TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

水平二相流ヘッダー管水分配挙動

メタデータ	言語: jpn
	出版者:
	公開日: 2016-06-23
	キーワード (Ja):
	キーワード (En):
	作成者: 范, 亮
	メールアドレス:
	所属:
URL	https://oacis.repo.nii.ac.jp/records/1276

修士学位論文

水平二相流ヘッダー管水分配挙動

平成 27 年度 (2016 年 3 月)

東京海洋大学大学院 海洋科学技術研究科 海洋システム工学専攻

范 亮

修士学位論文

水平二相流ヘッダー管水分配挙動

平成 27 年度 (2016 年 3 月)

東京海洋大学大学院 海洋科学技術研究科 海洋システム工学専攻

范 亮

修士学位論文要旨

水平二相流ヘッダー管水分配挙動

范亮

ボイラや熱交換器において、ヘッダー管はしばしば用いられる流体分配機構となっている。 また、冷凍・空調の分野では、ヘッダーにより複数の枝管に分けた蒸発器を用いることが行 われるようになってきた。そのほか、室内の温度を一定にコントロールする温水式床暖房と、 燃料をエンジンの各シリンダーへ均一分配のために、ヘッダー管を利用されている。今まで 液単相流の場合均一に分配が可能だったが、気相が混入すると液相の分配が均一ではなくな ることが知られている。本研究室で、気相の混入が少ない場合、液相の分配の偏りが抑制で きる突出し型のヘッダー管を提案し、効果を確認している。そして、気相の混入が多い場合、 液相分配の偏りを抑制する分配機構を見出すように検討している。

従来の40mm×40mm ヘッダー管において入口空気の見かけ速度が比較的大きな範囲で発生 する界面の偏りや不安定であることが問題の一つになっている。また、突出し長さを30mm に設置した条件で安定した気相層を保つ事が可能であったが、気相流量が増加すると液相の 実速度が高くなり、液相が気相に飛ばされ、上流側枝管への流入が困難となったことも問題 になっている。提案Iの水溜まり部を持つヘッダー管は空気流量が大きい範囲でも、第一、 第二枝管側の界面の高さが低くならないようにし、且つ水の流れと空気のせん断力によって 発生する波の影響を小さくすることを期待している。提案IIのダムボード付き枝管は空気の 見かけ速度が速い範囲でも、液相が流入しやすくなる形状をしたものである。

結論として従来の40mm×40mm ヘッダー管において突出し長さにより、気液界面の高さが 調整でき、波立ちを抑える効果があり、均等分配が可能となる領域が広がることが確認され た。提案1水溜まり部を持つヘッダー管においてその役割は水の流れを常流に変化し、流速 を遅くすることが考えられる。空気見かけ速度が速い範囲でハイドロリックジャンプ現象の 発生する場所により、上流側の枝管への水分配量が減少する傾向にあった。提案2ダムボー ド付き枝管において、空気見かけ速度1.0m/s以下の場合、常流により気液界面が上昇し、 枝管内液単層流になり、水頭圧はヘッダー管内圧力より大きいため、逆流現象が行う。また、 ダムボード形は液相が入りやすい効果を持っている特徴を確認し、空気見かけ速度が速い段 階で、突出し長さにより、射流になった液相を均等分配することが可能であった。

目次

1.	字論	1
2.	记号	3
3.	実験装置	4
	B.1 従来の実験装置 40mm×40mm ヘッダー管	4
	3.2 提案 I : 水溜り部を持つヘッダー管	6
	3.3 提案Ⅱ:10 mm ダムボード付き枝管	-7
4.	実験方法及び実験条件	8
	.1 実験方法	8
	.2 見かけ速度	·10
5.	実験結果及び考察	-11
	5.1 従来型の40mm×40mmヘッダー管において突き出しによる分配挙動	·11
	5.1.1 突出し長さLp= 0mmの水分配挙動	-11
	5.1.2 突出し長さLp=10mmの水分配挙動	-13
	5.1.3 突出し長さLp=20mmの水分配挙動	-15
	5.1.4 突出し長さLp=30mmの水分配挙動	-17
	5.1.5 突出し長さLp=35mmの水分配挙動	-19
	5.1.6 フルード数を利用し、ヘッダー管内流れの状態を分析する	21
	5.1.7 従来型の 40mm×40mmヘッダー管の水分配挙動についてまと	め
		23
	5.2 提案 I : 水溜まり部を持つヘッダー管において分配挙動	·24
	5.2.1 水溜まり部を持つヘッダー管 40mm×80mm(Lp=40mm)	-25

	5. 2. 2	水溜まり部を持つヘッダー管 40mm×80mm (Lp=50mm、I	.p=60
	n	nm, Lp=70mm)	27
	5. 2. 3	水溜まり部を持つヘッダー管の分配挙動についてまとめ	31
	5.3 提案]	Ⅱ:10 mm ダムボード付き枝管において分配挙動	31
	5. 3. 1	ダムボード付き枝管(Lp=10mm、Lp=20mm、Lp=25mm、	Lp=
	2	6mm)	32
	5. 3. 2	ダムボード付き枝管(Lp=27mm、Lp=28mm、Lp=29mm、	Lp=
	3	0mm)	36
	5. 3. 3	ダムボード付き枝管において突き出し長さ Lp と水分配量の関	係
			44
	5. 3. 4	均等分配範囲指数で比較する	46
6.	結論		47
	参考文献		48
	謝辞		49
	付録		50

1 序 論

ボイラや熱交換器において、水平ヘッダー管はしばしば用いられ流体分配機構と なっている。また、冷凍・空調の分野では、ヘッダー管により複数の枝管に分けた 蒸発器を用いることが行われるようになってきた。こうした多分岐配管内の流れが 不均等になり、ボイラや熱交換器の熱交換率が悪くなり、冷凍・空調システムの性 能低下をもたらすおそれがある。今まで、これに関する研究は、水平に置いたヘッ ダーに上向き枝管を取り付けた分配機構において、液相を枝管に均一に分配可能で あっても、ヘッダー管に気相が混入すると液相の分配が均一ではなくなることがし られている。ヘッダーの気相混入量が多い場合に液分配量は下流側の枝管への分配 量が多くなり、気相の分配は上流側の枝管において多くなることが従来の研究によ り指摘されている(1.2)。これらの研究ではヘッダー内での流動様式が成層流、波状 流の場合に気液界面は時間に対して変動する不安定性を見せること及び液相の慣 性により上流側枝管位置での気液界面の低下により枝管下端において気液界面と 定常的に接することができない状況にあることが指摘されており(1)、また、界面が 時間変動する間欠流のような状態であるほうがより均一な分配を得られることを 示唆している(2)。これは均一な分配を得るためには気相流量が少ない際に均一な分 配を得ることを目的とした枝管突出し型ヘッダー(3)で目指した流動と同様に各枝 管入口では気相および液相に触れる必要があることを述べた考察と同じ見解を示 したものであると考えられる。本研究室では、比較的気相の混入が少量の場合に、 液相の分配の偏りを抑制する枝管突出し型のヘッダーを提案し効果を確認してい る。また、冷凍・空調システムの蒸発器において、冷媒が気相に多量変化した時、 或いは、ボイラや熱交換器においてアクシデント発生時に起こりうるヘッダーへの

1

多量の気相混入時のヘッダー内の液相分配挙動に着目して、液相流量の偏りを抑制 するヘッダー・枝管による分配機構を見出すことを目標に実験的検討を行うことで ある。本研究では、枝管突出し型ヘッダー管を気相の多い領域に適用して液相分配 に対する効果を確認して均一な液相分配量を得るために必要な対策を検討し、得ら れた知見から液相分配の偏りを抑制するヘッダー・枝管分配機構の試作および検討 を行うものである。

2 記号

A:ヘッダ流路面積	u:速度
As: 枝管流路面積	Lp:突出し長さ
d:枝管内径	<i>α</i> :ボイド率
g:重力の加速度	η : 圧力回復係数
h : 枝管長さ	λ:摩擦損失係数
j:見かけ速度	$\boldsymbol{\xi}$:分岐損失係数
m:ヘッダと枝管流路面積比=A/As	ho:密度
p: 圧力	
q:枝管への分配水流量	
Q:ヘッダへの総合供給水流量	添え字
R: 圧力降下係数	G:気相
Re:ヘッダ入口レイノルズ数	L:液相
<i>Res</i> : 枝管内レイノルズ数	i:枝管番号
Fr:フルード数	S:枝管

3 実験装置

3.1 従来型の40mm×40mmヘッダー管実験装置

Fig.1 は気液二相流実験装置配管図である。枝管突出し型ヘッダー管での気相流 量が多い場合の液相分配挙動を確認する為にこの装置を使用した。地下の水タン クから高さ9.8mの屋上にあるルーフタンクに水を送り、一定の静水頭をもつため に、実験中オーバーフローさせている。そして、ルーフタンクから分配装置に水 を供給し、同時、エアコンプレッサーから圧縮空気を供給される。空気と水はヘ ッダー管の直前に混合し、ヘッダー管に流入する。そして、4本の枝管に分配され る。

Fig.2は突出し型ヘッダー管を持つ分配セクションである。40mm×40mmの矩 形断面を持つヘッダー管及び外形 20mm内径 10mm、高さ 1000mmの標準枝管を 130mm間隔で4本垂直に取り付けた。この枝管はヘッダー内に 0~40mm突き出 ししてフランジで固定することが可能である。枝管上部に外形 100mm内径 80m mのプレナムを設置している。プレナムの上部が大気開放し、それぞれの枝管の 分配された空気が大気に流入し、分配された水がプレナムの下側に溜まる。各枝 管の水分配量をプレナムに溜まった水の深さで計算する。

計測機器について、水と空気が混合する前に水の配管側に水の流量計を設置し、 圧縮空気の配管側に空気流量計・圧力計・温度計を設置する。これらの機器が水 に壊されないように逆止弁を付けてある。

