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Abstract 

 

The snow crab, Chionoecetes opilio, is distributed in cold waters off Alaska, Canada, Russia, 

Greenland, Japan, and Korea and is an important fishery resource in these regions. In Japan, most 

snow crabs have been caught in the eastern part of the Sea of Japan since the late 1990s; thus, this is 

the most important snow crab fishery in the region. Annual stock density of snow crabs peaked in 

1970 and then declined greatly during the 1970s–1980s because of overfishing. Stock densities were 

restored after the 1990s to approximately one-third of the male and one-half of the female peaks, but 

the possible causes of the stock recovery have not been discussed. In general, the pelagic larval phase 

plays an important role in sustaining the population by facilitating larval dispersal and recruitment. 

Therefore, it is important to elucidate the effects of these factors on larval survival and development to 

understand the stock dynamics of the species. Moreover, estimating age and growth of a commercially 

harvested species provides life history trait information that is important for fisheries management, 

e.g., lifespan, age at recruitment, age at first capture, age at maturity, and cohort identification. A cap-

tive rearing experiment is an effective way to elucidate the life history of a crustacean. However, the 

biology and ecology during the early snow crab lifecycle is not well documented because of low larval 

survival under laboratory conditions. The objective of this study was to add to the basic knowledge of 

snow crab early life history characteristics under laboratory conditions. 

We examined the effects of temperature and salinity on larval survival and development, as these 

factors regulate basal metabolic rate and feeding activities. The optimum temperature ranges for larval 

survival were 5–16°C for hatching to second zoeae, 5–14°C for hatching to megalopae, and 5–14°C 

for megalopae to the crab stage. The optimum salinity ranges for larval survival were 20–38 for 

hatching to second zoeae, 26–38 for hatching to megalopae, and 28–36 for megalopae to the crab stage. 

The relationships between temperature or salinity and larval period were elucidated. Moreover, the 

threshold temperatures, calculated from heat summation theory equations for larval development, were 

estimated to be −2.24 to 0.63°C; they decreased with larval development as an adaptation to deeper 
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vertical distribution during later larval stages. 

Several studies have considered snow crab zoeae feeding ecology but not during the stages fol-

lowing megalopae. Therefore, the megalopae food consumption pattern was examined using Artemia 

nauplii. The megalopae food requirement was estimated to be ~190% of dry body weight of the 

first-instar crab. Two-segmented regressions provided good fits for the relationship between the num-

ber of days after metamorphosis and the cumulative number of Artemia consumed. The mean 

post-metamorphic breakpoint time in the rate of food consumption corresponded to intermediate of 

late premoult during the moulting cycle. A positive correlation was observed between crab size and the 

number of Artemia consumed during the entire megalopal period. 

Body density is an important parameter when modeling larval vertical distribution in the water 

column. Thus, ontogenetic changes in larval body density were investigated in relation to moult stages, 

which were determined based on integumentary changes occurring during the snow crab larval moult-

ing cycle. The moult-stage characteristics were based on a microscopic examination of changes in the 

integument, particularly the telson. The larval cuticle changed from a spongy structure to become 

conspicuously thicker and more solid in appearance during stages A–C. The epidermis retracted from 

the cuticle during stage D, and new setae and appendages formed. Body density of larval snow crabs 

was lowest just after moulting, increased significantly during stage C, and then increased gradually to 

reach a plateau at 1.0897–1.0931 g cm–3 during stage D. The larvae developed a density greater than 

that of seawater during the entire larval period. 

Snow crabs change their spatial distribution in relation to temperature and the bottom substrate 

after settling on the sea bottom. They also change their distribution seasonally according to reproduc-

tive and growth status. Among environmental factors, water temperature is the most important factor 

influencing moulting and the intermoult period, which determine growth. Therefore, captive experi-

ments were conducted using laboratory-born juvenile crabs during the early settlement phase (instar I–

VII) to elucidate the effect of temperature on moulting and growth. Growth indices (size increases at 

moulting in mm and in percentage of premoult carapace width) were significantly higher in crabs 
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reared at 5°C than in those reared at other temperatures. The relationship between mean temperature 

and the intermoult period of each instar was described by a heat summation theory equation. The 

thermal constant tended to increase and the threshold temperature tended to decrease with the increase 

in mean premoult carapace width of each instar. Size- and temperature-dependent growth models were 

developed for juvenile snow crabs from these variables. 

Wild-born immature crabs (carapace width, 16.2–42.9 mm) caught from the Sea of Japan were 

cultured at the natural habitat temperature (approximately 1°C). The growth indices and intermoult 

period were significantly affected by premoult carapace width, but sex did not affect these variables. 

Furthermore, premoult carapace width and days after moulting significantly affected the probability of 

moulting, and we developed a moulting probability model based on these variables. The model re-

vealed that the number of days during the intermoult period when moulting occurred in 50% of instars 

VI, VII, and VIII was estimated to be 234, 284, and 346 days, respectively. 

