 2 min
‘i‘ghy SRACE- (T3AATGTA£AGGAACCGCCA +1905 to +1925
amhy 5RACE- | TCCACAAAGCAG
2nd: GGTATGAG 14210 +161
amhy AGTCAGCTCAGA 1x 94°C 5 min;
amplification | ONaYPFW TGCT -1387 35x  95°C 30
(amhy AGCCGGATGCAA sec, 60°C 30
genotyping) OhaYPRv AACTTCCAGA 339 sec, 72°C 150
sec; 1x 72°C 5
(1896 bp) min
ACGCGGGTCACA 1x 94°C 5 min;
OboAmhaFw | -\ cGeaTTTC -3810-17 35X  95°C 30
amha CCGTCTGCATAA sec, 60°C 30
amplification OboAmhaRv AACAAAC +1194 1o +2394 sec, 72°C 150
sec; 1x 72°C 5
(2432 bp) min
grggy ART-1 gpCR-amhyFw %{fggiTCGGAGG -38 10 -21
GAGGTTATGAGG 1x 50°C 2 min:
(TagMan) gPCR-amhyRv %ECTGAGGAAGT +118 to +144 1x 95°C 20 sec:
40x 95°C 3 sec,
TCGTGCATCGGC 63°C 30 sec
TagMan Probe AGAG +53 to +69
(182bp)
amha gRT- | gPCR- AAACAGCAGCAG
PCR amhaFw GTGAGAGTCA +1130to +1151
TGATGGAGAGAA 1x 50°C 2 min;
(Tagman) gPCR-amhaRv AAGACTCTTCCG +1511 to +1534 1x 95°C 20 sec:
40x 95°C 3 sec,
TaqMan Probe g?ég’l—ggéce‘%ﬁc +1447 to +1469 60°C 30 sec
(405bp)
B-actin  gRT- i TCGTGCGCGACA 1x 50°C 2 min;
PCR GPCR-actinFw | +1 A aAGGA 62310 +641 1x 95°C 20 sec:

40




. GCAGCGGTCCCC 40x 95°C 3 sec,
(TagMan) gPCR-actinRv ATTTC +676 to +692 60°C 30 sec
CTGTGTTACGTTG
TagMan Probe | CATTGGACTTTGA | +646 to +674
GCA
(70bp)
B-actin qRT- | qPCR-0bb GCTGTCCCTGTA |, . —
- 417 to +437 1x 50°C 2 min;
PCR actinFw CGCCTCTGG !
1x 95°C 10 min;
(SYBR Green) | 4PCR-0bb GCTCGGCTGTGG | 59614 +616 40x  95°C 10
actinRv TGGTGAAGC cee. 60°C 30
(200bp) sec
cypl9ala GPCR- GCGAGCTGTCTG X 50°C 2 i
qRT-PCR AlomGFw | GCTGAGAA 02104920 | X S0 C 2 min
(SYBR Green) fon?ém 2$§:E§£§§£Gc +9801t0+1001 | 40x 95°C 10

(200bp)

sec, 60°C 30

sec
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Table S2.

Crosses P Genotype Proportion
rogeny

Female Male (n) amhy* amhy*

(genotype) (genotype)

F1 (amhy’) M1 (amhy*) 36 47.2 52.8
M2 (amhy™) 50 50.0 50.0
M3 (amhy™) 94 48.7 51.3
M4 (amhy™) 81 47.5 52.5
M5 (amhy™) 98 53.1 46.9
M6 (amhy™) 24 333 66.7
M7 (amhy*) 56 51.8 48.2
M8 (amhy*) 49 48.9 51.1
M9 (amhy™) 30 53.3 46.7

F2 (amhy") M10 (amhy™’) 35 40.0 60.0
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Chapter 2

Differential expression and regulation of
amhy and amha mRNA during

temperature-dependent sex determination

In pejerrey O. bonariensis
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Abstract