Fig.2 Conventional branch pipe protruding type header

3.2 提案 I: ヘッダー管に注目し、水溜り部を持つヘッダー管

Fig. 3_1 は 2 種類の水溜り部を持つヘッダー管の概略図である。従来の枝管突出 し型のヘッダー管とテストセクション以外は Fig. 1 と同じである。枝管突出し型ヘ ッダー管での液相分配挙動の検討から、ヘッダー管形状を次のような形に変更して 効果の確認を行った。検討過程は後述するが、新型ヘッダーの変更点はヘッダー入 ロの助走区間途中から、ヘッダー下面を下げて拡大したことである。最上流側の枝 管から 130mm上流からは断面形状を一定とし、40mm×80mmおよび 40mm× 120mmの矩形の断面のヘッダーを 2 種準備した。

Fig.3_1 New type header

3.3 提案Ⅱ:枝管に注目し、10mmダムボード付き枝管

Fig. 3_2 は 10mmダムボード付き枝管の概略図である。従来の標準枝管の入口 に注目し、液相が入りやすい形を設計した。Fig. 3_2 ダムボード枝管の三面図から 見ると、赤い所を「ダムボード」と呼ぶ。川のダムのように、水のまっすぐ行く道 を遮る効果がある。内径円の接線に従って機械加工で低コストの特徴を持っている。 サイズは 17. 32mm×10mmである。ヘッダー管内の液相が射流の状態で、液相が 飛ばされる現象を防ぎ、実験中 jG が速い段階でも、均等分配できる効果に期待さ れる。今後、コンパクトされたヘッダー管に応用されることも考えている。

Fig.3_2 Branch pipe with dam-board

4 実験方法及び実験条件

4.1 実験方法

供試流体は水道水および圧縮空気として水道水は9.8m上方に設置したルーフタ ンクから定水頭を与えて供給し、空気は空気圧縮機を運転して、圧縮空気タンク、 減圧弁を介して供給した。水・空気の混合はヘッダーの助走区間よりも上流にて空 気を主流とした配管に水配管を鋭角に接続し、連続して水を供給できるように留意 した。各枝管上端は大気開放として分配水流量の計測のために円筒形の上部プレナ ムを設置して一定時間内に流入する流量を計測した。何れか1本でもあらかじめ決 めておいた高さに水位が達したら計測をやめ、高さ及び水が溜まるのにかかった時 間を記録しする。同時、パソコンの計測ソフトを利用し、時間内に水流量・空気流 量・圧力・温度の変化を記録する。その平均値を取って計算する。

本実験中、4本の枝管に分配される水の量の差が出来る限り小さければ小さい方を 求めている。しかし、実験条件により、各枝管に分配される水の量 q が全体の水流 量 Q の 25%になることが、厳密に言えば不可能である。そして、15%~35%の範囲 を均等分配できていることを決めてある。

水流量は比較的空気流量が少ない範囲で検討を行った従来の検討と同じように、 ヘッダー入口水見かけ速度 $j_1=0.07 \text{ m/s}$ として、空気流量は従来の実験範囲⁽³⁾であ るヘッダー入口見かけ空気速度 $j_6=0.7 \text{ m/s}$ までからズラズマンらの研究⁽¹⁾を参考に $j_6=5 \text{ m/s}$ までとした。また、提案 II の実験結果は予想通りに $j_6=5 \text{ m/s}$ の時に均等 分配の結果を得られたので、更に性能を探究するために、実験装置の空気流量の限 界 $j_6=8 \text{ m/s}$ まで、実験を実施した。詳し実験条件は Table.1 で示したようである。 テストセクションの材質について、ヘッダー管と枝管は透明アクリル樹脂製として 流動挙動の可視観察を可能とした。

	空気流量	水流量	空気	水
			見かけ速度	見かけ速度
	Q _G (L/min)	Q _L (L/min)	j _G (m/s)	j_L (m/s)
40mm $ imes 40$ mm				
従来型	0~480	6.72	$0 \sim 5$	0.07
ヘッダー管				
40mm $ imes 80$ mm				
水溜まり部	0~960	13. 44	$0 \sim 5$	0.07
ヘッダー管				
40mm $ imes 120$ mm				
水溜まり部	0~960	20.16	0~3.33	0.07
ヘッダー管				
ダムボード枝管				
40mm $ imes 40$ mm	0~768	6.72	0~8	0.07
ヘッダー管				

Table.1 Experimental condition

4.2 見かけ速度 j ⁽⁵⁾

二相流における各相の実速度を特定することは困難な場合が多い。このため、見かけ速度(superficial velocity)を用いることが多い。比容積をv(m^3/kg)、 質量流量をw(kg/s)とすると

$$j_G = \frac{w_G v_G}{A} = \frac{Q_G}{A}$$
$$j_L = \frac{w_L v_L}{A} = \frac{Q_L}{A}$$
$$\vec{x} \subset 1$$

になる。式1中のQは水と空気の体積流量で、単位は(m³/s)である。

本研究室に用いるヘッダー管において、Fig.4の中青い区間は見かけ速度jを示す 区域である。

Fig.4 The area of superficial velocity

5 実験結果及び考察

5.1 従来型の40mm×40mmヘッダー管において突き出し長さによる分配挙動

5.1.1 突出し長さLp=0mmの水分配挙動

突出し型ヘッダーの実験を通して、突出し0mmつまり一般的な分配機構の形状に おいて、ヘッダー内に従来の検討よりも多くの空気が混入すると界面の偏り及びヘ ッダー管内に大きな波が発生することにより液相分配の偏りが発生した。Fig.5_1 実験中の写真を見ると、ヘッダー管内に大きな波立ちが見える。すごく不安定な状 態になっている。Fig.5_2の分配結果から見ると、空気の見かけ速度 j₆が 1.5m/s より速い段階になると、第1枝管に水が入らなくなる。j₆が4m/sより速い段階に なると、第2枝管に水も入らなくなる。第4枝管へ水分配量が空気見かけ速度の増 加につれて、増えていく傾向が見られる。

Fig.5_1 Big wave in the header (Lp=0mm)

Fig.5_2 The results of conventional branch pipe (Lp=0mm)

5.1.2 突出し長さLp=10mmの水分配挙動

枝管をヘッダー管内に 10mm突出しにして観察すると、突出しの長さによって分 配結果が変わる。突出し 10mmでは 0mmに比べて多少均等分配が可能である空気 流量の範囲が大きくなったが、ヘッダー管内に大きな波が発生するのは変わらなか った。Fig. 5_3 の実験写真を見ると、空気の見かけ速度 j₆が 1.5m/s より増えると、 ヘッダー管内に突出し 0mm時と同じように、大きな波立ちが発生してしまう。 Fig. 5_4 の分配結果から見ると、空気の見かけ速度 j₆が増加につれて、第2枝管へ 水分配量が減少していき、第4枝管へ水分配量が増えていく傾向である。j₆が 3m/ s 以後になると、第1枝管に水が入らなくなる。

Fig.5_3 Big wave in the header (Lp=10mm)

Fig.5_4 The results of conventional branch pipe (Lp=10mm)

5.1.3 突出し長さLp=20mmの水分配挙動

突出し20mmでは、気液界面に大きな波立ちが発生する現象見られなくなり、さ らに均等分配が可能な範囲が大幅に大きくなった。しかし、空気のヘッダー入口見 かけ速度が大きな範囲では第一枝管への水分配割合が小さくなる傾向にあった。こ れは上流側の気液界面が下がることにより枝管入口に液相が触れにくくなったこと による。Fig.5_5の実験写真を観察すると、ヘッダー管上流側、液相の深さが8mm ぐらいある、第1枝枝管入口まで12mmの距離が離れている。水が枝管に入りにく い状態になっている。下流側の液相の深さが15mm~18mmになって、枝管入口ま で、5mm~2mmの距離で、水分配量が均等に増加している。

Fig.5_5 The entrance of branch pipe #1 can not contact the water (Lp=20mm)

Fig.5_6 The results of conventional branch pipe (Lp=20mm)

5.1.4 突出し長さLp=30mmの水分配挙動

突出し30mmでは、20mmよりもさらに空気のヘッダー入口見かけ速度が大きな 範囲 jG=4m/sまで均等分配が可能となった。ただし、突出し30mmの場合にも空 気のヘッダー入口見かけ速度がもっと速くすると、第一、第二枝管への水分配割合 が小さくなる傾向が見られた。この原因は、枝管に入ろうとする水が空気によって 飛ばされることで、第一、第二枝管への水の分配量が減少することが1つの原因と して挙げられるのではないかと考えられる。Fig.5_7の実験写真で、赤い丸に囲まれ たところに注目すると、第1、第2枝管に入ろうとする水が空気に飛ばされる様子 が見える、この分の水は減少した量ではないかと判断する。Fig.5_8の実験結果を見 ると、jG=5m/sの時、第1、第2、第3枝管へ水分配量が減少していき、第4枝 管への水分配量が上昇する傾向が見える。

Fig.5_7 The water was being blown away (Lp=30mm j_G =5m/s)

Fig.5_8 The results of conventional branch pipe (Lp=30mm)

5.1.5 突出し長さLp=35mmの水分配挙動

突出し 35mmの実験は、本研究で突出し長さが最も大きいものである。突出し 0、 10、20、30mmの結果から、水のヘッダー入口見かけ速度に関わらず同様な結果及 び傾向が得られると予想でき、明らかに均等分配が不可能であると判断できるため に実験は $j_L=0.1m/s$ 以外は行っていない。また、低流量域についても実験は行っ ていない。

Fig. 5_9 に示すように、突出し 35mmにおいて、第一枝管側で水位が高く、第四 枝管に向かって低くなる傾向が見られた。これはその他の突出しの場合には第一枝 管側で水位が低く、第四枝管に向かって高くなることから逆の挙動を示した。この ため、空気のヘッダー入口見かけ速度が比較的小さい範囲 j_c=1m/s以下の場合で は、第一枝管入口は水に浸かっており、第一枝管にはほとんど空気は入っていなか った。この各枝管入口の水深さの違いが均等分配できない原因ではないかと考えら れる。

Fig.5_9 Water level of upper reaches of the header was higher than others (Lp=35mm)

Fig.5_10 The results of conventional branch pipe (Lp=35mm)

