
TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

System analyses and motion control of a towed
underwater vehicle

言語: eng

出版者: 

公開日: 2016-09-08

キーワード (Ja): 

キーワード (En): 

作成者: 箕輪, 遊馬

メールアドレス: 

所属: 

メタデータ

https://oacis.repo.nii.ac.jp/records/1305URL



Master’s Thesis

SYSTEM ANALYSES AND MOTION CONTROL

OF A TOWED UNDERWATER VEHICLE

March 2015

Graduate School of Marine Science and Technology

Tokyo University of Marine Science and Technology

Master’s Course of Marine System Engineering

ASUMA MINOWA



[修士] 

 
修士学位論文内容要旨 

Abstract 

 

This thesis presents system analyses and a motion control method for a towed underwater vehicle (TUV) 

which has movable wings at the center (main wing) and rear (tail wing)  to actively control its attitude 

and depth. In recent years, some environmental problems such as global warming have become serious 

and, accordingly, importance of exploration of underwater environments have increased. A TUV is a kind 

of underwater vehicle which does not have a thruster inherently and is towed by the mothership to move. 

In the past, a lot of works on control problems of TUVs have been conducted, however there are few 

ones which address the system nonlinearity directly. Hence, our objective is to develop a motion control 

method for such a TUV taking account its nonlinearity. 

First, the dynamical model in the lowest-order case is derived by using the Lagrange equations of 

motion and the principle of virtual work. To obtain the model, we employ two different approximate 

methods for the cable: the one is based on the lumped-mass method, and the other one regards the cable 

as a rigid bar. 

Next, we locate an equilibrium point of the system such that attitudes of the vehicle and the main wing 

are horizontal. The linearization of the system around the point is obtained, and some basic 

characteristics of the system, i.e., stability, controllability and observability are analyzed. Based on these 

analyses, a linear state-feedback controller is initially designed to regulate the system to the equilibrium. 

Then, to develop output-feedback controllers, two types of nonlinear observers are constructed: one of 

which is based on the concept of high-gain observers, while the other one is consists of a linear Kalman 

filter gain and the original nonlinear model.  

Finally, simulations of motion control to regulate the system to the equilibrium are performed to 

compare control performances of the output-feedback controllers and results from the different ways of 

approximation for the flexible cable. Those results show that for each model the high-gain observer 

approach reveals better performance than the other one. Therefore, we have confirmed that the proposed 

approach based on the high-gain observer is feasible and effective. 
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1 INTRODUCTION

1.1 Background

In general, there are various reasons for investigate underwater environments. Some of
them have biological or ecological motives; behaviors of marine lives, biodiversities and the
balance of ecosystems. Others are from the viewpoint of utilization of marine resources
and space, for example fisheries management, seabed resources and submarine cable com-
munication systems. Further, some environmental problems such as global warming or
marine pollution have become serious.

Oceanographic research has a history of over 130 years and it has started with a voyage
of the Challenger [1]. A significant amount of work has been devoted to investigate and
monitor marine environments since then. In recent years, researchers have developed some
approaches for offshore observations; Conductivity Temperature Depth (CTD) profiler
with water samplers and remote sensing such as an application of satellites, for instance.

While an observation platform is determined by considering some points, especially
characteristics of the targeted environment and spatial-temporal scales [2]. Kroger et al.
[3] has summarized these situations and given overview of observational devices, which
include buoys, ships, underwater vehicles and so on. Oceanographers practically utilize
some of those devices to cover the deficiency of each method. For example, samplings by
ships provide direct and stationary vertical profiles, and buoys and satellites are mainly
employed in surface layer of the ocean for several months. Spatially continuous observa-
tions in the ocean are performed by submersible and horizontally movable devices such as
an Argo float. Argo is a global array for temperature and salinity profiling floats, and the
Argo project is one of the most famous and international approach for collecting the data
of the mid or subsurface layer, providing real time data [4].

For more detailed exploration of the deep water layer or bottom of the ocean, un-
manned underwater vehicles such as Autonomous Underwater Vehicles (AUVs) and Re-
motely Operated Vehicles (ROVs) are now very effective means of observing underwater
environments. For example, the maturity and contributions of these vehicles have been
reported [5]-[9]. Their aim is originally a seabed mapping but recently it has changed
and expanded [9]. Because various kinds of instrumentation can be loaded in both vehi-
cles, e.g., CTD sensors, Acoustic Doppler Current profilers (ADCPs) and cameras. Then
spatial data and a synoptic view of the deep-sea are remarkably improved.

On the other hand, cost efficiency is another viewpoint of choosing observatories; design
and improve of low-cost instruments for an oceanographic research are desirable [10]. In
particular, AUVs and ROVs cost a lot to develop and include a problem in a power supply
and navigation, which is crucial for operation [11]. So, developing alternative platforms
or methods for a seabed survey are required.
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Figure 1: Schematic diagram of a TUV of single-part arrangement

Considering this situation, we focus on towed underwater vehicles (TUVs). A TUV
does not have a thruster itself and needs to be towed by a mother ship to travel as shown
in Fig. 1. They are low-cost devices compared with AUVs or ROVs and don’t suffer from
the challenge of a power supply and navigation. Nevertheless TUVs have a problem in the
observation precision; this type of vehicle has been used without active control in most
practical applications. Advanced sensors such as ADCPs or cameras for real time research
are obviously influenced by the stability of the platforms, so a low-cost active controller is
required to make its observations more accurate.

1.2 Related works

A lot of efforts, e.g., [12]-[28], have been devoted to control problems of TUVs. They can
be classified broadly into two groups by arrangement of a towing system [28]. One of which
is two-part towing arrangement that consists of a primary long cable with a gravitational
depressor and a secondary cable with a vehicle. This arrangement can reduce influence of
the dynamics from the towing cable to the vehicle, while is rather complicated to deploy
and in need of higher cost for practical applications [22]-[26]. From these points of view,
the other towing arrangement is more suitable for developing low-cost platforms. It is a
single-part one, in which only a single long cable is connected to a vehicle directly.