Finally, snow crab life history was estimated by referring to ecological and environmental infor-

mation on their natural habitat. As a result, the durations from hatch to terminal moult instars were 

estimated to be 4–9 years in male crabs and 5–7 years in female crabs. 
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1.1 Status of the snow crab resource 

The snow crab, Chionoecetes opilio (Fabricius, 1788), (Brachyura, Majoidea) is widely distrib-

uted on muddy and sandy-mud ground at depths of 3–1,400 m in the cold waters of the Northern 

Hemisphere (e.g., Squires, 1990; Yosho & Hayashi, 1994; Lovrich et al., 1995; Dawe & Colbourne, 

2002). Snow crabs are an important fishery resource in Canada, Russia, Alaska, Japan, Greenland, and 

Korea, and the total number of landings in these countries was approximately 184,000 metric tons in 

2009 (Jadamec et al., 1999; Higashimura, 2013) (Fig. 1.1). In Japan, most snow crabs have been 

caught in the eastern part of the Sea of Japan since the late 1990s (Fig. 1.2); thus, this region is the 

most important snow crab fishery area. Annual snow crab stock density in this region peaked in 1970 

and then declined dramatically during the 1970s–1980s (Fig. 1.3) because of overfishing (Yamasaki, 

1994). After the 1990s, stock densities were restored to approximately one-third of the male and 

one-half of the female peaks but the possible causes of the stock recovery have not been discussed. 

Many possible drivers that affect recruitment dynamics have been documented in the eastern Bering 

Sea and the Gulf of Sainte Lawrence, including gadid predation on juvenile instars (Orensanz et al., 

2004; Burgos et al. 2013), cannibalism, and limited resources (space and/or food) at or soon after set-

tlement (Sainte-Marie et al. 1996; Lovrich & Sainte-Marie, 1997), abundance of adult female snow 

crabs (Sainte-Marie et al. 1996; Parada et al., 2010), temperature during early post-settlement (Oren-

sanz et al., 2004), cold conditions during early life history (Marcello et al., 2012), and regime shifts 

(Szuwalski & Punt, 2013). 

 

Canada
97,308

Russia
50,300

Alaska
26,650

Japan
4,477

Greenland
3,191

Korea
2,372

Figure 1.1. Amount of snow crab Chionoe-

cetes opilio caught by country or region in 

2009 (Higashimura, 2013). 
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Figure 1.2. Amount of snow crab Chionoecetes opilio caught in Japan and the western Sea of 

Japan (http://www.maff.go.jp/j/tokei/kouhyou/kaimen_gyosei/index.html). 

 

 
Figure 1.3. Snow crab Chionoecetes opilio stock densities in the western Sea of Japan (Ueda et 

al., 2015). 

 

1.2 Problems studying the biology and ecology of snow crab early life stages 

The pelagic larval phase generally plays an important role in sustaining the snow crab population 

by facilitating larval dispersal and recruitment (Sulkin, 1984; Anger, 2001, 2006). Survival and devel-
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salinity, food availability and quality, predation, and ocean currents (Sulkin, 1984; Anger, 2001; For-

ward, 2009). Therefore, it is important to elucidate the effects of these factors on larval survival and 

development to understand the stock dynamics of the species. Moreover, estimates of age and growth 

of a commercially harvested species provide life history trait information important for fisheries man-

agement, e.g., lifespan, age at recruitment, age at first capture, age at maturity, and cohort identifica-

tion. 

To elucidate the life history traits, including larval biology and ecology of the snow crab, field 

sampling of specimens from their natural habitat has been conducted in the Sea of Japan, the eastern 

Bering Sea, and the Gulf of Sainte Lawrence. Some groups have reported on larval biology and ecol-

ogy, but they did not distinguish between snow crab and other Chionoecetes species (Fukataki, 1969; 

Ito & Ikehara, 1971; Incze, 1981; Incze et al., 1987; Kon et al., 2003); they did not collect a sufficient 

number of larvae owing to the limited sampling depth or period (Fukataki, 1969; Ito & Ikehara, 1971; 

Kon1980; Incze, 1981; Incze et al., 1987; Conan et al. 1996); or the larvae were collected by indirect 

sampling from the stomach contents of predatory fish (Konishi et al., 2012). Moreover, it is difficult to 

collect juvenile crabs during a periodic field sampling survey in the Sea of Japan because they inhabit 

the deep sea bottom (Ito, 1968, 1970, 1984; Kon, 1968, 1980)., and some crabs were collected from 

stomach contents of predator fishes (Ito, 1968; Kon, 1968; Konishi et al., 2012). 

A captive rearing experiment is an effective way to elucidate the life history of a crustacean (Ku-

rata, 1962; Anger, 2001). Many studies have been conducted on life history stages, including the em-

bryo stage, development, and hatching (e.g. Kon, 1976, 1980; Moriyasu & Lanteigne, 1998; Kon & 

Adachi, 2005; Webb et al., 2007; Kuhn et al., 2011); larval stage, morphology (Kurata, 1963; Haynes, 

1973; Motoh, 1973; Kon, 1967, 1980; Davidson & Chin, 1991), osmotic regulation (Charmantier & 

Charmantier-Daures, 1995); phototaxis and geotaxis (Kogane, 2007a; Konishi et al., 2011); and sur-

vival and development (Kon, 1970, 1973, 1979, 1980; Davidson & Chin, 1991; Lovrich & Ouellet, 

1994); benthic stage, moulting, and growth (e.g. Kon, 1980; Moriyasu et al., 1987; Kobayashi, 1989; 

Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998; Godbout et al., 2002; Hebert et al., 
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2002; Sainte-Marie & Lafrance, 2002); age determination characteristics (Kilada et al., 2012); habitat 

selection (Dionne et al., 2003); cannibalism (Lovrich & Sainte-Marie, 1997; Sainte-Marie & Lafrance, 

2002), osmotic regulation (Hardy et al., 1994; Charmantier & Charmantier-Daures, 1995), maturation 

(e.g., Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998; Godbout et al., 2002); mating 

(e.g., Sainte-Marie & Lovrich, 1994; Urbani et al., 1998; Rondeau & Sainte-Marie, 2001; 

Sainte-Marie et al., 2008); and the reproductive cycle and fertile period (e.g., Moriyasu & Lanteigne, 

1998; Webb et al., 2007; Sainte-Marie et al., 2010). However, little information is available on the bi-

ology and ecology of the snow crab early lifecycle because of poor larval survival under laboratory 

conditions. However, laboratory techniques for culturing larval snow crabs, including optimum water 

temperature, prey density, feeding schedule, dietary essential fatty acids, such as n-3 highly unsaturat-

ed fatty acids, and methods to prevent bacterial diseases have been improved by Kogane et al. (2005, 

2007a, 2009, 2010). These techniques have helped achieve reliable larviculture, resulting in the pro-

duction of juvenile crabs used in laboratory experiments (Kogane et al., 2007b). 

 

1.3 Study objectives 

The objective of this study was to improve basic knowledge of the early life history characteris-

tics of the snow crab under laboratory conditions. 

The effects of environmental factors, such as temperature and salinity, on larval survival and de-

velopment of snow crab are examined in Chapter 2. Four groups have conducted snow crab larval 

rearing experiments at different temperatures (Kon, 1970; Davidson & Chin, 1991; Charmantier & 

Charmantier-Daures, 1995; Kogane et al., 2005). However, they did not report appropriate survival 

temperatures or the relationship between temperature and the developmental period because of the 

small number of cultured animals, poor survival, or a narrower temperature range compared with that 

of their natural habitat (Kon, 1970; Davidson & Chin, 1991; Charmantier & Charmantier-Daures, 

1995; Kogane et al., 2005). Two studies have evaluated the effects of salinity on snow crab larval sur-

vival and development (Kon, 1973; Charmantier & Charmantier-Daures, 1995). Kon (1973) included 
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data from larvae that died during or immediately after moulting, thereby making it difficult to draw 

accurate conclusions concerning the effect of salinity on survival or on the duration of the develop-

mental period. Additionally, Charmantier & Charmantier-Daures (1995) only determined lethal salini-

ty for first-stage zoeae. 

Food availability and quality are also important factors influencing larval survival and develop-

ment. Several studies have considered effective diets, prey size, food consumption patterns, optimal 

prey density and feeding schedules, and the effects of varying dietary n-3 highly unsaturated fatty acid 

levels on snow crab zoeae (Paul et al., 1979; Harada & Yamamoto, 2000, 2006; Kogane et al., 2009; 

2010). However, little is known about the feeding ecology of megalopae. Therefore, the food con-

sumption pattern of megalopae was examined in Chapter 3. 

Crustaceans grow by moulting. As a basis for understanding the behavioral, physiological, and 

biochemical changes that occur between successive moults (i.e., during the course of the moulting cy-

cle; Chang 1995), staging techniques have been developed to characterize the morphologically distinct 

phases of the moulting cycle in decapods and other crustaceans. In general, marine benthic decapods 

do not migrate long distances, so dispersal and recruitment of their pelagic larvae generally play an 

important role sustaining their populations (Sulkin 1984; Anger 2001, 2006). Moreover, decapod lar-

vae migrate in the sea by regulating their vertical distributions in relation to different water current 

directions and strengths at different depths and phases of the tidal cycle (Forward & Tankersley 2001). 

Body density is an important parameter for modeling larval vertical distribution in the water column 

(Konoshi et al., 2011). Therefore, ontogenetic changes in larval body density were investigated in rela-

tion to the moulting cycle stages in Chapter 4, which were determined based on changes in the integ-

ument that occur during the snow crab larval moulting cycle. 

A growth and moulting model was developed for immature snow crabs in Chapter 5. After set-

tling on the sea bottom, snow crabs change their spatial distribution in relation to temperature and the 

bottom substrate. They also change their spatial distribution seasonally according to reproductive and 

growth status (e.g., Kon, 1980; Lovrich et al., 1995; Comeau et al., 1998; Dawe et al., 2012). Among 
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environmental factors, water temperature is the most important influence on moulting and the inter-

moult period, which determine growth of crustaceans (Kurata, 1962; Hartnoll, 1982; Anger, 2001). It 

has been suggested that water temperature affects growth and survival of juvenile snow crabs in their 

natural habitat (Lovrich et al., 1995; Dionne et al., 2003; Boudreau et al., 2011). In contrast, Yosho & 

Hayashi (1994) reported that juvenile snow crabs with a carapace length > 10 mm, i.e., instar III > 8 

mm carapace width (calculated from Ito (1984)), live at 0.3–0.9°C. Therefore, the captive experiments 

were conducted using laboratory-born juvenile crabs during the early settlement phase (instar I–VII) to 

elucidate the effect of temperature on moulting and growth and using wild-born immature crabs at the 

immature phase (instar VI–VIII) to understand growth and the intermoult period. 