5.1.6 フルード数を利用し、ヘッダー管内流れの状態を分析する

まず、ヘッダー管内枝管に分配される直前の水の深さhを測る。2秒間ずつ6ヶ所 測って、その平均値 h_iを利用する。そして、ヘッダー管入口の総流量 Q_L及び各枝管 に分配される水の割合 q_i/Q_iを利用し、式2のように実速度 v_iを計算する。

$$v_{1} = \frac{Q_{L}}{0.04 \times h_{1} \times 0.001}$$

$$v_{2} = \frac{Q_{L} \times (1 - \frac{q_{1}}{Q_{L}})}{0.04 \times h_{2} \times 0.001}$$

$$v_{3} = \frac{Q_{L} \times (1 - \frac{q_{1}}{Q_{L}} - \frac{q_{2}}{Q_{L}})}{0.04 \times h_{3} \times 0.001}$$

$$v_{4} = \frac{Q_{L} \times (1 - \frac{q_{1}}{Q_{L}} - \frac{q_{2}}{Q_{L}} - \frac{q_{3}}{Q_{L}})}{0.04 \times h_{4} \times 0.001}$$

$$\vec{x} \in 2$$

次は、ヘッダー管内各枝管入口の所の波速度 vwiを式3のように計算する。

フルード数[Froude number]とは、開水路の流れの断面平均流速と水面を伝播(でんぱ)する微小振幅長波の波速の比。フルード数は開水路の流れを常流(Fr<1)、限界流(Fr=1)、射流(Fr>1)に分類するのに用いられる。記号はFrで示し、式4で計算する。式2と式3の値を代入すると、

v:速度(m/s)

h:水の深さ (mm)

g:加速度 9.8 (m/s²)

i:枝管の番号

となる。

以上の計算方法により、40mm×40mmヘッダー管において、突き出し長さLpが 30mm、j₆=5m/sの場合、ヘッダー管内流れの状態を判別した。Fig.5_11のフル ード数に関するグラフを見ると、Fr0からFr3までの値は1より大きになって、Fr4 が急激に下がって、1より小さくなっている。つまり、第1、第2、第3枝管入口 のところに、流れの状態が射流になり、第4番枝管入口のところに、流れの状態が 常流になっていることを確認した。従来型の分配装置において、液相の状態が射流 になった場合、水が入りにくくなり、4本目の枝管に水分配が多くなることは均等分 配できない理由ではないかと考えられる。

Fig.5_11 Froude number (40mm×40mm, j_G=5m/s, Lp=30mm)

5.1.7 従来型の40mm×40mmヘッダー管の水分配挙動についてまとめ 以上の実験結果を踏まえて、40mm×40mmのヘッダー管において、確認できた ことは、突出し長さLpにより、均等分配範囲が変わる。突き出し長さLpが30mm 以内は長ければ長いほど、気液界面のが下がりつつ、均等分配の範囲が広くなるこ とが分かった。

問題の一つとして考えられるのは空気のヘッダー入口見かけ速度が比較的大きな 範囲において発生する界面の偏りや不安定さであるということであった。そこで、 空気流量が大きい範囲でも、第一、第二枝管側の界面の高さが低くならないように し、かつ水の流れと空気のせん断力によって発生する波の影響を小さくすることが 可能なヘッダー管の形状の一つを考案した。Fig. 3_1 で示した提案 I の水溜まり部を 持つヘッダー管である。

また、最も広い均等分配になった空気の見かけ速度範囲は突出し長さ Lp を 30mm に設置した条件であった。安定した気相層を保つ事が可能であったが、気相流量が 増加すると液相の実速度が高くなり、液相が気相に飛ばされ、上流側枝管への流入 が困難となった。この現象により、液相が入りやすい枝管入口の形状を考案した。 Fig. 3_2 で示した提案 II のダムボード付き枝管である。

23

5.2 提案 I: 水溜まり部を持つヘッダー管において分配挙動

前の Fig. 3_1 で示した概略図は水溜まり部を持つヘッダー管である。水溜まり部 を持つヘッダー管はヘッダー管に着目して改善したものである。気相から受ける界 面のせん断力を抑制すること及び液相の流動速度を遅くすることを目的として、ヘ ッダー管の断面積を増加した水溜り部を持つヘッダー管の分配効果に期待する。本 研究室には 40mm×80mm型と 40mm×120mm型二種類の水溜まり部を持つヘッ ダー管を用意したが、実験装置空気流量の制限があり、40mm×120mmヘッダー管 の断面積は 40mm×40mm型の 3 倍で、空気の見かけ速度 j₆の速度 2.5m/s までし か行けないので、大きな波立ちとハイドロリックジャンプ現象(後で説明する)が 発生し、均等分配ができずに本論文で説明を略する。

今回の実験条件について、従来型の40mm×40mmヘッダー管と比較するために、 水と空気の流量を2倍に設定して同じの見かけ速度jを予測し、実験を行った。突 出し長さLpを0mm、20mm、40mm、50mm、60mm、70mmを調整し、実験を した。この中、突き出し長さLpが0mmと20mmの場合、Fig. 6_1の実験写真のよ うに、ヘッダー管内大きな波立ちが発生し、液相が不安定な状態で分配結果がまち まちだった。

Fig.6_1 Big wave in the header (40mm×80mm, Lp=0mm)

5.2.1 水溜まり部を持つヘッダー管 40mm×80mm (Lp=40mm)

Fig. 6_2 は 40mm×80mmヘッダー管において、一番分配結果が良かった結果で ある。空気の見かけ速度 j₆が 0.25 ~4.2m/sの範囲で水が均等分配になっている。 この均等分配範囲は従来型の 40mm×40mmヘッダー管の突き出し長さ Lp が 30m mの場合と同じになっている。但し、空気の見かけ速度が 2.5m/s の時、水の界面 がある程度安定し、均等分配になっている。40mm×80mmのヘッダー管と従来型 の 40mm×40mmのヘッダー管を空気の見かけ速度 j₆で比べると、均等分配範囲は ほぼ変わらなかった。水と空気の流量で比べると、40mm×80mmのヘッダー管の ほうが断面積が大きいため、流量が 2 倍になっている。

空気の見かけ速度 j₆を 5m/s まで増やした実験の写真 Fig. 6_3 を見ると、ヘッダ 一管入口から第1枝管入口の直前まで、水の深さが 8mmぐらいで、ちょうど第1 枝管のところから、気液界面が急激に上がり、35mm以上になった。また、第1枝 管入口から気液界面までの距離が 15mmがあって、第2、第3、第4枝管入口から気 液までの距離が 3~4mmしかない。これは第1枝管へ水分配量が減少する原因では ないかと考えられる。

ここで、ヘッダー管内の液相の深さを測って、流れの状態を分析した。Fig. 6_4 のフルード数の変化から見ると、Fr1まで値は1より大きになっており、Fr2~Fr4 の値は1より小さくなっている。つまり、第1枝管前に流れの状態ガ射流で、その 後急激に常流になった。ちょうど第1枝管に水位が上がるところは限界流である。 このような現象はハイドロリックジャンプ(hydraulic jump)あるいは跳水現象と 呼ばれている。

Fig.6_2 The best results of new type header (Lp=40mm)

Fig.6_3 Hydraulic Jump (40mm \times 80mm, Lp=40mm, j_G=5m/s)

Fig.6_4 Froude number (40mm×80mm, j_G=5m/s, Lp=40mm)

5.2.2 水溜まり部を持つヘッダー管 40mm×80mm (Lp=50mm、Lp=60 mm、Lp=70mm)

それでは、突き出し長さ Lp を 50mmを設置した実験結果 Fig. 6_6 のグラフから見 ると、均等分配範囲は空気の見かけ速度 0.2~3.1m/s の範囲で、突き出し長さ Lp が 40mmの時より狭くなってしまった。Fig. 6_5 の実験写真から見ると、第1 枝管 以後の液相の深さが 27mmぐらいにさがり、限界流が発生する場所が 50mmほど後 ろにずれるようになった。そして、第1 枝管の真下に、液相の深さが 7mmぐらいし かなく、枝管入口まで 23mmの距離がある。これは第1 枝管に水分配できなくなる 理由と考えられる。

また、突き出し長さLpが60mm・70mmの実験写真Fig.6_7とFig.6_9を見ると、 液相の深さが更に18mmぐらいに下がり、限界流が発生する場所が第2枝管の入口 までに近づいてきた。Lpが70mmの場合、流路がかなり狭くなり、ヘッダー管内に 波立ち現象及び枝管内に逆流現象が発生してしまう。

Fig.6_5 Hydraulic Jump (40mm \times 80mm, Lp=50mm, j_G=5m/s)

Fig.6_6 The results of new type header (Lp=50mm)

Fig.6_7 Hydraulic Jump (40mm×80mm, Lp=60mm, j_G=3m/s)

Fig.6_8 The results of new type header (Lp=60mm)

Fig.6_9 Hydraulic Jump (40mm×80mm, Lp=70mm, j_G=2m/s)

Fig.6_10 The results of new type header (Lp=70mm)

5.2.3 水溜まり部を持つヘッダー管の分配挙動についてまとめ

以上の実験結果から見ると、突出ししない時、ヘッダー管内に従来型40mm×40 mmヘッダー管と同じように、大きな波立ちが発生し、液相が不安定な状態になる。 突き出し長さLpを40mm超えていくと、気液界面が下がり、ハイドロリックジャン プ現象の発生する場所が後ろに変わることが分かった。

水溜まり部を持つヘッダー管において、ヘッダー管の水溜まり部の役割は水の流 れを常流に変化し、水の速度を遅くすることと考えられます。ヘッダー入口の空気 見かけ速度が速い範囲では、ハイドロリックジャンプ現象の発生する場所によって、 上流側の枝管への水分配量が減少する傾向が見られる。改善対策として、Fig. 6_11 の概略図のように、ヘッダー管の入口を急拡大し、流路拡大位置をより上流側に移 動することで、流路拡大位置から第1枝管までの距離は波の長さLwより長くすれば、 枝管へハイドロリックジャンプ現象に影響されることが改善できると考えられる。