Then one of obstacles for developing a control system for TUVs is dynamics of the
flexible towing cable, which are highly complex and largely influential to the entire dy-
namics. A lot of researches for marine cable also have been done, e.g., [30]-[35]. However
their approaches are based on the finite difference methods and among those methods
the lumped-mass method may be the most conventional one [30]. In the lumped-mass
approach the towing cable is modeled by some rigid segments, therefore the order of the
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system relies on the number of the segment.
While the other serious issue to develop a control system for TUVs is highly-nonlinear

dynamics affected by hydrodynamic forces; nevertheless there are few researches which
consider nonlinearity of the system directly. One of the most interesting studies is pre-
sented by Teixeira et al. in 2006 [27] and 2010 [28]. They have designed a nonlinear
adaptive controller and showed its good performance by simulations. But their target was
the two-part towing arrangement and we can’t apply this method promptly.

1.3 Purpose of the thesis

Previously, our group [20] has focused on TUVs of single-part arrangement as shown in Fig.
1, and analyzed a control system structure of TUVs. In this study the towing cable was
modeled by the lumped-mass method and the Lagrange equation of motion was utilized.
This paper has given an explicit formulation of state-space equations and a complete set
of parameters for computation, and shown that the system has desirable properties in the
sense of depth and attitude control.

In this thesis, based on [20], we present system analyses and a specific control design
method for motion control of a TUV which is equipped with movable wings to control
its depth and attitude. As the first step for the problem, the two types of dynamical
models in the lowest-order case with relatively short towing cable are derived; one of
which is based on the lumped-mass method, and the other one regards the cable as a
rigid bar. We locate an equilibrium point and linearization around the point of each
case is conducted. Some basic characteristics of the system are analyzed and, based on
these analyses, a state-feedback controller for the approximately linearized system and
observer-based output-feedback controllers are designed.

We employ and evaluate two types of nonlinear output-feedback controllers in this
study; one of which is composed of a linear Kalman filter gain and the original nonlinear
state-space model, while the other one is based on the concept of high-gain observers [29].
We demonstrate some control simulations to compare the performance of controllers and
the effect of the difference of approximation of the flexible cable.

The remainder of this thesis will be organized as follows. In chapter 2, some assump-
tions are made and two cases of the dynamical model are formulated. The fundamental
properties of the linearized system are verified in chapter 3. Then, in chapter 4, we propose
a control design method and chapter 5 evaluates the designed controllers by simulations.
In the last chapter, some concluding remarks are given.

4



2 DYNAMICAL MODEL

This chapter introduces some assumptions and a dynamical model for the study. Detailed
parameters for computation and two types of coordinate systems are introduced. Then,
we give explicit state-space representation of the dynamical system.

2.1 Problem setting

A TUV considered in this study is composed of a towing cable, torpedo-shaped main body
and two movable wings to control its attitude and depth. To take the stage of the study
and the order of the model into considertation, the total length of the cable is set as L = 30
(m). The length of the main body is nearly 1.4 m and the height is 0.41 m. We call the
wings at the center of the vehicle as “main wing” and the rear one as “tail wing”. Note
that most of TUVs in practical use don’t employ such maneuverable wings.

For simplicity, some assumptions are made in this thesis. At first, we restrict our
interest to motions of the TUV on the vertical plane throughout this study, because such
motions are the most important ones. Then, the following assumptions are made;

1. environmental water current will be ignored;

2. the dynamics of the mother ship and wing actuators will be ignored;

3. the mothership moves only in the horizontal direction with constant velocity v0;

4. depth and attitude of the vehicle can be measured.

Parameters and their values adopted in this study are shown on Table 1, which are em-
ployed from the reference [17] and [20].
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Table 1: Physical parameters

Symbol Value Unit
mc 0.95 kg/m
ac 1.76715ρ × 10−4 kg/m
Bc 0.69g N/m
mv 182.687 kg
Bv 0.162ρg kg
av11 0.010ρ kg
av13 0 kgm
av22 0.539ρ kg
av23 0.032ρ kgm
av33 0.039ρ kgm2

Jv 26.078 kgm2

xg 0.017 m
zg 0.02 m
xb 0.017 m
L 30 m
Lv 0.205 m
Lt 0.7 m

CDc1 -1.23075ρ × 10−3 Ns2/m3

CDc2 3.975ρ × 10−3 Ns2/m3

CLm1 1.72595ρ Ns2/m2

CLm2 -0.141372 rad
CDm1 0.60835ρ Ns2/m2

CDm2 0.00274506ρ Ns2/m2

CLt1 0.202770ρ Ns2/m2

CDt1 0.0335183ρ Ns2/m2

CDt2 7.22347ρ × 10−4 Ns2/m2

CLv1 0.0766708ρ Ns2/m2

CM 1.17268 m
g 9.8 m/s2

ρ 1025 kg/m3

v0 4 m/s

6



2.2 Two types of dyanmical models

Generally, an underwater vehicle is modeled in a high-order system. But to take into
account the stage of the study and from the viewpoint of control system design, a low-
order system is desirable. In this thesis, we establish two types of dynamical models in
the lowest-order case to design control systems; one of which is based on the lumped-mass
method, and the other one regards the cable as a rigid bar. The lumped-mass method
approximates the cable by one rigid segment with its mass concentrated at the end point,
and all forces for the segment are assumed to be applied to the point of mass.