The results of this study are summarized in Chapter 6, and the snow crab life history is described 

using information on their natural habitat. 



 

 
 

 

 

 

 

Chapter 2
 

EFFECT OF ENVIRONMENTAL FACTORS ON LARVAE 
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2.1 Effects of temperature on snow crab Chionoecetes opilio larval survival and 

development under laboratory conditions 

 

2.1.1 Summary 

To better understand the larval dispersal and settlement of snow crab Chionoecetes opilio in nat-

ural habitats, we tested the effects of temperatures ranging from ~1–20°C and ~1–18°C on the survival 

and developmental period of snow crab larvae in the zoeal and megalopal stages, respectively, through 

laboratory experiments. The survival rates of second zoeae and megalopae were significantly higher at 

5–16°C and 5–14°C, respectively. There were no statistically significant differences among the sur-

vival rates of megalopae reared at 3–16°C, although higher survival rates were observed at 5–14°C. 

The mean numbers of days from hatching to second zoeae and megalopae and from megalopae to 

reach first crab instar were significantly shorter at higher temperatures. Moreover, the relationships 

between mean temperatures and larval periods were well described by the heat summation theory 

equations. The threshold temperatures for larval development were estimated to be −2.24–0.63°C; 

they decreased with the larval development as adaptation for deeper vertical distributions in later lar-

val stages. On the basis of the larval distribution with respect to water temperature in natural habitats 

as well as the heat summation theory equations, the entire larval duration from hatching to first crab 

instar was estimated to be 74.4–123.4 days; this is similar to that in natural habitats inferred on the 

basis of the time lags in the occurrence of peak abundance between each larval stage. 

 

2.1.2 Introduction 

Many aquatic decapod crustaceans have a complex life cycle; these comprise embryonic, pelagic 

larval, and benthic juvenile–adult phases (Anger, 2001; 2006). The pelagic larval phase generally 

plays an important role in sustaining the population by facilitating larval dispersal and recruitment 

(Sulkin, 1984; Anger, 2001, 2006). The survival and development of pelagic larvae are influenced by 

many environmental factors such as water temperature, salinity, food availability and quality, preda-
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tion, and ocean currents (Sulkin, 1984; Anger, 2001; Forward, 2009). Among these factors, water 

temperature most strongly affects the rates of larval survival, growth, and development by regulating 

basal metabolic rate and feeding activity (Wenner, 1985; Anger, 2001). Therefore, it is important to 

understand the effects of temperature on larval survival and development in order to understand the 

stock dynamics of a species. 

Snow crab Chionoecetes opilio is widely distributed in cold waters in the northern hemisphere 

and is an important fishery resource in the United States, Canada, Russia, Greenland, Japan, and Korea 

(Jadamec et al., 1999). There are many published studies of the life history of snow crabs in the Sea of 

Japan, eastern Bering Sea, and Northwest Atlantic that aim to manage stocks or clarify the mecha-

nisms of stock fluctuations (Adams, 1979; Kon, 1980; Comeau et al., 1991; Sainte-Marie et al., 1995; 

Conan et al., 1996; Ernst et al., 2012). The larval development of the snow crab comprises 2 zoeal 

stages and a megalopal stage (Kon, 1980). In the Sea of Japan, benthic mature snow crabs exist from 

depths of 200–600 m (Yosho & Hayashi, 1994), pelagic larvae (e.g., first and second zoeae) are main-

ly found at depths shallower than 150 m, and megalopae are found in deeper strata than zoeae (Kon et 

al., 2003). After settlement, crabs do not migrate long distances. Therefore, the survival and develop-

ment of pelagic larvae are suggested to affect the strength of recruitment of snow crab populations 

(Zheng & Kruse, 2006; Kruse et al., 2007; Szuwalski & Punt, 2013). 

Laboratory studies of the effects of temperature on the survival and development of snow crab 

larvae have been conducted; however, they did not cover the temperature range in the natural habitat 

and/or showed low survival rates of larvae (Kon, 1970; Davidson & Chin, 1991; Charmantier & 

Charmantier-Daures, 1995; Kogane et al., 2005). Therefore, the present study aimed to elucidate the 

effects of water temperature on the survival and development of snow crab larvae through laboratory 

rearing experiments covering the wide range of temperatures in which snow crab larvae may exist. 

The present study aims to provide a better understanding of larval dispersal and settlement of snow 

crab in natural habitats. 
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2.1.3 Material and Methods 

2.1.3.1 Larva source 

A total of 247 ovigerous females were caught in November 2011 in the Sea of Japan off Ishikawa 

Prefecture, Japan. The mean carapace width ± standard deviation of the females was 84.3 ± 3.9 mm 

(range, 79.0–93.0 mm). They were transferred to the Obama Laboratory, Japan Sea National Fisheries 

Research Institute, Fisheries Research Agency, Fukui Prefecture, and reared at 3°C in one 4-kL (1.3 × 

3.9 × 0.85 m) rectangular tank with a recirculating system as described by Morita & Nogami (2003). 