Fig.6_11 Lengthen the distance before distribution

5.3 提案Ⅱ:10mmダムボード付き枝管において分配挙動

Fig. 3_2の概略図ように、ダムボード付き枝管は従来型枝管の入口に着目し、改善したものである。気相の見かけ速度を増やして液相が高速流れる状態でも、枝管に流入しやすくなるために、10mm×17.32mmダムボードの形に加工し、飛ばさた液相が枝管に入れるように期待している。

この発想が従来型 40mm×40mmヘッダー管の分配結果から得られたため、ダム ボード付き枝管に関する実験は 40mm×40mmヘッダー管と組み合わせ、突き出し 長さ Lp を少しずつ長く調整し行った。水の見かけ速度 j₁を 0.07m/s に、空気の見 かけ速度 j₆を増やしていって分配挙動を観察した。

5.3.1 ダムボード付き枝管(Lp=10mm、Lp=20mm、Lp=25mm、Lp= 26mm)

Fig. 7_1・Fig. 7_2のグラフは突き出し長さ Lp が 10mm・20mmの分配結果であ る。まず、グラフから見ると、結果的に従来型の枝管の分配効果と同じで、第1枝 管へ水分配量が空気の見かけ速度 j₆の増加につれて減少していく傾向が明らかに見 える。Fig. 7_3の実験写真を見ると、第1枝管のダムボードが水の中に沈めていなく、 通過している水を取れない状態になっている。第2・第3・第4枝管のダムボードが 少なくとも 5mm沈めて、通過する水の方向を上に変えて、枝管に分配される。

Fig.7_2 The results of dam-board branch pipe (Lp=20mm)

Fig.7_3 The dam-board #1 was not immersed in to water (Lp=20mm, $j_G=5m/s$)

Fig. 7_4・Fig. 7_5 の実験結果はダムボード付き枝管において突出し長さ Lp が 25 mm・26mmの場合に、水分配結果を示している。変わらないことは空気の見かけ 速度 j₆が速くなると、各枝管水分配量の差が大きくなることである。しかし、突出 し長さによって、その差が縮小している。 $q_4 \ge q_1$ で引くと、Lp が 25mmの時に、水 分配量の差が 26.2%で、Lp が 26mmの時に、水分配量の差が 14.6%になっている。 この差の変化から判断すると、Lp が 26mmの時に、水の見かけ速度 jG が 5m/s ま で均等分配範囲内になっていたが、突出し長 Lp をもっと長くすると、更に良い結果 が得られると考えられる。

Fig. 7_6の実験写真を見ると、Lpが25mm、水の見かけ速度 jGが5m/sの時に、 第3枝管前後の液相の深さが異なる。第1・第2枝管のダムボードが水の中に沈めて いなく、水を取れなくなる状態になっている。第3・第4枝管のダムボードが水の中 に8mmぐらい沈めている。この沈めた長さの違いは、第1・第2枝管に水分配量が 減少していき、第3・第4枝管へ水分配量が増加していく原因だと考えられる。

Fig.7_4 The results of dam-board branch pipe (Lp=25mm)

Fig.7_5 The results of dam-board branch pipe (Lp=26mm)

Fig.7_6 The dam-board #1 and #2 were not immersed in to water (Lp=25mm, jG=5m/s)

5.3.2 ダムボード付き枝管(Lp=27mm、Lp=28mm、Lp=29mm、Lp= 30mm)

Fig. 7_7 のグラフは引き続き、突出し長さ Lp を長くして 27mmに設置した実験結果である。空気の見かけ速度 j_{g} が 5m/s の時の結果から見ると、q4 を q2 で引くと、水分配量の差は 9.9%になっている。これは空気の見かけ速度 j_{g} が 0.5[~]5m/s の範囲で、各枝管への分配量の差が従来の結果より一番小さかった。今まで、最も良い結果が得られた。

Fig. 7_7 の j₆が 5m/s までの実験結果をしっかり見ると、第4番へ水分配量が上 昇する傾向が見られる。この現象を確認するため、実験装置の流量限界まで、少し j_6 が 8m/s まで実験をした。結果を見ると、突出し長さ Lp=27mm、 j_6 =0.5~6m/ s の時、均等分配範囲内になっており、空気流量をもっと上げると、第4番枝管へ の水分配量が急激にしてしまう。

Fig. 7_8の実験写真を見ると、第4番枝管のところに水の深さが前より深くなって いる。ここで、ヘッダー管内に流れている水の深さを測って、フルード数で流れの 状態を分析した。Fig. 7_9 と Fig7_10のフルード数のグラフを比較する。空気の見か け速度 j₆が 5m/s の時に、フルード数の最大値 Fr2 が 1.77 であり、最小値 Fr4 が 0.39 である。空気の見かけ速度 j₆が 8m/s の時に、フルード数の最大値 Fr 1 が 3.0 であり、最小値 Fr4 が 0.34 である。2 つのパターンを比べると、下流側の最小値が あまり変わっていなく、上流側の最大値が 2 倍ぐらいになっている。つまり、下流 側の流れ状態は同じ常流になっているが、上流側の射流の激しさにより、分配結果 に影響を与えられる。流れ状態が異なる場合、フルード数が大きければ大きいほど、 枝管に水分配量の差が大きくなると考えられる。

36

Fig.7_7 The results of dam-board branch pipe (Lp=27mm)

Fig.7_8 High water level in the last place #4 (Lp=27mm, j_G =8.0m/s)

Fig.7_10 Froude number (40mm×40mm, j_G=8m/s, Lp=27mm)

また、突出し長さ Lp が 28mm、空気の見かけ速度 j₆ が 8m/s までの分配結果 Fig. 7_11 を見ると、均等分配範囲で評価すると、j₆ が 0. 5~8m/s の範囲では全て 許容範囲(15%~35%)以内になっている。今まで、最も広い均等分配範囲が得ら れた。しかし、空気の見かけ速度 j₆ が 0. 5m/s 以下の条件で、均等分配ができなか った。Fig7_12 の実験写真を見ると、ヘッダー管入口の所に水位が最も高く、一番目 枝管に空気が入れない状態になっている。ヘッダー管内の圧力は枝管の水頭圧より 小さくなって、分配が出来なかった。

Fig. 7_13 のフルード数からヘッダー管の流れ状態を分析すると、空気の見かけ速度 jG が 0.5m/s の時、すべてのフルード数が1以下になっている。つまり、ヘッダ ー管内の流れ状態は全部常流になっている。常流の定義により、入口側が下流側の 波の影響を受けて、水位が上昇してしまって、空気が入れなく、分配できなくなる 原因になっていると考えられる。

Fig. 7_14・Fig. 7_15・Fig. 7_16のフルード数は突き出し長さ Lp が 28mm、空気の見かけ速度 jG が 6m/s・7m/s・8m/sの比較的に高速な流れ状態で解析できた値である。すべてのフルード数 Fr の値は1以上になっている。つまり、各枝管入口のところに流れの状態がすべて射流の状態になっている。均等な分配結果により、ダムボード枝管において、液相の流れ状態が同じ射流になると、均等分配の結果が得られると考えられる。

39

Fig.7_11 The results of dam-board branch pipe (Lp=28mm)

Fig.7_13 Froude number (40mm×40mm, j_G=0.5m/s, Lp=28mm)

Fig.7_15 Froude number (40mm×40mm, j_G=7m/s, Lp=28mm)

Fig.7_16 Froude number (40mm×40mm, j_G=8m/s, Lp=28mm)

最後に、突き出し長さ Lp が 29mm・30mmの分配結果 Fig. 7_17・Fig. 7_18 を見 ると、空気の見かけ速度 j₆が 1.0m/s以下の場合、突き出し長さ Lp が 27mm・28 mmと同じ原因で、分配ができなかった。空気流量を増やしていくと、第1枝管へ 水分配量が明らかに多くなっている。他の 3 本枝管へ水分配量がほとんど均一にな っている。Fig. 7_19 の実験写真を見ると、ヘッダー管入口に液相の深さが 8mmぐ らいあり、第1枝管以後下がるようになり、第2・第3・第4枝管入口の所に水の深 さが 4mmぐらいしかない。分配結果から見ると、ダムボードを液相に沈めた長さに より、水分配量が異なるようになる。ヘッダー管内の圧力が枝管内の水頭圧を超え た場合、ダムボードを沈めた長さが長くなると、枝管に分配される水の量が多くな る。逆に、沈めた長さが短くなると、枝管に分配される水の量が少なくなると考え られる。

Fig.7_18 The results of dam-board branch pipe (Lp=30mm)

Fig.7_19 High water level at the entrance #1 (Lp=30mm, j_G =4.5m/s)

5.3.3 ダムボード付き枝管において突き出し長さ Lp と水分配量の関係 今まで、ダムボード付き枝管の水分配効果を確認し、突出し長さ Lp により、均等 分配範囲が変わることも知られている。それでは、ダムボード付き枝管において、 最適な突出し長さ Lp は何ミリか、下のグラフ Fig. 7_20 を見て検討する。まず、横 で比べると、突出し長さ Lp が長くすると、第1枝管への水分配量 q₁が多くなる。第 4枝管への水分配量 q₄が逆に少なくなることが分かった。縦で比べると、突出し長 さ Lp が 20mmの場合、q₁は q₄ よりずっとすくないく、Lp が 27mmの場合、q₁は q₄ より近づいたが、まだ小さい。Lp が 28mmの場合、q₁は q₄を超えて多くなり、Lp が 30mmの場合、q₁は q₄より更に多くなった。これらの関係により、最適な突出し 長さ Lp は 27mmから 28mmまでの間と推測できる。つまり、ダムボード枝管にお いて、第1枝管と第4枝管への水分配量から見ると、最適な突出し長さを見出せる ことが分かった。

Fig.7_20 Protruding length and volume of distribution

5.3.4 均等分配範囲指数で比較する

ヘッダー管分配装置の分配性能を比較するために、Fig.8のように均等分配範囲指数でまとまった。均等分配分配範囲指数とは、水均等分配結果が得られる空気の見かけ速度の広さである。従来型枝管突き出し長さLpが30mmの場合は過去一番良かった結果で、ダムボード枝管突出し長さLpが28mmの場合は、今まで均等分配範囲が一番広いパターンが見つかった。