Fig. 2 shows the coordinate systems utilized for the lumped-mass case. O0X0Z0 is the
coordinate frame fixed at the towing point O0 on the mothership. O1 denotes the point of
mass and O1X1Z1 is the coordinate frame fixed on the cable and O2X2Z2 is fixed at the
center of the vehicle in like manner. Similarly, the coordinate systems for the rigid bar
model are shown in Fig. 3. In this case, O1 is located on the middle point of the cable,
which denotes the center of gravity, and the axis Z1 overlaps with the cable.

Then, generalized coordinates used for the dynamical model formulation are q =
[q1, q2]

T , which are the attitudes of the cable and vehicle. The translational velocities
O1 and O2 with respect to their own coordinates are represented by v1 = [v1x, v1z]

T and
v2 = [v2x, v2z]

T . Furthermore, the input angles of the main wing and the tail wing are
denoted by u1, u2 respectively. Note that all the angles are defined to be positive in the
counter-clockwise sense.

Based on the above problem setting and [20], we derive equations of motion. First, we
calculate the total kinetic energy of each model. For the lumped-mass model, the inertia
matrix for the cable segment is

M1 =

[
mac 0
0 mac

]
, (1)

where mac = L(mc+ac), and mc and ac denote the mass and the added mass of the cable
per unit length. Second, M2 denotes the inertia matrix of the vehicle and each element is
represented as

M11
2 = mv + av11

M12
2 = M21

2 = 0

M13
2 = M31

2 = mvzg + av13

M22
2 = mv + av22

M23
2 = M32

2 = −mvxg + av23

M33
2 = Jv + av33 (2)

where mv, avij, and Jv are the mass, the added inertias and the inertia moment of the
vehicle respectively. Note that (xg, zg) denotes the coordinates of the center of gravity
of the vehicle in O2X2Z2. Then, the total kinetic energy for the lumped-mass model is
represented by

κ =
1

2
vT1 M1v1 +

1

2
vT2 M2v2. (3)
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While we need to consider rotational motion of the cable for the rigid bar model; the
kinetic energy of the cable is represented by

κ1 =
1

2
vT1 M1v1 +

1

2
Jq̇1

2, (4)

where J = 1
12
M0L

2 denotes the inertia moment for the thin rigid bar and the total mass of
the cable M0 = Lmc. Then, the total kinetic energy for the rigid bar model is represented
by

κ =
1

2
vT1 M1v1 +

1

2
Jq̇1

2 +
1

2
vT2 M2v2. (5)

Using resulting κ, we derive the Lagrange equations of motion for each case:

d

dt

(
∂κ

∂q̇

)
− ∂κ

∂q
= E(q)q̈ + F (q, q̇), (6)

where E(q) is the inertia matrix, F (q, q̇) is the Coriolis and centripetal force vector. The
elements of the inertia matrix is represented as

E(q) =

[
E11 E12

E21 E22

]
, (7)

where

E11 =
1

2
L2{(M11

2 +M22
2 + 2mac) + (M11

2 −M22
2 )c(2q1 − 2q2)}, (8)

E12 =E21 (9)

=L{(M13
2 + LvM

11
2 )c(q1 − q2)−M23

2 s(q1 − q2)}, (10)

E22 =M33
2 + Lv(2M

13
2 + LvM

11
2 ) (11)

for the lumped-mass model. s(·) and c(·) are the abbreviations of sin(·) and cos(·) respec-
tively and (0,−Lv) denotes the towing point on the vehicle in O2X2Z2. We also obatin

E11 =L2{1
4
mac +M11

2 c2(q1 − q2) +M22
2 s2(q1 − q2)}+ J, (12)

E12 =E21

=L{(M13
2 + LvM

11
2 )c(q1 − q2)−M23

2 s(q1 − q2)}, (13)

E22 =M33
2 + Lv(2M

13
2 + LvM

11
2 ) (14)

for the rigid bar model. The elements of F (q, q̇) for the lumped-mass model are represented
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as

F1 = − 1

2
L2(M11

2 −M22
2 )s(2q1 − 2q2)q̇1

2

+ L2(M11
2 −M22

2 )s(2q1 − 2q2)q̇1q̇2

+ L{M23
2 c(q1 − q2) + (M13

2 + LvM
11
2 )s(q1 − q2)}q̇22

+ L(M11
2 −M22

2 )s(q1 − 2q2)v0q̇2

+
1

2
L{(M11

2 −M22
2 )c(q1 − 2q2) + (M11

2 +M22
2 + 2mac)c(q1)}v̇0, (15)

F2 = − L{1
2
L(M11

2 −M22
2 )s(2q1 − 2q2)

+M23
2 c(q1 − q2) + (M13

2 + LvM
11
2 )s(q1 − q2)}q̇12

− L(M11
2 −M22

2 )s(q1 − 2q2)v0q̇1

+
1

2
(M11

2 −M22
2 )s(2q2)v

2
0

+ {M23
2 s(q2) + (M13

2 + LvM
11
2 )c(q2)}v̇0, (16)

Similarly,

F1 = − 1

2
L2(M11

2 −M22
2 )s(2q1 − 2q2)q̇1

2

+ L2(M11
2 −M22

2 )s(2q1 − 2q2)q̇1q̇2

+ L{M23
2 c(q1 − q2) + (M13

2 + LvM
11
2 )s(q1 − q2)}q̇22

+ L(M11
2 −M22

2 )s(q1 − 2q2)v0q̇2

+
1

2
L{(M11

2 +M22
2 +mac)c(q1) + (M11

2 −M22
2 )c(q1 − 2q2)}v̇0, (17)

F2 = − L{L(M11
2 −M22

2 )s(q1 − q2)c(q1 − q2)