Sex determination in pejerrey Odontesthes bonariensis is characterized by a strong
temperature dependence (TSD). However, we recently identified a homologue of a testis
determinant, amhy, and demonstrated that at an intermediate temperature its presence
(XY/YY) or absence (XX) can favor the formation of males and females, respectively. In
this study, we investigated the transcriptional profiles of amhy and the autosomal amh,
amha at feminizing and masculinizing temperatures during early larval development with
the aim to evaluate their relationship with TSD and testis formation. XY and XX larvae
were reared at 17°C and 29°C (female- and male-promoting temperatures, respectively)
during the critical period of thermolabile sex determination and used for transcriptional
analyses of amhy and amha by gRT-PCR. The expression analyses showed that amhy
MRNAs were highly expressed in XY larvae from both 17°C and 29°C groups at the
beginning of sex determination period but declined thereafter. amha was upregulated
during the sex determination period in a few XY larvae at 17°C and in both genotypes at
29°C and was highly correlated with maleness. As increased cortisol and subsequent
increase of 11-ketotestosterone (11-KT) has been implicated in the temperature-induced
masculinization in pejerrey, we performed a luciferase reporter assay with the presumptive
promoters (~3kb 5' upstream fragment) of both amh paralogues to investigate their
regulation by cortisol and 11-KT in vitro. The glucocorticoid receptor expression plasmid
was co-transfected with luciferase reporter plasmids containing amhy or amha promoter
into endothelial progenitor cells. Transcriptional activity was measured 48 hours post-
transfection in cells exposed to different cortisol and 11-KT doses. Transcriptional activity

analyses showed that the amhy promoter did not respond to any concentration of cortisol
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and 11-KT, whereas amha transcription was activated by both cortisol and 11-KT in dose
dependent manners. These results suggest that amhy is considered as a genotypic sex
determinant and temperature-independent, but the amha regulated by cortisol and 11-KT

might have key roles in a temperature-induced testicular formation in pejerrey.
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Introduction

Sex determination (SD) in many teleost fish is considered a fine-tuned process
driven by the balance between internal genotypic (genotypic sex determination or GSD)
and external environmental (environmental sex determination or ESD) factors, particularly
during a critical period of early gonadal development. Interaction of these internal and
external factors can affect the ratio between androgens and estrogens, and thus ultimately
determine the gonadal fate of an individual. In fish, environmental factors such as hypoxia,
pH, background color, and temperature can significantly affect sex determination and
differentiation (Cheung et al. 2014; Papoutsoglou et al. 2000; Rotllant et al. 2003; Merighe et al.

2004; Mankiewicz et al. 2013).

Sex determination in pejerrey Odontesthes bonariensis is characterized by a strong
temperature dependence (TSD). In this species, sex ratios reach 100% female or 100%
male at the environmentally relevant temperatures of 17°C (female producing temperature,
FPT) and 29°C (male producing temperature, MPT) respectively, when the thermal
exposure occurs between hatching and the onset of histological differentiation of the
gonads (around 5 weeks post hatch). Recently, we identified homologue of a testis-
determining gene amhy (Y-linked anti-Mullerian hormone), which is thought to be a
duplicated copy of autosomal amh (amha), and was demonstrated that its presence
(XY/YY) or absence (XX) can favor the formation of males and females, respectively at an
intermediate temperature (Yamamoto et al., 2014). This report represents the first clear
evidences that genotypic and environmental sex determinants can coexist in species with

marked TSD (Yamamoto et al., 2014). However, precise function and regulation of amhy
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and amha genes during sex determination/differentiation in relation to temperatures

remains unknown.

A number of studies have shown that stress hormone cortisol is involved in
masculinization. For instance, blue background color and high temperature are able to
yield male-biased populations, which seems to be mediated by increased levels of cortisol
(Yamaguchi et al., 2010; Hayashi et al., 2010; Hattori et al., 2009). In medaka (Oryzias
latipes), high temperature induced masculinization of genetically females by elevation of
cortisol levels, which in turn suppressed both the expression of follicle-stimulating
hormone receptor (fshr) mRNA and the female-type proliferation of germ cells during
sexual differentiation (Hayashi et al., 2010). In flounder (Paralichthys olivaceus),
Yamaguchi et al. (2010) proposed that cortisol induces masculinization by direct
suppression of cypl9ala mRNA expression via interference with cyclic adenosine
monophosphate (CAMP)-mediated activation. The suppression of cypl9ala transcription

by cortisol was also found in pejerrey (Hattori et al., 2009).

The other important gene in thermal stress-induced masculinization in pejerrey is
considered to be 11B-hydroxysteroid dehydrogenase (11B-HSD), which encodes an
enzyme involved in both glucocorticoid and androgen syntheses (Fernandino et al., 2012;
2013). In pejerrey, cortisol treatment produced significant increases in hsd11b2 mRNA
expression and 11-ketotestosterone (11-KT) levels in vivo (Fernandino et al., 2012). For
this reason, it has been proposed that the masculinization induced by thermal stress in
pejerrey occurs by means of cortisol inactivation and the concomitant synthesis of 11-KT,
which acts as an inducer of masculinization (Fernandino et al., 2013). In spite of such a

progress made in the aspect of masculinization under thermal stress, how thermal stress
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and androgen interact with sex-related genes and ultimately lead to testicular formation

remains elusive.