The tank was not provided with sand as a substrate. Females were fed frozen Antarctic krill Euphausia 

superba twice a week. The main hatching season extended from February to March and several fe-

males hatched their larvae in the same day. 

2.3.1.2 Larval rearing experiments 

Larval rearing experiments were conducted during the zoeal stages (i.e., from first zoeae through 

second zoeae to metamorphosis to megalopae) and the megalopal stage (i.e., from megalopae to molt 

to first crab instar). First zoeae hatched on February 6, 2011 and megalopae metamorphosed on March 

6, 2011 from zoeae that hatched on January 31, 2011 were used in experiments. One-liter plastic beak-

ers were prepared to larval culture and placed in temperature-controlled baths. Larval rearing temper-

ature levels were determined by taking the thermal distribution in the natural habitats where snow crab 

larvae are found (Fukataki, 1969; Ito & Ikehara, 1971; Kon, 1980; Kon et al., 2003). Zoeae were 

reared at 9 temperature levels (mean ± SD): 1.4 ± 0.1°C, 3.0 ± 0.1°C, 5.0 ± 0.1°C, 8.0 ± 0.1°C, 11.0 ± 

0.2°C, 14.0 ± 0.1°C, 16.0 ± 0.1°C, 18.0°C ± 0.2, and 19.9 ± 0.1°C. Megalopae were reared at 10 tem-

perature levels: 1.0 ± 0.1°C, 3.0 ± 0.2°C, 5.0 ± 0.1°C, 8.0 ± 0.1°C, 11.0 ± 0.2°C, 14.0 ± 0.2°C, 15.0 ± 

0.1°C, 16.0 ± 0.1°C, 17.0 ± 0.1°C, and 18.1 ± 0.2°C. For each temperature level, 3 beakers (20 indi-

viduals/beaker) and 6 beakers (3 individuals/beaker) were set for the zoeal and megalopal stages, re-

spectively. Larvae were cultured at 14°C to prepare test animals for the megalopal experiment. 

Larval culture was based on the method of Kogane et al. (2009, 2010). Zoeae were fed rotifers 

Brachionus plicatilis at a density of 20 individuals/mL. Rotifers were enriched with 0.5 mL/L com-
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mercial condensed marine phytoplankton (Nannochloropsis sp.; Mercian Co., Japan), 14 µL/L emulsi-

fied DHA 70G oil, and 28 µL/L EPA 28G oil (Hokkaido Fine Chemicals Co., Ltd., Japan) at 16°C for 

18 h prior to feeding. Artemia nauplii (Utah strain), enriched with 1.5 mL/L of a commercial emulsion 

of n-3 polyunsaturated fatty acids (Hyper Glos; Marinetech Co., Ltd., Japan) at 22°C for 24 h, were 

given to megalopae at a density of 5 individuals/mL. Rearing water was not aerated. Baths were cov-

ered with styrofoam boards in order to stabilize water temperature. Each morning, larvae were trans-

ferred to newly prepared beakers with new seawater (salinity, ~33‰) and food using a large-mouthed 

pipette and the survivors were counted. Larval developmental stages were confirmed by unaided eye. 

Dead larvae were removed from the rearing beakers, and their larval stages were recorded. After 

transferring the larvae, 20 mg/L dihydrostreptomycin sulphate (Tamura-seiyaku Co., Japan) was added 

to the rearing water to prevent bacterial attachment to the larvae. Larval rearing was terminated when 

all surviving larvae molted to the megalopal or crab stages or died. 

2.1.3.3 Statistical analyses 

In the experiment from first zoeae to megalopae, differences in the mean values of survival rates 

(n = 3) were tested between temperature groups by one-way ANOVA and Tukey’s post-hoc test. In the 

experiment from megalopae to first crab instar, differences in the total number of megalopae to reach 

crabs from 6 rearing beakers between temperature groups were tested by the χ2 test and Tukey’s 

post-hoc test.  

The relationships between mean temperature and the mean number of days from hatching to 

reach second zoeae and megalopae, and that from megalopae to reach first crab instar were fitted with 

the following equation: D = a / (T − b), where D is the time (in days) of each developmental stage, T is 

the mean value of temperatures in each developmental stage, and a and b are the so-called “thermal 

constant” and “threshold temperature constant” for development, respectively. This equation, known 

as Réaumur’s Law, is part of the theory of heat summation (Kiritani, 1997, 2012; Hamasaki, 2003; 

Hamasaki et al., 2009). The thermal constant (day-degrees) is the summation of the effective tempera-

ture for development (>threshold temperature) up to a selected biological endpoint. 
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All data analyses were performed using R version 2.15.1. The level of significance was set at P < 

0.05 for all statistical analysis. 

 

2.1.4 Results 

The first zoeae did not molt to second zoeae at 1.4°C, 3.0°C, or 19.9°C (Fig. 2.1.1, Table 2.1.1). 

The survival rates to second zoeae were significantly higher at 5.0–16.0°C (>86%) than at 18.0°C 

(38.3%). The second zoeae did not molt to megalopae at 18.0°C. The survival rate to megalopae 

reared at 16.0°C tended to be lower (45.0%) than those of larvae reared at 5.0–14.0°C (>78%). Mega-

lopae molted to first crab instar at 1.0–17.0°C but not at 18.1°C (Fig. 2.1.2, Table 2.1.2). The survival 

rates of megalopae reared at 3.0–16.0°C did not differ significantly, but higher survival rates were ob-

served at 5.0–14.0°C (>77%). 