+M23
2 c(q1 − q2) + (M13

2 + LvM
11
2 )s(q1 − q2)}q̇12

− L(M11
2 −M22

2 )s(q1 − 2q2)v0q̇1

+
1

2
(M11

2 −M22
2 )s(2q2)v

2
0

+ {M23
2 s(q2) + (M13

2 + LvM
11
2 )c(q2)}v̇0 (18)

for the rigid bar model.
Next, by applying the principle of virtual work, generalized forces that consist of

buoyancy, gravity and hydrodynamic forces are given. τbg associated with buoyancy and
gravity can be derived as

τbg1 =L{L(Bc −mcg) +Bv −mvg}s(q1), (19)

τbg2 = {BvLv −mvg(Lv + zg)}s(q2) + (Bvxb −mvgxg)c(q2) (20)

for the the lumped-mass model, where Bc, g and Bv are the buoyancy of the cable per
unit length, the gravitational acceleration and the buoyancy of the vehicle respectively.
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(xb, 0) denotes the centor of buoyancy of the vehicle in O2X2Z2. For the rigid bar model,
we obatin

τbg1 =
1

2
L2(Bc −mcg)s(q1) + L(Bv −mvg)s(q1), (21)

τbg2 = {BvLv −mvg(Lv + zg)}s(q2) + (Bvxb −mvgxg)c(q2). (22)

Further, the hydrodynamic force vector τh of the lumped-mass model is represented as

τh1 = − Lhc1c(α1)

+ L{−hmDc(α2 + q1 − q2)− htDc(αt + q1 − q2)

+ (hvL + hmL)s(α2 + q1 − q2) + htLs(αt + q1 − q2)}, (23)

τh2 =Lv(hmL + hvL)s(α2)− LvhmDc(α2) + hvLCM

+ (−LthtD + LvhtL)s(αt)− (LvhtD + LthtL)c(αt), (24)

where the suffix t denotes the tail wing, (−Lt, 0) in O2X2Z2 is the center of hydrodynamic
force on tail wing and CM is a constant parameter related with hydrodynamic moment.
αi(i = 1, 2, t) denotes the angle of attack and is given by

αi = tan−1

(
viz
vix

)
(vix ̸= 0). (25)

The angle of attack for the tail wing αt is given by the velocity vector vt = [vtx, vtz]
T

at (−Lt, 0) in O2X2Z2. Besides, each of the hydrodynamic force hχ is defined as in the
following.

hc1 = L(CDc1α
2
1 + CDc2)∥v1∥2 (26)

hmL = CLm1(α2 + u1 + CLm2)∥v2∥2 (27)

hmD = {CDm1(α2 + u1 + CLm2)
2 + CDm2}∥v2∥2 (28)

htL = CLt1(αt + u2)∥vt∥2 (29)

htD = {CDt1(αt + u2)
2 + CDt2}∥vt∥2 (30)

hvL = CLv1α2∥v2∥2 (31)

where hc1 denotes the drag on the cable segment, the suffixes L and D denote the drag
and the lift and the suffixes m and v represent the main wing and the vehicle, respectively.
The constant parameters CDχ and CLχ are the drag and the lift coefficients and || · ||
represents the Euclidean norm. Again, u1 is for the input angle of the main wing and u2

for the tail wing. Finally,

τh1 = − 1

2
Lhc1c(α1)

+ L{−hmDc(α2 + q1 − q2)− htDc(αt + q1 − q2)

+ (hvL + hmL)s(α2 + q1 − q2) + htLs(αt + q1 − q2)}, (32)

τh2 =Lv(hmL + hvL)s(α2)− LvhmDc(α2) + hvLCM

+ (−LthtD + LvhtL)s(αt)− (LvhtD + LthtL)c(αt) (33)

for the rigid bar model. It is natural that (20) and (22) are the same and so (24) and (33)
respectively.
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2.3 Derivation of state-space equatioins

Let the state vector x = [xT
1 , x

T
2 ]

T = [x11, x12, x21, x22]
T = [qT , q̇T ]T ∈ the state-space

manifold X ⊂ R4, the input vector u = [u1, u2]
T ∈ R2 and the output vector y = [y1, y2]

T ∈
the output-space manifold Y ⊂ R2. Then, the dynamical model is formulated as

E(x1)ẍ+ F (x, ẋ) = τbg(x1) + τh(x, u), (34)

and is transformed into the following state-space representation

ẋ = f(x, u)

y = h(x1)
(35)

where f and h are defined as

f(x, u) =

[
x2

E(x1)
−1{−F (x) + τbg(x1) + τh(x, u)}

]
, (36)

h(x1) =

[
Lcos (x11) + Lvcos (x12)

x12

]
. (37)

Note that the output y1 is the depth of the center of the vehicle and y2 is the attitude of
the vehicle.
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Figure 2: Coordinate systems for the lumped-mass model

Figure 3: Coordinate systems for the rigid bar model
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3 SYSTEM STRUCTURE ANALYSES

In this chapter, analyses of the control system structure are presented. We obtain an equi-
librium point of each model and an approximate linearized system around the point. Then,
some basic characteristics of the system such as stability, controllability and observability
are analyzed.

3.1 Equilibrium point and linearization

First, an equilibrium point x∗ = [x∗T
1 , x∗T

2 ]T = [x∗
11, x

∗
12, x

∗
21, x

∗
22]

T and u∗ = [u∗
1, u

∗
2]

T of
each system (35) satisfying f(x∗, u∗) = 0 is calculated. In this study, the attitude of
the vehicle x∗

12 and the angle of input for main wing u∗
1 are assumed to be 0 (deg).

Employing MATLAB function “fminsearch”, we have obtained x∗ = [−25.8117, 0, 0, 0]T

and u∗ = [0,−1.3636]T for the lumped-mass model and x∗ = [−15.7993, 0, 0, 0]T and
u∗ = [0,−1.3640]T for the rigid bar model. Note that x∗

11 of the lumped-mass model is
smaller than that of the rigid bar model, while u∗

2’s are almost the same value.
Then, the approximate linearized system around (x∗, u∗) are derived as

ẇ = Aw +Bv

p = Cw,
(38)

where w = x− x∗ and v = u− u∗. Each coefficient matrix is computed with

A =
∂f

∂x
(x∗, u∗),

B =
∂f

∂u
(x∗, u∗),

C =
∂h

∂x
(x∗).