To gain a better understanding of the mechanism of coexistence of GSD and TSD in
pejerrey, in this study, we investigated the transcriptional profiles of amhy and amha at
feminizing (17°C) and a masculinizing (29°C) temperatures during the critical period of sex
determination/differentiation. In this experiment, we also examined expression profiles of
AMH type Il receptor (amhrll) and ovarian aromatase (cypl9ala). Then, we investigated
the in vitro regulation of amhy and amha by cortisol and 11-KT by a luciferase reporter

assay.
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Material and Methods

Rearing procedures and sampling for mRNA expression and histological analyses

An XX female and an XY male were selected and allowed to breed naturally in a
650-liter recirculated water rearing tank under controlled temperature (20°C), photoperiod
(14L/10D), and salinity (0.2-0.5% NaCl in dechlorinated tap water). Fertilized eggs were
collected, cleaned of chorionic filaments, and transferred to incubators with flowing
brackish water (salinity of 0.2-0.5%) at 19°C. After hatching (about 9 days after
fertilization), approximately 800 to 1000 newly-hatched larvae were stocked in each of two
60-liter tanks and reared at 17°C and 29°C for up to 14 weeks. Other rearing and sampling

procedures followed the previous study (Yamamoto et al., 2014).

amhy genotyping of sampled larvae

Genomic DNA was extracted following the protocol described by Aljanabi and
Martinez. Primers (YYFw 1548 5° - AGTAAATTTGCCGGAGGCTTG - 3’ and Amhy
182R 5’- GAGGTTATGAGGTGCTGAGGAAGTTA -3’) designed within the 5’ flanking
region of amhy gene of pejerrey were used for genotyping. PCR reaction conditions were
as follows: 3 min at 94°C, 35 cycles of 15 sec at 94°C, 30 sec at 60°C and 2 min 30 sec at
72°C, final elongation for 5 min at 72°C. amha amplification was analyzed as a positive

control based on previous study (Yamamoto et al., 2014)
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Transcriptional analyses of amhy, amha, cyp19ala and amhrll mRNAs

For the transcriptional analyses of amhy, amha, cypl9ala and amhrll mRNAsS,
trunks of larvae were stored in RNAIlater (Sigma-Aldrich, St. Louis, MO) at -80°C until
use. Trizol Reagent (Life Technologies) was used for total RNA extraction. All procedures
followed the reagent manufacturer’s protocol. Synthesis of cDNA and transcription
analyses of amhy, amha, and fg-actin in larvae were performed by gRT-PCR following
protocols described in the previous study (Hattori et al., 2012; Fernandino et al., 2008a;
Yamamoto et al., 2014). Partial sequence of amhrll was isolated and primers for
expression analysis were designed (Fig. 11, unpublished). The primers were: Obo gRT
amhrll Fw2 5°- CCAACTCCTATTTTGCAGCTG - 3’ and Obo qRT amhrll Rv3 5°-

GGCTGTAATCATGACAAGAGG - 3°.

Isolation and sequencing of amhy and amha presumptive promoters

The 5°- flanking regions of pejerrey amhy and amha were isolated from the pejerrey
genomic DNA of an XY adult male. Primers used for amhy promoter amplification were
OhaYprolFw 5’- GTGGTCCGATGGAAAATTAAGTACTG - 3°, designed from the
Patagonian pejerrey Odontesthes hatcheri amhy promoter region and Amhy 182R 5°-
GAGGTTATGAGGTGCTGAGGAAGTTA - 37, designed from the pejerrey amhy open
reading frame (ORF). Pejerrey amha promoter was amplified using OboApro 22Fw 5’ -
CTAAGAAGGAGGCTCACTGTCCCTTGTC - 3’, designed based on the Patagonian

pejerrey  Odontesthes hatcheri  promoter sequence and Amha 20IR 5 -
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CCACAAAGCAGGGTGCG - 3’ designed based on the pejerrey amha ORF (see Hattori
et al., 2012 for more promoter information). Amplifications were done according to the
following conditions: 3 min at 94°C, 35 cycles of 15 sec at 94°C, 45 sec at 60°C and 4 min
at 72°C, 7 min at 72°C. Amplicons were then cloned in to pGEM®-T Easy Vector
(Promega) following the manufacturer’s instructions and sequenced in an ABI PRISM
3100 capillary sequencer (Life Technologies, Carlsbad, CA) using the BigDye Terminator
method. Sequences were analyzed with GENETYX version 11.0 (GENETYX, Tokyo,

Japan).