The mean number of days from hatching to reach second zoeae and megalopae, and from mega-

lopae to reach first crab instar decreased significantly with increasing temperature (Tables 2.1.1, 2.1.2). 

Larvae took ~13–52 days to reach second zoeae at 5.0–18.0°C and 31–105 days to reach megalopae at 

Table 2.1.1. Survival rates and number of days from hatching to reach second zoeae and mega-
lopae of the snow crab Chionoecetes opilio, reared at 9 different temperatures. 

 
Each value is the mean ± SD of 3 replicates (1 replicate is the mean value of all surviving zoeae 
per beaker). Values in parentheses are day ranges. Values with different superscript letters in the 
same column are significantly different (P < 0.05). 

1.4 ± 0.1 0.0c 0.0c

3.0 ± 0.1 0.0c 0.0c

5.0 ± 0.1 86.7 ± 10.4a 80.0 ± 8.7a 51.7 ± 3.5a (46 – 59) 105.2 ± 4.9a (96 – 120)
8.0 ± 0.1 90.0 ± 5.0a 78.3 ± 14.4ab 34.8 ± 2.9b (30 – 41) 71.4 ± 4.1b (65 – 85)

11.0 ± 0.2 91.7 ± 7.6a 83.3 ± 2.9a 21.0 ± 1.2c (19 – 25) 48.6 ± 2.1c (44 – 54)
14.0 ± 0.2 98.3 ± 2.9a 78.3 ± 10.4ab 15.3 ± 0.6d (14 – 17) 34.1 ± 1.0d (32 – 37)
16.0 ± 0.1 88.3 ± 10.4a 45.0 ± 25.0b 14.4 ± 0.7d (13 – 15) 31.3 ± 1.2e (30 – 34)
18.0 ± 0.2 38.3 ± 15.3b 0.0c 12.9 ± 0.5e (12 – 14)
19.9 ± 0.1 0.0c 0.0c

Temperature
(°C)

Survival rate (%) Days
To second zoea Megalopa To second zoea To megalopa
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5.0–16.0°C. The duration of the megalopal stage ranged from 23–129 days at 1.0–17.0°C. Therefore, 

the entire mean larval period extends from 68–213 days at 5–16°C. The heat summation theory equa-

tion was well fitted to the relationship between mean temperature and the mean number of days to 

reach each stage (Fig. 2.1.3). The threshold temperatures for larval development, i.e., parameter b in 

the equation, were estimated to be −2.24–0.63°C (Table 2.1.3) and decreased with the progression of 

larval development. 

 

2.1.5 Discussion 

Four studies have conducted rearing experiments of snow crab larvae at different temperatures 

(Kon, 1970; Davidson & Chin, 1991; Charmantier & Charmantier-Daures, 1995; Kogane et al., 2005). 

 
 
Figure 2.1.1. (A–I) Changes in the number of larvae survived from first zoeae to megalopae 
with respect to days after hatching of snow crab Chionoecetes opilio reared at 9 constant tem-
peratures (n = 3): 1.4°C (A), 3.0°C (B), 5.0°C (C), 8.0°C (D), 11.0°C (E), 14.0°C (F), 16.0°C 
(G), 18.0°C (H), and 19.9°C (I). Z1 and Z2 are first and second zoeal stages, respectively. M, 
megalopal stage. Vertical bars indicate SDs. 
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Kon (1970) reared snow crab zoeae at ~5–18°C and concluded the appropriate temperature for zoeal 

survival is ~7–15°C; he reared megalopae at ~10–15°C but could not evaluate the appropriate temper-

ature for their survival because of a small number of cultured animals. Davidson & Chin (1991) and 

 
Figure 2.1.2. (A–J) Changes in the number of larvae survived from megalopae to first crab in-
star with respect to days after metamorphosing to megalopae of the snow crab Chionoecetes 
opilio, reared at 10 constant temperature levels: 1.0°C (A), 3.0°C (B), 5.0°C (C), 8.0°C (D), 
11.0°C (E), 14.0°C (F), 15.0°C (G), 16.0°C (H), 17.0°C (I), and 18.1°C (J). M and C1 refer to 
the megalopal stage and first crab instar, respectively. 
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Table 2.1.2. Survival rates and number of days from megalopae to reach first 
crab instar of the snow crab Chionoecetes opilio, reared at 10 different temper-
atures. 

 
Values in parentheses are day ranges. 
Values with different superscript letters in the same column are significantly 
different (P < 0.05). 
 
 
 
Table 2.1.3. Estimates of the parameters (with SEs) of the relationship between 
mean temperature (T) and the mean number of days required to reach each 
larval stage (D) of the snow crab Chionoecetes opilio. 

 
Heat summation theory equation: D = a / (T − b), where D is days required to 
reach each larval stage, T is mean temperature, and a and b are the so-called 
‘‘thermal constant’’ and ‘‘threshold temperature constant’’ for development, 
respectively. H0, b = 0; * P < 0.05; not significant (NS), P > 0.05. The SEs of 
each estimated parameter are shown in parentheses. 