(39)

Calculating by MATHEMATICA, we have obtained the coefficient matrices for the lumped-
mass model

A =


0 0 1 0
0 0 0 1

−0.6025 −1.9483 −8.4312 −0.0860
12.9060 144.9450 521.2560 −3.8120

 , (40)

B =


0 0
0 0

−1.1615 0.0266
32.8450 −32.5671

 , (41)

C =

[
13.0617 0 0 0

0 1 0 0

]
, (42)
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while for the rigid bar model

A =


0 0 1 0
0 0 0 1

−0.7318 −1.8000 −4.1314 −0.0618
15.0193 140.1570 298.0650 −4.3876

 , (43)

B =


0 0
0 0

−0.8552 0.1125
25.5190 −34.3049

 , (44)

C =

[
8.1681 0 0 0

0 1 0 0

]
. (45)

3.2 Analyses on control system structure

Based on the linearized system, let us consider the control system structure. First, to as-
sess the stability of the equilibrium, the eigenvalues of matrix A are calculated. Employing
MATLAB function “eig”, we obtain {λ1, λ2, λ3, λ4} = {−15.7216,−1.9581,−0.3492, 5.7857}
for the lumped-mass model and {λ1, λ2, λ3, λ4} = {−15.1605,−0.2062+0.8147i,−0.2062−
0.8147i, 7.0540} for the rigid bar model. These results indicate that λ4 of each system is
an unstable mode.

Next, we construct the following matrices

Wc =
[
B,AB,A2B,A3B

]
(46)

and
Wo =

[
CT , (CA)T , (CA2)T , (CA3)T

]T
(47)

to verify the controllability and observability. Computing the ranks of those matrices by
MATLAB function “rank”, we obtain the result that rank(Wc) = 4 and rank(Wo) = 4 for
the lumped-mass model, and rank(Wc) = 4 and rank(Wo) = 4 for the rigid bar model;
which implies each system is controllable and observable. Therefore, at least around the
equilibrium point, we can design a stabilizing control system based on state-feedback
controllers and observers.

In addition to this, Fig. 4 for the lumped-mass model and Fig. 5 for the rigid bar
model show the frequency response of each control system. The upper figure corresponds
to output 1 (depth of the vehicle) and the lower one for output 2 (attitude of the vehicle).
The solid lines are associated with input 1 (main wing) and the dashed lines with input 2
(tail wing). As seen from these diagrams, input 1 of each case mainly affects the depth of
the vehicle, while the attitude of the vehicle is mainly influenced by input 2, particularly
over low frequencies. Hence we are convinced that the wing configuration is suitable for
the control purpose of this study.
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Figure 4: Frequency response for the lumped-mass model
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Figure 5: Frequency response for the rigid bar model
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4 CONTROL DESIGN

This chapter proposes a control design method to regulate the system to the equilibrium.
The method is based on a linear state-feedback control scheme with a nonlinear observer.
In this thesis, we present two types of nonlinear observers, one of which is composed of a
linear Kalman filter gain and the original state space model, while the other one is based
on the concept of high-gain observers [29].

4.1 State-feedback controller

First, we design the state-feedback controller based on the linear system in (38) as shown
in Fig. 6. Adopting the linear-quadratic (LQ) optimal control framework, we compute an
LQ feedback gain K by MATLAB function “lqr”, which minimizes the cost function

J =

∫ ∞

0

(wTQw + vTRv)dt, (48)

where Q and R are weighting matrices. We are not eager to determine the best weighting
matrices, so the identity matrix is employed for each case. This MATLAB function solves
the Riccati equation

ATS + SA− SBR−1BTS +Q = 0 (49)

and provides the LQ gain K = R−1BTS. The LQ gain of the lumped-mass model is

K =

[
−0.4995 −0.2387 −2.4332 0.4062
0.6260 −5.6790 −15.1800 −0.9416

]
(50)

and one for the rigid bar model is

K =

[
−0.4574 0.6305 −0.7787 0.4345
0.3934 −6.0483 −10.7811 −0.9489

]
. (51)

Then, control input is given by
v = −Kw (52)

where w = x − x∗. Note that this linear state-feedback controller is based on the linear
system in (38), however it successfully regulates the original nonlinear system as demon-
strated later.

4.2 Output-feedback controller

Next, to establish an output-feedback controller, we must design an observer to estimate
the state of the dynamical system which can recover the performance of the state-feedback
controller. In this study, two types of nonlinear observers are constructed and compared
with respect to their performances. One approach is composed of the original nonlinear
model with a linear Kalman filter gain which is computed for the linear system in (38).
This is the natural extension of the linear Kalman filter. The other one utilizes a high-gain
observer.
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Figure 6: Block diagram of a state-feedback controller

4.2.1 original model with a Kalman filter gain

First, we construct a linear Kalman filter for the linear system in (38) as

˙̂w = Aŵ +Bv + l(y − Cŵ). (53)

Employing MATLAB function “kalman”, the Riccati equation

PAT + AP − PCTR−1
o CP +Qo = 0 (54)

is solved, where weighting matrices Qo and Ro are the identity matrices. Then, combining
the resulting Kalman filter gain l = PCTR−1

o and the original nonlinear system, we obtain
a nonlinear observer represented by