Isolation and sequencing of pejerrey glucocoticoid receptorl, grland androgen receptor «,

ara cDNAs

lug of total mMRNAs extracted from adult testis (for grl) and ovary (for ara) was
reverse-transcribed following the protocol in previous study (Yamamoto et al., 2014). RT-
PCR using adult testis cDNA in the mixture [0.2mM dNTPs, 1 x PrimeSTAR Buffer
(Mg? plus), 0.25 unit of PrimeSTAR® HS DNA Polymerase, Takara, Japan] was
performed to amplify the ORF of pejerrey grl and ara . OboGrl Fwl 5 -
ACTGCCACTTTCAACCAAAACAATG - 3’, degenerated from the 5’UTR of
Dicentrarchus labrax (Genbank accession code AY619996) and Oryzias dancena
(Genbank accession code HM598069) glucocorticoid receptors and OboGrl 90Rv 5°-
GCTGTTGCTGAGGCCGTTAG - 3’ designed on the basis of the pejerray grl partial
MRNA sequence (Genbank accession code HQ843506) were used to obtain the translation
start site of pejerrey grl. Thermal conditions of PCR amplifications were as follows: 10

sec at 98°C, 30 cycles of 10 sec at 98°C, 5 sec at 56°C and 30 sec at 72°C, then followed
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by a final elongation for 3 min at 72°C. Primers used for amplifying pejerrey ara ORF
(pjARalphaORF-Fw 5° - ATGGCCTTTCTCTCGAGCTTG - 3’ and pjARalphaORF-Rv 5’°
- CTAGGCTCTATCGTGGAAAAGG - 3°) were designed based on the whole genome
sequence of pejerrey (unpublished). Thermal conditions for amplifications of ara werel0
sec at 98°C, 30 cycles of 10 sec at 98°C, 5 sec at 56°C and 2 min 45 sec at 72°C, following
a final elongation for 5 min at 72°C. PCR products were electrophoresed in 1% agarose gel,

purified, and sequenced as described above.

Plasmid construction

The pejerrey amhy and amha presumptive promoters were ligated into the
pGL4.10[luc2] reporter vector (Promega) to construct amhy- and amha- luciferase reporter
plasmids. The GR1- and ARa-expression plasmids were constructed by ligating the grl

and ara ORF into pcDNAS3.1 (Invitrogen) according to the manufacturer’s protocol.

Transient transfection assay

EPCs (endothelial progenitor cells) generated from fathead minnow Pimephales
promelas, was kindly gifted from Dr. Kunihiko Futami’s lab, were cultured in D-MEM
(Wako) supplemented with 5% charcoal- stripped fetal bovine serum (biowest) at 25°C.
The cells were plated in 48-well plates 24 hours before transfection. 120 ng of the amhy- or
amha- luciferase reporter, 120 ng of Grl- or Ara- expression plasmid, and 30ng of the

pRL-SV40 (Promega) normalization plasmid were then co-transfected in triplicate into the
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cells following the protocol provided by TransIT-LT1 Transfection Reagent (Mirus).
Cortisol (Sigma) and 11-KT (Sigma) were dissolved into DMSO and 100% ethanol,
respectively. Cells were treated with or without cortisol (0 uM, 1 uM, 10 uM, 100 uM) or
11-KT (0 uM, 0.1 uM, 1 uM, 10 uM, 100 uM) 24 hours after transfection and another 24
hours later, luciferase assay was performed using the Dual-Luciferase Reporter Assay
System (Promega) and measured the fluorescent by a luminometer Gene Light 55

(MICROTEC) according to the manufacturer’s protocol.

Statistics analyses

Data for amhy, amha, cypl9ala and amhrll expression were analyzed by one-way
ANOVA with Bonferroni’s post-test at different time point within treatments and Two-
Way ANOVA with Bonferroni's post-tes between treatments at the same time point. Data
for luciferase assay were analyzed by one-way ANOVA with Bonferroni’s post-test. All
the data analyses were performed using GraphPad Prism (v.5.00; GraphPad Software, San

Diego, CA, USA).
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Results

Phenotypic sex ratios at 17°C and 29°C reared larvae

Analysis of the phenotypic sex and genotype at 14 wah showed that all XX fish
(n=38) at 17°C were females whereas the XY were either males or females (n=16 and 11,
respectively). 29°C yielded a single-sex population with all larvae (n=50) developed as

males regardless of amhy genotype (Table 1).