Fig.8 The exponent of even distribution range

6 結 論

- 6.1 結論として従来の 40mm×40mm枝管突き出し型ヘッダー管において突出 し長さにより、気液界面の高さが調整でき、波立ちを抑える効果がある。枝 管を突き出すことにより均等分配が可能となる領域が広がることが確認さ れた。
- 6.2 提案 I 水溜まり部を持つヘッダー管において水溜まり部の役割は水の流れ を常流に変化し、水の速度を遅くすることが考えられる。ヘッダー入口の空 気見かけ速度が速い範囲では、ハイドロリックジャンプ現象の発生する場所 により、上流側の枝管への水分配量が減少する傾向が見られる。改善対策と して、ヘッダー管の入口を急拡大する、もしくは流路拡大位置をより上流側 に移動することで枝管への影響が改善されると考えられる。
- 6.3 提案IIダムボード付き枝管において、空気の見かけ速度1.0m/s以下の場合、 上流側の水位が高くなり、空気が入れないため、分配出来なかった。今後ダ ムボードのサイズを調整すれば、改善できると思う。また、枝管入口のダム ボード形は液相の流動方向を変え、枝管に入りやすい効果を持っている特徴 を確認した。ヘッダー管入口空気見かけ速度が速い段階で、液相突出し長さ により、射流になった液相を均等分配することが可能である。最後、第1枝 管と第4枝管への水分配量から見ると、最適な突出し長さLpを見出せるこ とが分かった。

参考文献

- ズラズマンら、「垂直上昇多分岐管における気液二相分配」、混相流、24(5)、
 (2011)、pp. 577-585
- 2. S. Vist and J. Pettersen, Two-phase flow distribution in compact heat exchanger manifolds, Experimental Thermal and Fluid Science, 28 (2004), pp. 209-215
- 3. 堀木、刑部、「水平二相ヘッダー管の水分配挙動」、機論(B)、(69)677、(2003)、 pp. 31-3
- 4. 「ターボ動力工学」・2004年・海文堂出版株式会社・刑部真弘
- 5. 「エネルギ技術者の熱流体トレーニング」・2004 年・海文堂出版株式会社・刑部 真弘
- 6. 「エンジニアの流体力学」・2010年・株式会社朝倉書店・刑部真弘

謝辞

本論文を作成するにあたり、数々の助言・解析及び実験まで手伝ってくださった 堀木幸代准教授・刑部真弘教授にこの場を借りって厚くお礼申し上げます。また、 本研究を行うに当たり実験準備から、実験装置の制作・改良等幅広くご協力を頂い た伊東次衛先生、井上二三男先生、本当にありがとうございました。

また、馬場政宜さんには一年中たくさんのアイディアを出し、卒業発表を終わっ てからも実験を手伝って頂きありがとうございました。一昨年の冨山春季さん、椎 葉萌佳さんがデータ収集してくれて、大変役に立ちました。

修論発表会で研究背景に関するご指摘及びアドバイスを頂いた井上順広教授・波 津久達也准教授に付記し感謝の意を表します。

付録

実験データ

		4/Q	. 307903). 281424	. 217584	0.281277	0.331109	. 380011	1.443898	. 483911	. 529009). 524538	. 462056	. 454611). 226268	. 164158	. 148593
	和割合	3/Q q). 232116	. 261891	. 357094 0	. 370747 (. 366367 (). 367581 (. 305109 0	. 314866 (0. 29009 0). 287638 (. 320379 (. 335269 (). 257636	. 317598 (0. 30661
	水の流量分	2/Q q	. 247664 0	0. 30107 0	0. 279933 0	0. 251713 0	. 231022 0	0.202772	0. 20868 0	0. 16971 0	. 162945	0. 170019 0	0.201881	. 194436 0). 184514 0	. 215629 0	. 302079
		1/Q q	0. 212317 (0. 155616	0. 145389 (0. 096263 (0. 071502 0	0. 049637 (0. 042313	0. 031512	0. 017957 0	0. 017805 0	0. 015684 (0. 015684 (0. 331582 (0. 302615 (0. 242718 0
		(m/s)	1.004911	1. 503741	2. 007582	2. 525781	3.015287	3. 50369	4. 008434	4. 510687	5. 025208	6.0123	7.016307	8. 020761	0.21407	0. 30265	0.5105
		q4	0.0014	0.0014	0.0010	0.0011	0.0013	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0014	0.0010	0.0008	0.0007
	(m^3)	q3	0.0011	0.0013	0.0016	0.0015	0.0015	0.0014	0.0010	0.0010	0.0008	0.0008	0.0010	0.0011	0.0012	0.0015	0.0015
	流量(q2	0.0012	0.0015	0.0013	0.0010	0.0009	0.0008	0.0007	0.0005	0.0005	0.0005	0.0006	0.0006	0.0008	0.0010	0.0014
		ql	0.0010	0.0008	0.0007	0.0004	0.0003	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0015	0.0014	0.0012
	体積流速	(*10 ⁻⁵ m ^{3/s})	10.867	11.0484	10.593	10.6551	10.4987	10.6893	11.3349	10.9664	11.0571	10.3254	10.9132	10.5495	10.9373	10.9574	10.8342
10mm	Total O	(m ³)	0.00467	0.00486	0.00455	0.00394	0.00399	0.00385	0. 0034	0.00307	0.00276	0.00279	0.00316	0.00316	0.00448	0. 0046	0.00477
長さLp		Hose4(m ³)	4.86161E-05														
突き出し		lose3(m^3)	4.7909E-05														
		ose2(m^3) H	1. 9873E-05	t. 9873E-05	l. 9873E-05	1. 9873E-05	t. 9873E-05	t. 9873E-05	1. 9873E-05	1. 9873E-05	t. 9873E-05	l. 9873E-05	1. 9873E-05	t. 9873E-05	1. 9873E-05	1. 9873E-05	1. 9873E-05
ド付き枝管		Hosel(m^3) H	4. 96372E-05														
イボー		o. 4	29.5	28	20	22.5	27	30	31	30.5	30	30	30	29.5	20.5	15	14
1/S	(m)	o. 3 N	22	26	33.5	30	30	29	21	19.5	16	16	20.5	21.5	23.5	30	30
0. 07n	高さ((lo. 2 N	23.5	30	26	20	18.5	15.5	14	10	8.5	6	12.5	12	16.5	20	29.5
$j_{L=}$		lo. 1 N	20	15	13	7	0	3	2	-	0	0	0	0	30.5	28.5	23.5
	目相	N (S)	1 43	2 44	3 43	4 37	5 38	6 36	7 30	8 28	9 25	0 27	1 29	2 30	7 41	8 42	9 44
	1							-	[-		-		-	0	2	2

JL= 0.07 m/s ダムボード付き枝管 第四 前 高さ(cm) Hosel(m ⁻³⁾ s) No.1 No.2 No.3	<u> 1 - 1 - 1 - 1 - 0.07 m/s ズムボード付き枝管 - 高さ(cm) - 1 No.2 No.3 No.4 Hosel(m⁻³⁾</u>	0.07 m/s ダムボード付き枝管 高さ (cm) 10.3 No.4 Hosel (m ⁻³⁾	m/s ダムボード付き枝管 (cm) No.3 No.4 Hosel(m ⁻³⁾	ダムボード付き枝管 No.4 Hosel(m ³)	-ド付き枝管 Hosel(m ^{^3})	1	Hose2(m^3)	突き出[Hose3(m^3)	長さLp Hose4(m^3)	20mm - Total Q (m^3)	体積流速 (*10 ^{°-5} °		12 流量(a3	14	$j_{\overline{G}}$ (m/s)	a1/0	水の流量3 42/0	分配割合 13/Q	a4/Q
	44	20	24.5	24.5	30	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00486	<u>11.0484</u>	0.0010	0.0012	0.0012	0.0015	1. 022965	0. 204084	0. 247754	0.24735	0. 300811
	49	22	28.5	28	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00531	10.8346	0.0011	0.0014	0.0014	0.0015	1. 507834	0. 204627	0. 262368	0.25756	0. 275445
	46	19	26	26.5	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00498	10.8242	0. 0009	0.0013	0.0013	0.0015	2.017014	0. 189791	0. 256089	0. 260427	0. 293694
	45	16.5	26	25.5	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00481	10.6982	0. 0008	0.0013	0.0012	0.0015	2. 509848	0.171822	0. 264862	0.25956	0. 303756
	44	13.5	25	25.5	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00463	10.5129	0. 0007	0.0012	0.0012	0.0015	3. 003343	0. 148261	0. 265468	0. 270137	0. 316134
	42	10.5	24	25	29.5	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00439	10.4525	0. 0005	0.0012	0.0012	0.0014	3. 526793	0.124016	0. 268982	0. 279269	0. 327734
	40	8	23	24	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.0042	10. 5039	0.0004	0.0011	0.0012	0.0015	4.009271	0.10154	0. 269833	0. 280582	0. 348045
	38	5.5	23	25	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00413	10.8707	0.0003	0.0011	0.0012	0.0015	4. 506058	0.074759	0.274451	0. 296791	0.354
	38	3.5	22	25	29.5	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00397	10.4367	0. 0002	0.0011	0.0012	0.0014	5.018394	0.054103	0. 273982	0. 309133	0. 362781
	38	1	22	25	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00387	10. 1887	0.0001	0.0011	0.0012	0.0015	6.02119	0.024992	0. 280652	0. 316659	0. 377698
	35	0	16	25	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00354	10. 1195	0. 0000	0. 0008	0.0012	0.0015	7.0325	0.014015	0.22696	0.34615	0.412875
	30	0	7	25	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00312	10. 3924	0. 0000	0.0004	0.0012	0.0015	8. 027153	0.015921	0. 121801	0. 393239	0.46904
	43	30	20	23	17.5	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00446	10. 3738	0.0015	0.0010	0.0011	0.0009	0.204839	0. 328051	0. 222463	0. 253715	0. 195771
	44	30	23	25	21	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00486	11.0484	0.0015	0.0011	0.0012	0.0010	0. 303045	0. 301021	0.233214	0. 252197	0. 213568
	38	21.5	28.5	17	13.5	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00399	10.4987	0.0011	0.0014	0.0008	0.0007	0.504409	0. 266399	0. 349142	0.212812	0. 171647