Survival rate (%)
to first crab instar

1.0 ± 0.1 22.2cd 128.5 ± 11.1a (116 – 143)
3.0 ± 0.2 61.1abc 77.3 ± 4.9b (66 – 84)
5.0 ± 0.1 94.4ab 56.2 ± 4.2c (49 – 65)
8.0 ± 0.1 100.0a 42.1 ± 3.4d (37 – 49)

11.0 ± 0.2 100.0a 32.9 ± 2.3e (29 – 38)
14.0 ± 0.2 77.8ab 25.9 ± 1.8f (23 – 29)
15.0 ± 0.1 66.7abc 24.3 ± 2.2f (21 – 28)
16.0 ± 0.1 61.1abc 23.1 ± 2.8f (19 – 27)
17.0 ± 0.1 50.0bc 23.4 ± 1.8f (21 – 26)
18.1 ± 0.2 0.0d

Temperature
(°C)

Days to first crab instar

Period n
Z1–Z2 18 229.5 (11.05)* 0.63 (0.26)* 
Z1–M 15 530.5 (22.38)* –0.02 (0.26)NS

M–C1 9 417.3 (0.09)* –2.24 (0.09)* 

a b
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Charmantier & Charmantier-Daures (1995) reared snow crab zoeae at ~8–14°C but do not mention the 

appropriate temperature for zoeal survival, because the survival rates to megalopal stage were 0–3%. 

Kogane et al. (2005) also tested the influence of temperature on the survival of snow crab larvae from 

zoeae through megalopae to first crab instar at ~10–16°C; they concluded the appropriate temperature 

for larval survival is ~10–14°C. Thus, although Kon (1970) and Kogane et al. (2005) provided the pre-

liminary information about the appropriate temperature range for the survival of snow crab larvae, 

they did not investigate temperatures <5°C. The present study covered wide ranges of tempera-

tures—~1–20°C and ~1–18°C—for culturing snow crab zoeae and megalopae, respectively. The pre-

sent results demonstrate first zoeae are unable to molt to the next stage at ~1–3°C. Furthermore, the 

survival rates to second zoeae and megalopae are higher at ~5–16°C and ~5–14°C, respectively. Alt-

hough megalopae were able to molt to first crab instar even at ~1–3°C, the temperature ranges in 

which survival rates were higher (~5–14°C) can be considered the appropriate temperature range for 

megalopae survival. 

The developmental periods of snow crab larvae decreased with increasing temperatures, as is the 

case for many decapod crustaceans (Anger, 2001). Kogane et al. (2005) report the mean number of 
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days required to reach second zoeae from hatching at 10.1°C, 12.0°C, 13.9°C, and 15.9°C to be 22.5, 

18.4, 15.3, and 13.3 days, respectively, and 48.7, 39.1, 32.4, and 27.3 days to reach megalopae, re-

spectively. These values are generally concordant with the present results. 

The Sea of Japan contains 2 snow crab species: C. opilio and C. japonicus. However, their larval 

distributions have been investigated without distinguishing species because of the morphologically 

similarity of the larvae. However, these records should represent the larval distribution of C. opilio, 

because the hatching seasons of both species overlap (Kon et al., 2003). The vertical distribution range 

of larvae of snow crabs tends to deepen with larval development, and water temperatures decrease 

with increasing depth in the Sea of Japan (Kon et al., 2003). Therefore, the decreasing threshold tem-

peratures with the progression of larval development are considered to be an adaptation for shifting the 

vertical distribution of larvae in the water column. 

Kon et al. (2003) intensively examined the vertical distribution of snow crab larvae using multi-

ple opening/closing plankton nets and an environmental sensing system off Wakasa Bay in the Sea of 

Japan. They found that the first zoeae mainly occurred in strata from 0–100 m, where the temperature 

ranges from 8.4–12.4°C in March (average, 11.0°C); second zoeae occurred in strata 0–150 m deeper 

than the first zoeae, where the temperature ranges from 11.0–15.0°C in April (average, 12.5°C); and 

megalopae occurred in strata 50–200 m deeper than the second zoeae, where temperature ranges from 

6.8–13.9°C in April (average, 10.8°C) and May (average, 9.8°C). Furthermore, some megalopae mi-

grate downward for molting to 200–400 m, where the temperature decreases to 0.8–8.6°C (average, 

3.3°C). Thus, snow crab zoeae and megalopae are generally distributed within the appropriate temper-

ature ranges for survival (5–14°C) and molting (1–17°C). Kon et al. (2003) estimate the total duration 

of larval stages to be ~100 days (i.e., ~40 and ~60 days in the zoeal and megalopal stages, respective-

ly) on the basis of the time lags in the occurrence of peak abundance between each larval stage. From 

the heat summation theory equations (Fig. 2.1.3, Table 2.1.3) and the average water temperatures ex-

perienced by zoeae (11.0–12.5°C) and megalopae (3.3–10.8°C) (Kon et al., 2003), the larval durations 

of snow crab were estimated to be ~42.4–48.1 and ~32.0–75.3 days for the zoeal and megalopal stages, 
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respectively. Therefore, the range of larval duration from hatching to the first crab instar was estimated 

to be 74.4–123.4 days (average 98.9 days), which is similar to that in nature. 