Transcriptional analyses of amhy, amha, cyp19ala and amhrll at 17°C, 25°C and 29°C

reared larvae

amhy expression showed a transient peak at 2 wah at 17°C and at 1 wah at 29°C,
followed by a decrease at both temperatures (Fig. 1). amha expression in XY fish was low
from 1 wah to 6 wah and increased in a few XY larvae slightly but significantly after 8
wah in XY animals at 17°C, whereas at 29°C it was up-regulated between 3 and 8 wah (Fig.
2). All XX individuals at 17°C had low amha expression throughout the experiment
whereas at 29°C a notable increase was observed between 3 and 8 wah (Fig. 3), showing a
high correlation with maleness. cypl9ala expression was inversely proportional to
temperature in XX fish (Fig. 6B). XY fish had higher cyp19ala at 17°C compared to that
at 25 and 29°C (Fig. 6A). Dimorphic distribution of cypl9ala in XX genotype at 25°C and
in XY genotype at 17°C was detected. amhrll expression did not differ between XX and
XY genotypes, but much more pronounced amhrll expression at 25°C and 29°C than that

at 17°C was observed in both genotypes (Fig. 7).
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Isolation and sequencing of amhy, amha presumptive promoters and grl, ara cDNA

amhy presumptive promoter 3522 bp and amha promoter 3341 bp upstream of
translation start site were isolated (Fig. 8 and Fig. 9). A half GRE/ARE half site in amhy
and 2 half GRE/AREs (5’ — TGTTCT - 3°) in amha promoter region were identified using
ALGGEN-PROMO online free software (http://alggen.Isi.upc.edu/). The pejerrey grl
cDNA encoding a 782 amino acids (Fig. 10) and Androgen receptor «, ara encoding 690

amino acids (Fig. 11) were isolated.

Cortisol and 11-KT activate amha but not amhy gene transcription via GR1land AR« in

vitro

To investigate whether cortisol mediates high temperature-induced masculinization
by activating amhy or amha transcription, a Dual-luciferase reporter assay was performed
using grl, ara and the presumptive promoters (~3kb 5' upstream fragment) of both amh
paralogues. Transcriptional activity analyses showed that while amhy promoter did not
respond to any cortisol and 11-KT doses (Fig. 4A, Fig. 5A), amha transcription was
distinctly activated by both cortisol and 11-KT (Fig. 4B, Fig. 5B). Transcriptional activity

of amha promoter revealed a cortisol dose-dependent manner (Fig. 4B).
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Discussion

In the present study, we examined the transcriptional profiles of the sex determinant
amhy and its paralogue amha in pejerrey Odontesthes bonariensis to assess their relation to
the temperature-dependent sex determination and testicular formation. The pejerrey larvae
were reared at 29°C for male promoting temperature and 17°C for female promoting
temperature during early larval development. Both of the temperatures showed a high at
very early development and subsequent down regulation of amhy during the critical period
for sex determination (1-5 wah). The similar expression profile of amhy is also observed at
25°C, a mixed sex-producing temperature (Yamamoto et al., 2014), suggested that
expression of amhy during sex determination/differentiation might be temperature-

independent.

In contrast to amhy, clear differences in amha expressions were observed in
different temperatures. At masculinizing temperature (29°C), amha was up-regulated
during sex determination/differentiation periods in both XY and XX genotypes and all the
larvae developed as males. In contrast, at feminizing temperature (17°C), amha expression
was relatively low compared to those of at masculinizing temperature. Levels of amha
MRNA maintained low during sex determination/differentiation periods in XX individuals
and all of them developed as females. However, in XY individuals, amha expressions at 8
and 10 wah showed a bimodal pattern and 41% and 59% larvae developed as females and
males, respectively. In our previous study revealed that high and low amha expressions
were associated with maleness and femaleness, respectively at an intermediate temperature

(Yamamoto et al., 2014). Therefore, XY individuals showed high amha expression
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overlapping to amhy expression may differentiate as male and those without it may
differentiate as female. Thus, expression profiles of amha at 17°C and 29°C suggested that
amha seemed to be regulated by temperature and involved in the testicular differentiation
of pejerrey. Moreover, high amha expression observed only in XY genotype at 17°C
indicated that amhy is a strong genotypic determinant and may act as a trigger of

masculinization, which may in turn up-regulate amha during early larval development.

Interestingly, expression profile of amhy during sex determination/differentiation in
pejerrey was different from those of in Patagonian pejerrey. In Patagonian pejerrey,
species with marked GSD, expression of amhy mRNA maintained high during sex
determination period and no overlapped expression of amha was observed at this period
(Hattori et al., 2012). In contrast, in pejerrey, species with marked TSD, expression of
amhy mRNA was high only at the beginning of sex determination period but declined
thereafter. However, amha complementary expressed during sex determination period.
Generally, sex-determining genes found in other species, such as sdY in rainbow trout and
dmy/dmrtlbY in  Japanese medaka, maintained high during the sex
determination/differentiation period (Yano et al., 2012; Nanda et al., 2002). Pejerrey
possesses strong TSD system and temperature modulates fate of sex after genotypic sex
determination. Thus, this unique decline of genotypic sex determinant amhy may be linked

to the mechanism of TSD in this species.