1.1.1		j_L=	0.07	m/s	ダムボー	-ド付き枝管	J'ru	突き出し	長さLp	25mm										
			を同	(cm)						- - -	体積流速		流量(m^3)				水の流量	分配割合	
1	s) No	o. 1	No. 2	No. 3	No.4	Hosel(m ³)	Hose2(m ³)	Hose3(m ³)	Hose4(m^3)	u lotal لا (m^3)	(*10 [°] -5 m [°] 3/s)	11	12	q.3	q4	$\int_{0}^{J_G} (m/s)$	q 1/Q	q2/Q	q3/Q	q4/Q
	46	20.5	25	23.5	29	4.96372E-0	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00481	10.4656	0.0010	0.0012	0.0012	0.0014	1.03206	0.210976	0. 255074	0. 239983	0. 293967
	48	21	26.5	26	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00507	10. 5695	0.0010	0.0013	0.0013	0.0015	1.503429	0.204842	0. 255976	0. 250944	0. 288238
	46	18	25.5	25.5	30	4.96372E-0	5 4.9873E-05	4. 7909E-05	4.86161E-05	0. 00486	10.568	0. 0009	0.0013	0.0012	0.0015	2.005069	0. 184697	0. 257448	0. 257044	0.300811
	44	15	24	25	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00463	10.5129	0. 0008	0.0012	0.0012	0.0015	2. 494864	0. 163543	0.25528	0. 265043	0.316134
	41	13	21.5	24.5	29.5	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00437	10.65	0. 0007	0.0011	0.0012	0.0014	3.001198	0. 151666	0. 243453	0.27538	0. 329502
	39	11.5	19.5	24.5	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00423	10. 8337	0. 0006	0.0010	0.0012	0.0015	3.51557	0.14001	0. 229292	0. 284594	0.346104
	38	11.5	17	24.5	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00411	10.8087	0. 0006	0.0009	0.0012	0.0015	4. 002815	0. 144026	0.207186	0. 292757	0. 356031
	37	10.5	15.5	24	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4. 86161E-05	0.00397	10. 7188	0.0005	0.0008	0.0012	0.0015	4. 495089	0. 137278	0. 196748	0. 297251	0. 368722
	36	6	13	24	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0. 00378	10.4929	0. 0005	0. 0007	0.0012	0.0015	5.016756	0. 125416	0.175378	0.312084	0.387122
	33	9	6	23	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4. 86161E-05	0.0034	10.3044	0. 0003	0.0005	0.0011	0.0015	5.99528	0.097746	0. 139389	0. 332825	0.43004
	28	4.5	7	18	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4. 86161E-05	0.003	10.714	0. 0003	0.0004	0.0009	0.0015	7.008719	0.087234	0. 126584	0. 298722	0.487459
	25	3	5.5	13.5	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0.00265	10. 5859	0. 0002	0.0003	0.0007	0.0015	8.011675	0.072175	0.116779	0. 258488	0. 552558
	43	29.5	25.5	20	18.5	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4. 86161E-05	0.0046	10. 7026	0.0014	0.0013	0.0010	0.0009	0.218805	0.312854	0.271947	0.215202	0. 199997
	40	27	30	17	13	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4. 86161E-05	0.0043	10. 7395	0.0013	0.0015	0.0008	0.0007	0. 300091	0. 307737	0.340701	0. 197638	0. 153924
	36	21	25	0	30	4.96372E-0.	5 4.9873E-05	4. 7909E-05	4.86161E-05	0. 00378	10.4929	0.0010	0.0012	0.0000	0.0015	0.500729	0.275116	0. 325079	0.012683	0. 387122

$j_{L=}$ 0.07	$j_{L=}$ 0.07	0.07		m/s	ダムボー	- ド付き枝管		突き出し	長さLp	26mm										
un 目 (cm)	<u> 高さ (cm)</u>	園さ(cm)	(cm)							T 1 . 0	体積流速		流量(m^3)				水の流量が	分配割合	
Internal No. 1 No. 2 No. 3 No. 4 Hc	No.1 No.2 No.3 No.4 Hc	No.2 No.3 No.4 Hc	No. 3 No. 4 Hc	No.4 Hc	Hc	sel(m^3)	Hose2(m^3)	Hose3(m^3)	Hose4(m^3)	unal y (m^3)	(*10 ^{~-5} ^q ^m	1 9	[2	q3 (q4	$\int_{J_G}^{J_G}$	q1/Q	q2/Q	q3/Q	14/Q
49 26 26.5 25.5 29 4.	26 26.5 25.5 29 4.	26.5 25.5 29 4.	25.5 29 4.	29 4.	4.	96372E-05	: 4.9873E-05	4. 7909E-05	4.86161E-05	0. 00524	10.6904	0.0013	0.0013	0.0012	0.0014	1. 022532	0.243373	0. 247916	0. 238545	0. 270166
49 25 26 26 29.5 4.	25 26 26 29.5 4.	26 26 29.5 4.	26 29.5 4.	29.5 4.	4.	96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00521	10.6423	0.0012	0.0013	0.0013	0.0014	1. 505602	0. 235436	0. 244518	0. 244141	0. 275905
49 24 25 27 30 4.	24 25 27 30 4.	25 27 30 4.	27 30 4.	30 4.	4.	96372E-05	; 4.9873E-05	4. 7909E-05	4. 86161E-05	0. 00519	10. 5942	0.0012	0.0012	0.0013	0.0015	2.016667	0. 227427	0.23655	0. 254327	0. 281696
45 21.5 21 25 29 4.	21.5 21 25 29 4.	21 25 29 4.	25 29 4.	29 4.	4.	96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00474	10.5411	0.0011	0.0010	0.0012	0.0014	2. 534493	0. 224055	0.219137	0. 258461	0. 298348
45 20.5 20 25 30 4.	20.5 20 25 30 4.	20 25 30 4.	25 30 4.	30 4.	4.	96372E-05	; 4.9873E-05	4. 7909E-05	4. 86161E-05	0.0047	10.4364	0.0010	0.0010	0.0012	0.0015	3. 039228	0. 216269	0. 211302	0. 261054	0.311375
42 19.5 19 24.5 30 4.5	19.5 19 24.5 30 4.5	19 24.5 30 4.9	24.5 30 4.9	30 4.9	4.9	96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0. 00458	10.9013	0.0010	0. 0009	0.0012	0.0015	3. 509612	0.211541	0. 206446	0. 262625	0. 319387
42 18 18 23.5 30 4.9	18 18 23.5 30 4.9	18 23.5 30 4.9	23.5 30 4.9	30 4.9	4.9	6372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0. 00441	10. 5086	0. 0009	0.0009	0.0012	0.0015	4.014172	0. 203431	0. 203484	0. 261762	0. 331323
42 16 17 23 29.5 <mark>4.9</mark>	16 17 23 29.5 4.9	17 23 29.5 4.9	23 29.5 4.9	29.5 4.9	4.9	6372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00423	10.0598	0. 0008	0.0009	0.0011	0.0014	4.512984	0. 1902	0.201409	0. 267864	0. 340527
39 16 17 22 30 4.96	16 17 22 30 4.96	17 22 30 4.96	22 30 4.96	30 4.96	4.96	3372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.0042	10.7732	0. 0008	0.0009	0.0011	0.0015	5.023415	0. 191267	0. 202539	0.25815	0. 348045
35 12.5 13.5 18 30 4.90	12.5 13.5 18 30 4.96	13.5 18 30 4.90	18 30 4.96	30 4.96	4.96	3372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00368	10. 5234	0. 0006	0. 0007	0.0009	0.0015	6.011502	0.173405	0. 186263	0. 243304	0. 397027
30 9.5 11 14 30 4.9	9.5 11 14 30 4.9	11 14 30 4.9	14 30 4.9	30 4.9	4.9	6372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00324	10.7851	0. 0005	0. 0006	0.0007	0.0015	7.03375	0. 153704	0. 175624	0. 218711	0. 451961
26 8 9 10 30 4.5	8 9 10 30 4.5	9 10 30 4.9	10 30 4. 5	30 4. 9	4.9)6372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00288	11.085	0.0004	0. 0005	0.0005	0.0015	8.034162	0. 148027	0. 164459	0. 180129	0. 507385
48 29 27 25 20 4.	29 27 25 20 4.	27 25 20 4.	25 20 4.	20 4.	4.	96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0. 00496	10.3241	0.0014	0.0013	0.0012	0.0010	0.20314	0. 285787	0. 266816	0. 247401	0. 199997
39 26 30 16.5 13 4.	26 30 16.5 13 4.	30 16.5 13 4.	16.5 13 4.	13 4.	4.	96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00423	10.8337	0.0013	0.0015	0.0008	0.0007	0. 3026	0. 301732	0. 346401	0. 195368	0. 156499
48 27.5 30 15.5 28 4.	27.5 30 15.5 28 4.	30 15.5 28 4.	15.5 28 4.	28 4.	4.	96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00496	10.3241	0.0013	0.0015	0.0008	0.0014	0.508115	0. 271523	0. 295344	0. 157062	0. 276071