˙̂x = f(x̂, u) + l(y − ŷ) (55)

where x̂ is an estimated state and ŷ = h(x̂1). Specific value of l for the lumped-mass
model is

l =


0.2231 −0.1576
−2.0587 13.2781
0.4874 −2.1368
−5.4526 90.2736

 (56)

and

l =


0.3075 −0.1955
−1.5967 15.1803
0.5423 −2.7890
−5.4690 116.4957

 (57)

for the rigid bar model. Note that the control input yields

v = −Kŵ, (58)

where ŵ = x̂− x∗.
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Figure 7: Block diagram of an output-feedback controller

4.2.2 high-gain observer

In order to employ a high-gain observer-based approach we need to apply a coordinate
transformation, which is generally utilized in the input-output linearization scheme (e.g.,
see [29]). First, the system (35) can be rewritten in the following form

ẋ = f ′(x) + g(x, u)

y = h(x1).
(59)

Calculating the derivatives of y, we obtain

ẏ =

[
−Lẋ11sin (x11)− Lvẋ12sin (x12)

ẋ12

]
(60)

ÿ = H(x) +G(x, u) (61)

where H(x) = L2
f ′h(x) and G(x, u) = LgLf ′h(x). Lf ′(·) and Lg(·) denote the Lie deriva-

tives with respect to f ′ and g. This system has relative degree of two, and by adopting
the transformation z = [zT1 , z

T
2 ]

T = [h(x)T , ḣ(x)T ]T = T (x); that is,

z =


Lcos (x11) + Lvcos (x12)

x12

−Lẋ11sin (x11)− Lvẋ12sin (x12)
ẋ12

 , (62)

the system (59) is rewritten as

ż = Azz +Bzϕ(z, u)

y = Czz
(63)

where ϕ(z, u) = H(T−1(z)) +G(T−1(z), u). Each constant matrix is

Az =

[
0 I2
0 0

]
, (64)
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Bz =

[
0
I2

]
, (65)

Cz =
[
I2 0

]
, (66)

where I2 denotes the 2× 2 identity matrix.
Finally, by some algebraic manipulation, we can design a high-gain observer as

˙̂z = Az ẑ +Bzϕ(ẑ, u) + Γ(y − Cz ẑ) (67)

where ẑ denotes the estimation of z. Γ is the observer gain such that

Γ =


α1/ϵ 0
0 α2

1/ϵ
α2/ϵ

2 0
0 α2

2/ϵ
2

 (68)

where positive conatant ϵ is a design parameter. Theoretically, the smaller ϵ leads to the
better performance. In addition, we need to set the positive constant αi

j satisfying that
the roots of

s2 + αi
1s+ αi

2 = 0 (69)

are located in the open left-half plane (i = 1, 2). Note that s denotes the Laplace variable
here. We refer to the canonical form of the second order system

Ẍ + 2ζωẊ + ω2X = 0 (70)

and set the parameters ζ = 0.7 and ω = 1. Then, α1 = 1.4 and α2 = 1 are adopted.
Applying the inverse transformation T−1(ẑ) gives x̂ and we can obtain input v in (58).
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5 CONTROL SIMULATIONS

In this chapter, control simulations are presented to evaluate designed controllers. We
demonstrate regulation performances for given initial deviations from the equilibrium point
(i.e., set point) in this thesis. The main aim is to compare performances of the two output-
feedback controllers proposed in chapter 4, especially from the viewpoint of how much they
can recover the linear state-feedback controller.

5.1 Simulation conditions

As the set point for the output, the depth for the lumped-mass model y∗1 = 27.21 (m)
and the rigid bar model y∗1 = 29.07 m, while the attitude y∗2 = 0 (deg) for each case.
The initial condition for angular velocity x2(0) is set to x∗

2 = 0 (deg/s) for all the cases.
On the other hand, for the output-feedback controllers, the initial state estimation is
set to the equilibrium of the system, hence ŵ(0) = [0, 0]T for the linear Kalman filter,
x̂(0) = [x∗

1
T , x∗

2
T ]T for the original system with the linear Kalman filter gain and ẑ(0) =

[h(x∗)T , 0]T for the high-gain observer.
The simulation period for all the cases is 30 s except for the case of the rigid bar model

with the output-feedback controller which includes the original model with Kalman gain
observer. Moreover, the dynamic stall of the wings has to be considered. To strictly model
the phenomenon we need to set bounds for the angles of attack αi, however, for simplicity
we restrict the control input u within ±30 (deg) instead, in this study.

With those conditions, we have performed control simulations for each case by giving
various initial deviation of x1 from the equilibrium x∗

1 and explored the maximal initial
deviation idmax. The procedure of giving initial deviation, proceeding with the next sim-
ulation and determining the idmax is as in the following.

1. Each case starts with the small absolute value id = 1.0 (deg) for the initial condition.

2. Then, taking into account the signs of the deviations, we investigate four cases,
x1(0) = [±id,±id]T . When the controller can regulate the system successfully for
all the deviation case, we proceed to the next simulation by increasing id by 0.1 deg.
Otherwise, we proceed to the next one by decreasing id by 0.1 deg.

3. Finally, the maximal id for successful simulations is obtained as the result for each
case.

Therefore, the resulting idmax for each case can be considered a criterion to evaluate the
controller.
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Table 2: Results of the Simulations

Case model controller (observer) idmax (deg)
C1 lumped-mass State-Feedback ±10.5
C2 lumped-mass linear Kalman filter ±0.3
C3 lumped-mass original model with Kalman gain ±1.4
C4 lumped-mass high-gain observer (ϵ = 0.1) ±0.6
C5 lumped-mass high-gain observer (ϵ = 0.01) ±3.3
C6 lumped-mass high-gain observer (ϵ = 0.001) ±9.6
C7 rigid bar State-Feedback ±10.1
C8 rigid bar linear Kalman filter ±0.1
C9 rigid bar original model with Kalman gain ±1.7
C10 rigid bar high-gain observer (ϵ = 0.1) ±0.5
C11 rigid bar high-gain observer (ϵ = 0.01) ±4.9
C12 rigid bar high-gain observer ϵ = 0.001) ±10.1

5.2 Results and discussion

5.2.1 resulting idmax

Table 2 shows the resulting idmax for each case; C1 to C6 correspond to the lumped-mass
model and C7 to C12 to the rigid bar model. The linear state-feedback case is denoted
by C1 and C7. Case C2 and C8 denote the output-feedback controller based on the linear
Kalman filter, and the case of the original model with the linear Kalman filter gain is
C3 and C9. Regarding the high-gain observer-based controller, we investigate three cases
with the design parameter ϵ = 0.1, 0.01, 0.001 (C4-C6 and C10-C12 respectively).