As introduced above, the stress hormone cortisol has been implicated in the high
temperature-induced masculinization of many species including pejerrey (Hattori et al.,
2009; Fernandino et al., 2012; Fernandino et al., 2013; Hayashi et al., 2010; Yamaguchi et

al., 2010). In medaka (Oryzias latipes), high temperature induced masculinization of
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genetically females by elevation of cortisol levels, which in turn suppressed both the
expression of follicle-stimulating hormone receptor (fshr) mRNA and the female-type
proliferation of germ cells during sexual differentiation (Hayashi et al., 2010). In flounder
(Paralichthys olivaceus), Yamaguchi et al. (2010) demonstrated that cortisol induces
masculinization by direct suppression of cypl9ala mRNA expression via interference with
cyclic adenosine monophosphate (CAMP)-mediated activation. In pejerrey, the other key
gene in thermal stress-induced masculinization is considered to be the 11B-hydroxysteroid
dehydrogenase (11B-HSD), one of the enzymes shared by the glucocorticoid and androgen
pathways (Fernandino et al., 2012; 2013). Cortisol treatment in pejerrey produced
significant increases in hsd11b2 mRNA expression and 11-ketotestosterone (11-KT) levels
in vivo (Fernandino et al., 2012), before the suppression of cyp19ala transcription. For this
reason, it has been proposed that the masculinization induced by thermal stress in pejerrey
occurs by means of cortisol inactivation and the concomitant synthesis of 11-KT, which
acts as an inducer of masculinization (Fernandino et al., 2013). The key role of cortisol
during gonadal sex change has also been reported in several hermaphroditic fish species
(Nozu and Nagahama, 2015; Solomon-Lane et al., 2013; Godwin and Thomas, 1993). In
the protogynous bluehead wrasse Thalassoma bifasciatum, dimorphic expression of
hsd11b2 and glucocorticoid receptor in gonad was observed and local cortisol production

was suggested to be important in sex differences (Liu et al., 2015).

In this study, we investigated whether cortisol and 11-KT can affect amhy or amha
transcription in vitro. The presumptive promoters (~3kb 5' upstream region) of both amh
paralogues were isolated. Sequencing of presumptive amhy promoter contained one
downstream-half sequence (TGTTCT) of putative ARE/GREs (AGAACANNNTGTTCT),

while presumptive amha promoter contained two downstream-half sequences of putative
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ARE/GREs. Transcriptional activity of presumptive promoters of amhy and amha were
analyzed in the presence of cortisol and 11-KT using a dual-luciferase reporter assay
(DLR) system. Luciferase activity showed that amhy promoter with one ARE/GRE did not
respond to any cortisol and 11-KT doses. On the contrary, amha transcription was
distinctly activated by both cortisol and 11-KT and transcriptional activity of amha
promoter increased with cortisol in a dose-dependent manner. As demonstrated in a
number of previous studies, ARE/GRE-like sequence, particularly the downstream half site
is capable of binding the relative receptors in mammals and fish (Del Monaco et al., 1997;
Hayashi et al., 2012; Schiller et al., 2014). In this study, co-activation of amha promoter by
both cortisol and 11-KT suggested a successful binding of the GRE/ARE-half sites in
pejerrey amha promoter to the glucocorticoid and androgen receptors and thus revealed an
important role of cortisol and 11-KT on amha transcription. Cortisol and 11-KT may work
synergistically and act respectively as a first and second trigger during thermal stress-
induced masculinization of pejerrey. Ongoing studies focus on confirmation of the function
of the half GRE/ARE sites by producing ARE/GRE mutant in amha promoters. On the
other hand, impervious transcription activity of amhy promoter by cortisol and 11-KT may
due to less number of GRE/ARE-half site compared to amha promoter region. In this study,
the expressions of ovarian aromatase cypl9ala (critical for female development) and amh
type 1l receptor amhrll (critical for male development) were examined at the FPT and
MPT, respectively. cypl9ala expression was found to be inversely proportional to
temperature in XX fish whereas in XY genotypes a dimorphic distribution of cypl9ala
was observed at the 17°C. amhrll expression did not differ between XX and XY fish
although it was higher at 25°C and 29°C than that at 17°C in both genotypes. These results

suggest that amhy expression is temperature-independent while amha and amhrll
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expression were temperature-dependent. In pejerrey, thermal stress may modulate amha
expression though amh receptors which then induce masculinization in pejerrey. High
water temperature induces amha expression by elevated cortisol and androgen levels in

pejerrey

In conclusion, the results obtained in this study suggested that amhy is a genotypic
sex determinant in pejerrey and regulated in temperature independent manner. In contrast,
amha is upregulated in response to high water temperature and its overlapped expression
with amhy is regulated via cortisol and 11-KT. Thus, overlapping expression of amhy and
amha, early decrease of amhy expression, and amha regulation by temperature may be

keys for the coexistence of genotypic and environmental sex determinants in this species.
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Tables and Figures