配制合 化和 1995 10 10 10 10 10 10 10 10 10 10 10 10 10	0. 160383 0	3826 (5916 C
	0 0	. 30(
水の流量分 2/9 9 9 2/9 9 9 2/9 9 9 2/9 9 9 15 5 233332 5 5 233332 5 5 232332 5 2 214831 5 2 214831 5 2 214831 5 2 214831 5 2 214831 5 2 214831 5 2 213853 5 2 20203 5 2 211025 5 2 211025 5 2 211025 5 2 211025 1 9 2489 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.38268	. 313352 C
/Q q.5 276581 0 276866 0 280619 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283178 0 283808 0 2558825 0 2083322 0 2083322 0	. 068425	. 012666 0 . 287106 0
je q1 (m/s) q1 013293 0 013295 0 013295 0 013293 0 013293 0 013293 0 013293 0 014675 0 012011 0 014648 0 014648 0 014648 0 018009 0 018009 0 018322 0 015436 0	. 210658 0.	. 302021 0.
4 0.0012 1 0.0013 1 0.0014 2 0.0015 3 0.0015 3 0.0015 3 0.0015 3 0.0015 3 0.0015 4 0.0015 5 0.0015 6 0.0015 7 0.0015	0.0015 0	0.0015 0
3 3 3 9 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0 0.0012 0	0.0006	0.0012
第重(IIII) 第重(IIII) 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0010 0.0000 0.0000 0.0000	0. 0015	0. 0012
1 0.0014 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0012 0.00010 0.00000 0.000	0. 0003	0. 0000
体和流速 (*10 ⁻⁵ - 10.45 10.455 10.7658 10.7658 10.7658 10.7658 10.2429 10.2429 10.2429 10.2429 10.5584 10.5584	10. 3367	10.3127
27mm Total 0 (m ³) 0.00512 0.00529 0.00517 0.00517 0.00514 0.00514 0.00514 0.00514 0.00514 0.00514 0.00514 0.0038 0.00382	0.00382	0.00392 0.0051
長さLp Hose4 (m ² 3) 4. 86161E-05 4. 86161E-05	4. 86161E-05	4. 86161E-05 4. 86161E-05
突き出し Hose3 (m ⁻³) Hose3 (m ⁻³) 4. 7909E-05 4. 7909E-05	4. 7909E-05	4. 7909E-05 4. 7909E-05
Hose2 (m ² 3) 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05 4.9873E-05	4.9873E-05	4.9873E-05 4.9873E-05
ド付き枝管 Hosel(m ³) 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05 4.96372E-05	4. 96372E-05	4. 96372E-05 4. 96372E-05
マイト 1 マート 1 マー	30.5	30
m/s 3 m/s 3 25.5 2 25.5 2 25 25 2 25 2 25 2 25 2 25	12	24 24.5
0.07 1.02 01 1.02 10 25 25 25 25 25 25 25 25 25 25	30	25 24.5
$j_{L=}$ / $j_{L=}$ / No. 1 / No. 1 / No. 1 29 29 30 30 30 30 30 30 30 30 30 26. 5 26. 5 26. 5 26. 5 26. 5 26. 5 26. 5 26. 5 26. 5 27 26 14 5 14 5 14 5 14 5 14 5 14 5 14 5 14	4.5	30
時間 (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	27 37	28 38 29 49

$j_{L=} 0.0$	0.0	20	m/s	ダムボー	-ド付き枝管		突き出し	、長さLp	28mm										
局さ(cm)	高さ (cm)	(cm)							0	体積流速		流量(m^3)				水の流量分	分配割合	
o.1 No.2 No.3 No.	No.2 No.3 No.	No. 3 No.	No.	. 4	Hosel(m^3)	Hose2(m ³) H	Hose3(m^3)	Hose4(m^3)	10tal y (m^3)	(*10 [°] -5 m [°] 3/s)	1 0	[2	13 6	14	$\binom{J_G}{(m/s)}$	q1/Q c	12/0	13/Q q	14/Q
30 24 22.5	24 22.5	22.5		27	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00507	10. 7944	0. 0015	0.0012	0.0011	0.0013	1. 022532	0. 288439	0. 232754	0. 218435 (0. 260372
30 22.5 22	22.5 22	22		26	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00493	10.7217	0.0015	0.0011	0.0011	0.0013	1. 505602	0. 296707	0. 225094	0. 219918 (0. 258281
30 22 20.5	22 20.5	20.5		27	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00488	10.6193	0. 0015	0.0011	0.0010	0.0013	2. 016667	0. 299569	0. 222442	0.20757 (0.270419
30 22 19	22 19	19		27	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00481	10. 6982	0.0015	0.0011	0.0009	0.0013	2. 534493	0. 303968	0. 225708	0. 195934	0.27439
30 22 18	22 18	18		26	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00472	10. 4887	0.0015	0.0011	0.0009	0.0013	3. 039228	0. 310037	0. 230215	0. 189863 (0. 269885
30 21.5 17	21.5 17	17		26	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00465	10. 3317	0.0015	0.0011	0.0008	0.0013	3. 509612	0. 314751	0. 228647	0. 182614 (0. 273988
30.5 22.5 17	22.5 17	17		25	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00467	10.62	0.0015	0.0011	0.0008	0.0012	4.014172	0. 318206	0. 237579	0. 181693 (0. 262522
30 22 17	22 17	17		25	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00463	10. 2793	0.0015	0.0011	0.0008	0.0012	4. 512984	0. 316354	0. 234906	0. 183544 (0. 265196
30 23.5 18	23.5 18	18	7	27	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00484	10. 2931	0.0015	0.0012	0.0009	0.0013	5.023415	0. 302487	0.23922	0. 185239 (0. 273053
29 24 20	24 20	20		30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0. 00505	10. 5204	0.0014	0.0012	0.0010	0.0015	6.011502	0. 280453	0.23384	0. 196124 (0. 289583
27.5 23.5 19.	23.5 19.	19.	10	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00493	10.96	0.0013	0.0012	0.0010	0.0015	7.03375	0.27282	0. 234649	0. 196032	0. 2965
25 22	22	[9	30	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00472	10. 4887	0.0012	0.0011	0.0009	0.0015	8. 034162	0. 260117	0. 230215	0. 199847 0	0. 309821
1 28 3.	28 3.	3.	5	30	4.96372E-05	4.9873E-05	4. 7909E-05	4. 86161E-05	0.00314	10.832	0. 0001	0.0014	0.0002	0.0015	0.20314	0. 030803	0. 435919	0. 067757 (0. 465522
7 29.5 3	29.5	3	0	18	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.00418	10.445	0.0004	0.0014	0.0015	0.0009	0. 3026	0. 090834	0. 344669	0. 349838 (0. 214659
0 26 2	26 2	2	33	29.5	4.96372E-05	4.9873E-05	4. 7909E-05	4.86161E-05	0.0039	10.2507	0. 0000	0.0013	0.0011	0.0014	0. 508115	0. 012743	0. 327345	0. 290548 (0. 369364