As expected, the state-feedback controllers exhibit the best performance with C1=
±10.5 (deg) and C7= ±10.1 deg. For example, the initial condition x∗

1 + [10.5, 10.5]T =
[−15.3117, 10.5]T deg corresponds with the depth of the vehicle y1 = 29.14 m, which is
deeper than the set point for the lumped-mass model by around 2 m.

Next, let us compare the output-feedback controllers. As seen from the table, case C2
and C8 show the poorest performance for each model. These results imply the limit of
the estimation by a linear observer. While the high-gain observer-based controller with
ϵ = 0.001 (C6 and C12) reveals very similar performance to the state-feedback controller.
Compared with this, the controller based on the original model with the linear Kalman
filter gain (C3 and C7) exhibits poor performance.
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5.2.2 simulation examples

Figures 8-30 show some examples of time-series data of the simulations, specifically each
output (depth and attitude) and estimation error for output-feedback controllers. Figs.
8-19 correspond to the lumped-mass model and Figs. 20-30 to the rigid bar model. In
this thesis, we present x1(0) = [+id,+id]T case for all the figures. Note that we prepare
two time scale graphs of the estimation error for the high-gain observer-based case C4 to
C6 and C10 to C12 to confirm that the estimation error rapidly converges to zero. For
instance, see Fig. 13; the top one is for 30 s and the bottom one for 2 s.

Then, let us start with Fig. 11 and Fig. 18. Each case starts with the same initial devia-
tion x1(0) = x∗

1+[1.4, 1.4]T deg, which is the idmax for C3; that is, x1(0) = [−24.4117, 1.4]T

deg, y1(0) = 27.52 m. Both of the controllers can regulate the system finally, however
their transient performance are obviously different. The result for C3 exhibits unfavorable
overshoot while that for C6 does smooth and rapid convergence to the set point. As seen
from Fig. 19 and the bottom graph in Fig. 11, this drawback for C3 is due to the poor
estimation performance in the transient state.

Further, the similar simulation for the rigid bar model C9 and C12 show more distinct
result. As seen from Fig. 22, Fig. 29 and Fig. 30, which start the idmax for C9 x1(0) =
[−14.1005, 1.7]T deg, case C9 exhibits the vibrational behavior and requires more time to
converge (60 s). Note that such kind of behavior is observed only in this case.

Next, it is also seen from the Table 2 that the choice of ϵ is strongly influential to the
resulting controller performance for the high-gain observer-based approach. Figs. 12-15
or Figs. 23-26 are positive examples. We compare the results of the high-gain observes
between ϵ = 0.1 and ϵ = 0.01 here. In these cases, not only the maximal id become large,
but transient performance also improved and the time for convergence of the estimation
error shortens.

Finally, let us see Fig. 9 and Fig. 16, here we compare the state-feedback con-
troller C1 and the high-gain observer C6 with ϵ = 0.001. Their initial condition is
x1(0) = [−16.2100, 9.6]T deg and we can recognize that the high-gain observer recov-
ers the performance of the state-feedback controller. Moreover, the similar comparison
for the rigid bar model C7 (Fig. 20) and C12 (Fig. 27) show more desirable results; the
high-gain observer shows the same idmax with the state-feedback controller. They start
with the identical initial condition of x1(0) = [−5.6993, 10.1]T deg, which means that
y1(0) = 30.05 m.