Table 1. Sex ratios at 17°C and 29°C in relation to amhy genotype

Phenotype
Temperature Genotype
Female Male Total n (%)
XX 38 0 38 (58.5)
17C XY 11 16 27 (41.5)
Total n (%) 49 (75.4) 16 (24.6)
XX 0 27 27 (54.0)
29°C XY 0 23 23 (46.0)
Total n (%) 0 (0.00) 50 (100)
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Figure Legends

Figure 1. Quantification of amhy mRNAs during sex differentiation by qRT-PCR.
Abundance of mRNA transcripts of amhy in XY genotypes during larval development at
17 and 29°C (n=3 to 8 per time point; gRT-PCR). f-actin was used as endogenous control.
Values with different letters are statistically different from one another (lower case letter
for 17°C and upper case letter for 29°C respectively, One-Way ANOVA with Bonferroni's
post-test, p<0.05). *Significant difference of expression between treatments at the same

time point (Two-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 2. Quantification of amha mRNAs during sex differentiation by gRT-PCR.
Abundance of mRNA transcripts of amha in XY genotypes during larval development at
17 and 29°C (n=3 to 8 per time point; gRT-PCR). p-actin was used as endogenous control.
Values with different letters are statistically different from one another (lower case letter
for 17°C and upper case letter for 29°C respectively, One-Way ANOVA with Bonferroni's
post-test, p<0.05). *Significant difference of expression between treatments at the same

time point (two-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 3. Quantification of amha mRNAs during sex differentiation by gRT-PCR.
Abundance of mRNA transcripts of amha in XX genotypes during larval development at
17 and 29°C (n=3 to 8 per time point; gRT-PCR). f-actin was used as endogenous control.
Values with different letters are statistically different from one another (lower case letter

for 17°C and upper case letter for 29°C respectively, One-Way ANOVA with Bonferroni's
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post-test, p<0.05). *Significant difference of expression between treatments at the same

time point (two-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 4. Effects of cortisol on amhy (A) and amha (B) promoter in vitro.
Transcriptional activity of the pejerrey amhy and amha promoter in EPCs (endothelial
progenitor cells). Relative luciferase activity was calculated based on the value of the
control. Vertical bars indicate means (+s.e.m.). Values with different letters are statistically

different from each treatment (One-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 5. Effects of 11-KT on amhy (A) and amha (B) promoter in vitro.
Transcriptional activity of the pejerrey amhy and amha promoter in EPCs (endothelial
progenitor cells). Relative luciferase activity was calculated based on the value of the
control. Vertical bars indicate means (+s.e.m.). Values with different letters are statistically

different from each treatment (One-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 6. Quantification of cyp19ala mRNAs during sex differentiation by gRT-PCR.
Abundance of mRNA transcripts of cypl9ala in XY (A) and XX (B) genotypes during
larval development at 17, 25 and 29°C (n=3 to 8 per time point; gRT-PCR). S-actin was
used as endogenous control. Values with different letters are statistically different from one

another (One-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 7. Quantification of amhrll mRNAs during sex differentiation by gRT-PCR.
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Abundance of mMRNA transcripts of amhrll in XY (A) and XX (B) genotypes during larval
development at 17, 25 and 29°C (n=3 to 8 per time point; gRT-PCR). S-actin was used as
endogenous control. Values with different letters are statistically different from one

another (One-Way ANOVA with Bonferroni's post-test, p<0.05).

Figure 8. Partial sequence of amhy promoter. Red colored base pairs represent the

transcription start site (start codon).

Figure 9. Partial sequence of amhy promoter. Red colored base pairs represent the

transcription start site (start codon).

Figure 10. Complete CDs and the encoded amino acid of pejerrey glucocorticoid
receptor 1. Red colored base pairs represent the primer sequences used in RT-PCR

amplification.

Figure 11. Complete CDs and the encoded amino acid of pejerrey androgen receptor
alpha. Red colored base pairs represent the primer sequences used in RT-PCR

amplification.