$j_{L=}$ 0.07 m/s $\mathscr{X} \land \mathscr{X} - \mathscr{X} - \mathscr{X} \rightarrow \mathscr{X}$	$j_{L=} 0.07 \text{m/s} \cancel{X} \land \cancel{x} - \cancel{x} $	0.07 m/s ダムボー 	II/S ダムボー	ダムボー	1 1 L	ド付き枝管		突き出し	、長さLp	29mm				10,00				· 目 次 (イ		
時間	$\square 5 \text{ (cm)}$ Hosel (m ³)Hose2 (m ³)HoseNo.1No.2No.3No.4Hose1 (m ³)Hose	$\mathbb{H}^{\frac{1}{2}}$ (cm) No.2 No.2 No.4 Hose1(m ² 3) Hose2(m ² 3) Hose:	$\begin{array}{ c c c c c } \hline (cm) & (cm) \\ \hline No.3 & No.4 & Hosel(m^3) & Hose2(m^3) & Hosei \\ \hline \end{array}$	No.4 Hose1(m ³) Hose2(m ³) Hose	Hosel(m ³) Hose2(m ³) Hose	Hose2(m ³) Hose	lose	3 (m^3)	Hose4(m^3)	Total Q (m^3)	体積流速 (*10 ^{°-5} ^{m[°]3/s)}	1 6	<u>流重(</u> 12 /	m 3)	14	j _G (m/s)	q1/Q	<u>水の流重</u> q2/Q	分配割合 q3/Q	q4/Q
44 30 22 20 22 <u>4.96372E-05</u> <u>4.9873E-05</u> <u>4.75</u>	30 22 29 22 4.96372E-05 4.9873E-05 4.75	22 22 4.96372E-05 4.9873E-05 4.75	20 22 4.96372E-05 4.9873E-05 4.75	22 4. 96372E-05 4. 9873E-05 4. 79	4.96372E-05 4.9873E-05 4.79	4.9873E-05 4.75	4.75	009E-05	4.86161E-05	0.00463	10.5129	0.0015	0.0011	0.0010	0.0011	1. 019089	0.316354	0. 234906	0.214106	0. 234634
44 30.5 23 18 23 4.96372E-05 4.9873E-05 4.7	30.5 23 18 23 4.96372E-05 4.9873E-05 4.7	5 23 1.96372E-05 4.9873E-05 4.7	18 23 4.96372E-05 4.9873E-05 4.7	23 4.96372E-05 4.9873E-05 4.7	4.96372E-05 4.9873E-05 4.7	4.9873E-05 4.7	4. 7	909E-05	4.86161E-05	0.00465	10.5665	0.0015	0.0011	0.0009	0.0011	1.503741	0.319819	0. 243851	0.19275	0. 243581
43 30 22 16.5 22.5 4.96372E-05 4.9873E-05 4.	30 22 16.5 22.5 4.96372E-05 4.9873E-05 4.	16.5 22.5 4.96372E-05 4.9873E-05 4.	16.5 22.5 4.96372E-05 4.9873E-05 4.	22.5 4.96372E-05 4.9873E-05 4.	4.96372E-05 4.9873E-05 4.	4.9873E-05 4.7	4.	7909E-05	4.86161E-05	0.00448	10.4286	0.0015	0.0011	0.0008	0.0011	2. 020518	0. 326328	0. 242311	0. 184076	0. 247285
42 31 22 16 23 4.96372E-05 4.9873E-05 4.	31 22 16 23 4.96372E-05 4.9873E-05 4.	1 23 4.96372E-05 4.9873E-05 4.	16 23 4.96372E-05 4.9873E-05 4.	23 4.96372E-05 4.9873E-05 4.	4.96372E-05 4.9873E-05 4.	4.9873E-05 4.	4.	7909E-05	4.86161E-05	0. 00453	10.7891	0.0015	0.0011	0.0008	0.0011	2. 507192	0. 333333	0. 239791	0. 176962	0. 249913
42 31 21.5 15 22 4.96372E-05 4.9873E-05 4.	31 21.5 15 22 4.96372E-05 4.9873E-05 4.	21.5 15 22 4.96372E-05 4.9873E-05 4.3	15 22 4.96372E-05 4.9873E-05 4. ³	22 4.96372E-05 4.9873E-05 4.7	4.96372E-05 4.9873E-05 4.7	4.9873E-05 4.7	4.	7909E-05	4.86161E-05	0.00441	10. 5086	0.0015	0.0011	0.0008	0.0011	3. 028051	0. 342231	0. 240853	0. 171009	0. 245907
40 31 21 14.5 21 <u>4.96372E-05</u> 4.9873E-05 4.	31 21 14.5 21 4.96372E-05 4.9873E-05 4.	21 14.5 21 4.96372E-05 4.9873E-05 4.	14.5 21 4.96372E-05 4.9873E-05 4.	21 4.96372E-05 4.9873E-05 4.	4.96372E-05 4.9873E-05 4.	4.9873E-05 4.	4	7909E-05	4. 86161E-05	0.00432	10.7984	0.0015	0.0010	0.0007	0.0010	3. 511538	0. 349698	0. 240654	0. 169285	0. 240363
41 31 21.5 15 20.5 4.96372E-05 4.9873E-05 4.	31 21.5 15 20.5 4.96372E-05 4.9873E-05 4.	21.5 15 20.5 4.96372E-05 4.9873E-05 4.	15 20.5 4.96372E-05 4.9873E-05 4.	20.5 4.96372E-05 4.9873E-05 4.	4. 96372E-05 4. 9873E-05 4.	4.9873E-05 4.	4	7909E-05	4.86161E-05	0. 00434	10. 5925	0.0015	0.0011	0.0008	0.0010	4.012943	0. 347801	0. 244774	0. 173792	0. 233634
39 31 21 14 20 4.96372E-05 4.9873E-05 4.7	31 21 14 20 4.96372E-05 4.9873E-05 4.7	21 14 20 4.96372E-05 4.9873E-05 4.7	14 20 4.96372E-05 4.9873E-05 4.7'	20 4.96372E-05 4.9873E-05 4.7	4.96372E-05 4.9873E-05 4.7	4.9873E-05 4.7	4. 7	909E-05	4.86161E-05	0.00425	10.8941	0.0015	0.0010	0.0007	0.0010	4. 521135	0.355516	0. 244658	0. 166556	0.23327
39 30 21 15 19 4.96372E-05 4.9873E-05 4.7	30 21 15 19 4.96372E-05 4.9873E-05 4. 7	21 15 19 4. 96372E-05 4. 9873E-05 4. 1	15 19 4. 96372E-05 4. 9873E-05 4. 7	19 4.96372E-05 4.9873E-05 4.7	4. 96372E-05 4. 9873E-05 4. 7	4.9873E-05 4.7	4. 7	7909E-05	4.86161E-05	0.0042	10.7732	0.0015	0.0010	0.0008	0.0009	5.009223	0. 348288	0. 247402	0.17964	0. 224671
43 30.5 22 16.5 21 4.96372E-05 4.9873E-05 4.	30.5 22 16.5 21 4.96372E-05 4.9873E-05 4.	5 22 16.5 21 4.96372E-05 4.9873E-05 4.9873E-05 4.	16.5 21 4.96372E-05 4.9873E-05 4.	21 4.96372E-05 4.9873E-05 4.	4. 96372E-05 4. 9873E-05 4.	4.9873E-05 4.	4.	7909E-05	4.86161E-05	0.00444	10.319	0.0015	0.0011	0.0008	0.0010	6.007485	0. 335103	0. 244885	0. 186031	0. 233981
43 30.5 22.5 17 23.5 4.96372E-05 4.9873E-05 4.	30.5 22.5 17 23.5 4.96372E-05 4.9873E-05 4.	5 22.5 17 23.5 4.96372E-05 4.9873E-05 4.	17 23.5 4.96372E-05 4.9873E-05 4.	23.5 4.96372E-05 4.9873E-05 4.	4. 96372E-05 4. 9873E-05 4.	4.9873E-05 4.	4	7909E-05	4.86161E-05	0.0046	10.7026	0.0015	0.0011	0.0008	0.0012	7.035565	0. 323094	0. 241228	0. 184484	0. 251195
45 30 23 17.5 25 4.96372E-05 4.9873E-05 4.7	30 23 17.5 25 4.96372E-05 4.9873E-05 4.9873E-05 4. 7	23 17.5 25 4.96372E-05 4.9873E-05 4.7	17.5 25 4.96372E-05 4.9873E-05 4.7	25 4.96372E-05 4.9873E-05 4.7	4. 96372E-05 4. 9873E-05 4. 7	4.9873E-05 4.7	4.7	909E-05	4.86161E-05	0.0047	10.4364	0.0015	0.0011	0.0009	0.0012	8. 036759	0. 311593	0. 241404	0. 185798	0. 261205
32 0 31 3.5 30 4.96372E-05 4.9873E-05 4.7	0 31 3.5 30 4.96372E-05 4.9873E-05 4.7	31 3.5 30 4.96372E-05 4.9873E-05 4.17	3.5 30 4.96372E-05 4.9873E-05 4.7	30 4.96372E-05 4.9873E-05 4.7	4. 96372E-05 4. 9873E-05 4. 7	4.9873E-05 4.7	4. 7	7909E-05	4.86161E-05	0.00324	10.111	0. 0000	0.0015	0.0002	0.0015	0.201234	0.015341	0.466914	0. 065783	0. 451961
39 0 28.5 27.5 30 4.96372E-05 4.9873E-05 4.	0 28.5 27.5 30 4.96372E-05 4.9873E-05 4.	28.5 27.5 30 4.96372E-05 4.9873E-05 4.	27.5 30 4.96372E-05 4.9873E-05 4.	30 4.96372E-05 4.9873E-05 4.	4. 96372E-05 4. 9873E-05 4.	4.9873E-05 4.	4.	7909E-05	4.86161E-05	0.00425	10.8941	0. 0000	0.0014	0.0013	0.0015	0.305104	0. 01 1683	0. 327843	0.31629	0. 344184
40 0 29 24 31 4.96372E-05 4.9873E-05 4.7	0 29 24 31 4.96372E-05 4.9873E-05 4.7	29 24 31 4. 96372E-05 4. 9873E-05 4. 7	24 31 4.96372E-05 4.9873E-05 4.7	31 4.96372E-05 4.9873E-05 4.7	4. 96372E-05 4. 9873E-05 4. 7	4.9873E-05 4.7	4. 7	909E-05	4.86161E-05	0.00415	10.3861	0. 0000	0.0014	0.0012	0.0015	0.507214	0.011948	0. 340952	0. 283764	0. 363336

		14/Q	0. 331069	0. 202239	0. 209281	0.20688	0. 192781	0. 192781	0. 189042	0. 184076	0. 187155	0. 198829	0.20688	0. 213455	0. 547485	0. 456552	0.33308
	分配割合	q3/Q	0. 282788	0. 202071	0. 185894	0. 183762	0. 180576	0. 180576	0. 182773	0. 190016	0.18698	0. 192817	0. 195235	0. 196463	0. 418544	0. 377946	0. 292046
	水の流量が	q2/Q	0.373477	0. 247402	0.24441	0. 247342	0. 253227	0. 247214	0. 250223	0. 245632	0. 251673	0. 245836	0. 241605	0. 236186	0.017026	0. 079224	0. 362577
		q_1/Q	0. 012666	0. 348288	0. 360415	0. 362016	0.373417	0.379429	0. 377962	0. 380276	0.374193	0. 362518	0.35628	0. 353896	0.016946	0. 086279	0.012297
		$\int_{0}^{J_{G}} (m/s)$	1.020608	1.514396	1.995285	2.495203	3.021959	3.507176	4.007264	4.507494	5.013964	6.010088	7.030968	8.019525	0.203214	0.30145	0.516393
		q4	0.0013	0.0008	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007	0.0008	0.0008	0.0008	0.0009	0.0016	0.0015	0.0013
	(m ³)	q3	0.0011	0.0008	0.0008	0.0008	0.0007	0.0007	0.0007	0.0007	0.0008	0.0008	0.0008	0.0008	0.0012	0.0012	0.0012
	流量	q2	0.0015	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0009	0.0010	0.0010	0.0010	0.0010	0.0000	0.0003	0.0015
		q1	0.0000	0.0015	0.0015	0. 0015	0. 0015	0. 0015	0.0015	0.0015	0.0015	0. 0015	0.0015	0.0015	0. 0000	0.0003	0.0000
	体積流速 (*10 ^{°-5} ^{m[°]3/s)}		10. 3127	10. 7732	10. 4108	10. 5316	10.3127	10. 5914	10.4641	10.6893	10. 9098	10.6227	10. 8087	10. 5035	10. 1008	10. 3315	10. 3503
30mm	Total Q (m^3)		0.003918823	0.004201566	0.004060194	0.004107318	0.003918823	0.003918823	0.003871695	0.003848137	0.004036632	0.004036632	0.004107318	0.004201566	0.002929221	0.003306212	0.004036632
突き出し長さLp	Hose4(m ³)		4.86161E-05														
		Hose3(m^3)	4. 7909E-05														
	Hose2(m^3)		4.9873E-05														
ド付き枝管		Hosel(m^3)	4.96372E-05														
ズムボー		o.4	26. 5	17	17	17	15	15	14.5	14	15	16	17	18	33	31	27.5
m/s 3	cm)	0.3 N	22.5	17	15	15	14	14	14	14.5	15	15.5	16	16.5	25	25.5	24
0.07	した喧	Io. 2 N	30	21	20	20.5	20	19.5	19.5	19	20.5	20	20	20	0	4.5	30
$j_{L=}$		lo. 1 N	0	30	30	30.5	30	30.5	30	30	31	30	30	30.5	0	5	0
	ute pa	N (S) N	1 38	2 39	3 39	4 39	5 38	5 37	7 37	8 36	9 37	38	1 38	2 40	29	8 32	9 39
						-		-		-		Ţ.	1	1.	2	2	2.