As seen from the result of all mentioned above, it is obvious that the high-gain observer-
based controller can achieve better performance than the other nonlinear output-feedback
controller and is easy to design by only modifying the parameter ϵ for such a complex
nonlinear system. Note that the controller with ϵ = 0.0001 reveals almost the same results
as that of the one ϵ = 0.001. Hence, we can conclude that ϵ = 0.001 is the best parameter
for the present problem.
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Figure 8: Simulation results in C1 : lumped-mass model and state-feedback controller
with x(0)− x∗ = [10.5, 10.5, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and
y2 is the attitude of the vehicle.
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Figure 9: Simulation results in C1 : lumped-mass model and state-feedback controller
with x(0)− x∗ = [9.6, 9.6, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2
is the attitude of the vehicle.
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Figure 10: Simulation results in C2 : lumped-mass model and linear Kalman filter with
x(0) − x∗ = [0.3, 0.3, 0, 0]T ; deviations from y∗ and estimation errors. y1 is the depth of
the vehicle and y2 is the attitude of the vehicle. q1 is the angle of the cable and q2 is the
angle of the vehicle.
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Figure 11: Simulation results in C3 : lumped-mass model and original model with Kalman
gain observer with x(0)− x∗ = [1.4, 1.4, 0, 0]T ; deviations from y∗ and estimation errors.
y1 is the depth of the vehicle and y2 is the attitude of the vehicle. q1 is the angle of the
cable and q2 is the angle of the vehicle.
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Figure 12: Simulation results in C4 : lumped-mass model and high-gain observer (ϵ = 0.1)
with x(0)− x∗ = [0.6, 0.6, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2
is the attitude of the vehicle.
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Figure 13: Simulation results in C4 : lumped-mass model and high-gain observer (ϵ = 0.1)
with x(0)−x∗ = [0.6, 0.6, 0, 0]T ; estimation errors. The top one is for 30 s and the bottom
one for 2 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 14: Simulation results in C5 : lumped-mass model and high-gain observer (ϵ = 0.01)
with x(0)− x∗ = [3.3, 3.3, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2
is the attitude of the vehicle.
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Figure 15: Simulation results in C5 : lumped-mass model and high-gain observer (ϵ = 0.01)
with x(0)−x∗ = [3.3, 3.3, 0, 0]T ; estimation errors. The top one is for 30 s and the bottom
one for 0.2 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 16: Simulation results in C6 : lumped-mass model and high-gain observer (ϵ =
0.001) with x(0)− x∗ = [9.6, 9.6, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle
and y2 is the attitude of the vehicle.
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Figure 17: Simulation results in C6 : lumped-mass model and high-gain observer (ϵ =
0.001) with x(0)− x∗ = [9.6, 9.6, 0, 0]T ; estimation errors. The top one is for 30 s and the
bottom one for 0.02 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 18: Simulation results in C6 : lumped-mass model and high-gain observer (ϵ =
0.001) with x(0)− x∗ = [1.4, 1.4, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle
and y2 is the attitude of the vehicle.
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Figure 19: Simulation results in C6 : lumped-mass model and high-gain observer (ϵ =
0.001) with x(0)− x∗ = [1.4, 1.4, 0, 0]T ; estimation errors. The top one is for 30 s and the
bottom one for 0.02 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 20: Simulation results in C7 : rigid bar model and state-feedback controller with
x(0)− x∗ = [10.1, 10.1, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2 is
the attitude of the vehicle.
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Figure 21: Simulation results in C8 : rigid bar and linear Kalman filter with x(0)− x∗ =
[0.1, 0.1, 0, 0]T ; deviations from y∗ and estimation errors. y1 is the depth of the vehicle
and y2 is the attitude of the vehicle. q1 is the angle of the cable and q2 is the angle of the
vehicle.
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Figure 22: Simulation results in C9 : rigid bar and original model with Kalman gain
observer with x(0)− x∗ = [1.7, 1.7, 0, 0]T ; deviations from y∗ and estimation errors. y1 is
the depth of the vehicle and y2 is the attitude of the vehicle. q1 is the angle of the cable
and q2 is the angle of the vehicle.
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Figure 23: Simulation results in C10 : rigid bar and high-gain observer (ϵ = 0.1) with
x(0) − x∗ = [0.5, 0.5, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2 is
the attitude of the vehicle.
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Figure 24: Simulation results in C10 : rigid bar and high-gain observer (ϵ = 0.1) with
x(0)− x∗ = [0.5, 0.5, 0, 0]T ; estimation errors. The top one is for 30s and the bottom one
for 2s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 25: Simulation results in C11 : rigid bar and high-gain observer (ϵ = 0.01) with
x(0) − x∗ = [4.9, 4.9, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2 is
the attitude of the vehicle.
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Figure 26: Simulation results in C11 : rigid bar and high-gain observer (ϵ = 0.01) with
x(0)− x∗ = [4.9, 4.9, 0, 0]T ; estimation errors. The top one is for 30s and the bottom one
for 0.2s. q1 is the angle of the cable and q2 is the angle of the vehicle.

42



Figure 27: Simulation results in C12 : rigid bar and high-gain observer (ϵ = 0.001) with
x(0)− x∗ = [10.1, 10.1, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2 is
the attitude of the vehicle.
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Figure 28: Simulation results in C12 : rigid bar and high-gain observer (ϵ = 0.001) with
x(0) − x∗ = [10.1, 10.1, 0, 0]T ; estimation errors. The top one is for 30 s and the bottom
one for 0.02 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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Figure 29: Simulation results in C12 : rigid bar and high-gain observer (ϵ = 0.001) with
x(0) − x∗ = [1.7, 1.7, 0, 0]T ; deviations from y∗. y1 is the depth of the vehicle and y2 is
the attitude of the vehicle.
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Figure 30: Simulation results in C12 : rigid bar and high-gain observer (ϵ = 0.001) with
x(0)−x∗ = [1.7, 1.7, 0, 0]T ; estimation errors. The top one is for 30 s and the bottom one
for 0.02 s. q1 is the angle of the cable and q2 is the angle of the vehicle.
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6 CONCLUSIONS AND FUTURE WORK

In this thesis, we have addressed the depth and attitude control problem of a TUV with
movable wings. First, two types of the dynamical model, the lumped-mass model in the
lowest-order case and the rigid bar case have been given. Second, some basic characteristics
of the system such as stability, controllability and observability have been analyzed and
we have verified that a stabilizing control system based on state-feedback controllers and
observers could be designed. Then two types of output-feedback controllers have been
designed; the one of the controllers is based on the concept of high-gain observers, and
the other one consists of the original model with a linear Kalman filter gain. In order to
evaluate their regulation performances, some simulations have been conducted. According
to the simulation results, the output-feedback controller with the high-gain observer have
performed much better than the other controller, and is easy to design by only modifying
the parameter ϵ. Then, we have concluded that the high-gain observer-based approach is
feasible and effective for such TUVs.

In the end, we give some research directions for future work. At first, we would like
to expand the control law for tracking such that the output y asymptotically tracks a
reference signal. In this thesis position-fixed controllers are designed, however a control
target, particularly the depth of the vehicle often alters in practical operations. Next, we
will proceed to the dynamical model in higher-order case, and some assumptions will be
changed especially the dynamics of the environmental water current will be taken into
consideration. These modifications are necessary to develop an active control system,
which guarantees observations of a TUV with higher accuracy. In addition, we wish to
investigate the robustness of the control system in the future.
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