Figure 12. Partial CDs of pejerrey amh type Il receptor gene. Green colored base pairs

represent the primer sequences used in gRT-PCR analysis.
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General Discussion and Final Conclusion

Pejerrey is a gonochoristic species with a striking temperature-dependent sex
determination. Single sex population can be consistently obtained when the larvae are
raised between hatching and on set of histological differentiation of gonads at 17°C (female
promoting temperature, FPT) and 29°C (male promoting temperature, MPT). At
intermediate temperatures (24~25°C; mixed-sex producing temperature, MixPT), mixed-
sex populations can be produced but a clear thermal plateau with balanced sex ratio
(female: male 1:1) is absent. For these reasons, genotypic sex determinant has been
considered as virtually inexistent in pejerrey. However, this is not a foregone conclusion.
Large variation of sex ratios observed at 25°C among different crosses suggested an
implication of genetic components on gonadal fate (Strussmann et al., 1996a, 1997). This
scenario has become more plausible after a recent study on the genotypic sex determination
in the congeneric species Patagonian pejerrey O. hatcheri. In O. hatcheri, we identified a
sex determining gene amhy (Y-linked anti-Mullerian hormone). Because Patagonian
pejerrey and pejerrey are closely related and share a high genetic identity, it is conceivable

that amhy could also exist in pejerrey.

In this study, | first probed the presence of a genotypic sex determinant amhy (high
linkage with maleness, conserved gene structure, specific expression in testis and brain) in
pejerrey and showed the first clear evidence of the coexistence of TSD and GSD in this
species. | then investigated the transcriptional profiles of amhy and amha to unravel their
participation in TSD process. The expression analyses of amhy and amha at FPT, MixPT

and MPT during early larval development revealed that amhy is temperature-independent
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genotypic sex determinant. The amhy mRNA expressed high at the beginning of sex
determination/differentiation period but declined thereafter regardless of the temperatures.
In contrast, amha is temperature-dependent and up-regulated in response to the existence
of amhy or high water temperature. In individuals possesses amhy (XY) differentiate as
males by overlapped expressions of amhy and amha. However, if amha expression is
inhibited by an environmental factor such as low water temperature, these individuals
cannot differentiate as males and developed as females. On the other hand, in individuals
do not possess amhy (XX) normally differentiate as female without expression of amha.
However, if amha expression is induced by an environmental factor such as high water
temperature, these individuals differentiate as males without genotypic sex determinant

amhy.

A number of studies have shown that the stress hormone cortisol was reported a
mediator in the high temperature-induced masculinization in fish (Hayashi et al., 2010;
Yamaguchi et al., 2010). In pejerrey, cortisol was suggested to promote the synthesis of the
11-KT, most potent androgen in fish, during high temperature-induced masculinization by
modulation of hsd11b2 mRNA expression (Hattori et al., 2009; Fernandino et al., 2012,
2013). Since both amhy and amha seems like to be involved in masculinization in pejerrey
(Yamamoto et al., 2014 and present study), in this study, | also investigated the effects of
cortisol and androgen on the amhy and amha transcription. These analyses revealed that
both cortisol and 11-KT activated amha promoter in dose dependent manners, however,
neither cortisol or 11-KT has effect on amhy promoter at any concentration. These results
highlighted the importance of cortisol and androgen signaling in amha regulation but not in
genotypic sex determinant amhy regulation. Such no impact of steroid hormone on sex

determining gene is also reported in Japanese medaka (Scholz et al., 2003, Nagahama et al.,
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2004; Nagahama, 2005).

Taken all together, my results suggested that amhy is a genotypic sex determinant in
pejerrey and regulation of this gene is temperature independent. In contrast, amha is
upregulated in response to high temperature and its expression is regulated via cortisol and
11-KT. Although whether amhy induces amha expression or amhy and amha are related to
germ cell proliferation (Herpin et al., 2007) as the described in Japanese medaka (Herpin et
al., 2010) still needs to be assessed, overlapping expression of amhy and amha, early
decrease of amhy expression, and amha regulation by temperature may be keys for the
coexistence of genotypic and environmental sex determinants in this species. Future
studies will focus on the interactions between amhy and amha by producing transgenic
pejerrey and estrogenic regulation of amhy and amha as to unravel the molecular

mechanisms of low temperature-induced feminization.
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Figure 1. Schematic representation of the expression profiles of some sex-related genes
during sex determination/gonadal differentiation in pejerrey XY genotypes. Boxes with
blue and red dotted lines represent male and female development respectively. The
thickness of the bars represents the levels of mMRNA expression. Note that the sex
determinant amhy does not display a temperature-independent expression profile during
early sex differentiation period.
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Figure 2. Schematic representation of the expression profiles of some sex-related genes
during sex determination/gonadal differentiation in pejerrey XX genotypes. Boxes with
blue and red dotted lines represent male and female development respectively. The
thickness of the bars represents the levels of mMRNA expression. amha expression is

correlated with maleness.
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thermal stress-induced masculinization pathway in pejerrey.
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