The present study demonstrates water temperature greatly influences the survival and develop-

mental rates of snow crab larvae. Appropriate temperatures for larval survival are important infor-

mation for inferring larval distribution of snow crab in their natural habitats. Furthermore, the present 

results are important for understanding the potential effects of climate change on the snow crab popu-

lation in the Sea of Japan, which is the southern limit of the distribution of this species. 
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2.2 Effects of salinity on snow crab Chionoecetes opilio larval survival and de-

velopment under laboratory conditions 

 

2.2.1 Summary 

To better understand the factors influencing larval dispersal and settlement of the snow crab Chi-

onoecetes opilio in its natural habitats, we tested the effects of salinities ranging from 18–38 and 20–

38 on the survival and developmental duration of snow crab larvae in the zoeal and megalopal stages, 

respectively. Survivals to second-stage zoeae and to megalopae were highest at salinities of 20–38 and 

26–38, respectively. There were no significant differences in survival among megalopae reared at sa-

linities between 24 and 38, although survival tended to be higher at salinities range 28–36. The mean 

periods from hatching to the second zoeal and megalopal stages, and from the megalopal to first crab 

stage, were shortest at salinities of 30, 30, and 32, respectively, and progressively increased at salini-

ties above and below these values. 

 

2.2.2 Introduction 

The pelagic phase of the crustacean life history plays an important role in sustaining populations 

by facilitating larval dispersal and recruitment (e.g., Sulkin, 1984; Anger, 2001, 2006). The larvae ex-

hibit rapid growth and undergo morphogenetic changes in metamorphosis into the megalopal stage. 

This developmental process is influenced by environmental factors such as water temperature, salinity, 

food availability and quality, predation, and ocean currents (e.g., Sulkin, 1984; Anger, 2001; Forward, 

2009). 

Snow crab Chionoecetes opilio is one of the five species belonging to the genus Chionoecetes 

(Brachyura, Oregoniidae); it occurs on the continental shelf throughout the cold waters of the northern 

hemisphere and is an important fishery resource (e.g., Elner, 1982; Sinoda, 1982; Jadamec et al., 1999; 

Azuma et al., 2011). A number of researchers have studied the general biology of snow crab larvae 

with a focus on managing stocks or evaluating the mechanism underlying fluctuations in stock abun-
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dance (e.g., Kon, 1980; Davidson & Chin, 1991; Incze et al., 1984; Lovrich & Ouellet, 1994). The en-

tire duration of the larval period from hatching to first crab stage ranges from 74 d to 123 d (~2.5–4 

months) and is dependent on water temperature (Yamamoto et al., 2014). 

Other environmental factors may also influence survival and larval development in the snow crab. 

For example, salinity affects the duration of larval developmental and larval survival rates in many 

decapod crustaceans (Anger, 2003). Snow crab larvae are typically found in environments that do not 

experience large salinity fluctuations, including the Sea of Japan and the southeastern Bering Sea (Kon, 

1980; Incze et al., 1987). Nevertheless, snow crab zoeae are also found at salinities ranging from 24–

32 in the Gulf of Sainte Lawrence (Conan et al., 1996) and in very shallow water (2.5–3 m) 

(Saint-Marie & Dufour, 1988; Lovrich et al., 1995), where salinity might fluctuate. To date, two stud-

ies have evaluated the effect of salinity on larval survival and development in the snow crab (Kon, 

1973; Charmantier & Charmantier-Daures, 1995). The analysis by Kon (1973) included data from 

larvae that died during or immediately after molting, thereby making it difficult to draw accurate con-

clusions concerning the effect of salinity on survival or on the duration of the developmental periods. 

Additionally, Charmantier & Charmantier-Daures (1995) only determined the lethal salinity for 

first-stage zoeae. Our objective was to evaluate the effects of salinity on the survival and development 

of snow crab larvae during the entire period of larval development. 

 

2.2.3 Material and Methods 

2.2.3.1 Source of larvae 

A total of 185 ovigerous females were caught in November 2011 in the Sea of Japan off Ishikawa 

Prefecture, Japan. They were transferred to the Obama Laboratory at the Japan Sea National Fisheries 

Research Institute, Fisheries Research Agency, Fukui Prefecture, and reared at 3°C in one 4-kL (1.3 × 

3.9 × 0.85 m) rectangular tank with recirculating seawater (salinity ~33), as described by Morita & 

Nogami (2003). Females were fed frozen Antarctic krill Euphausia superba twice weekly. The main 
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hatching season was from February to March 2012; often several females released their larvae on the 

same day. 

2.2.3.2 Larval rearing experiments 

Larval rearing experiments were conducted during the zoeal stages (i.e. from hatching to meta-

morphosis to the megalopa) and during the megalopal stage (i.e. from metamorphosis to the molt to 

the first crab stage). The first zoeae hatched on February 9, 2012. Megalopae that metamorphosed on 

March 16, 2012 from zoeae that hatched on February 9 and 10, 2012 were used in experiments. Larval 

culture was carried out in 1-L plastic beakers that were placed in temperature-controlled baths. The 

water temperature was maintained at 11°C during the zoeal stage and 8°C during the megalopal stage. 

These temperatures were chosen based on the thermal distribution in the natural habitat (Kon et al., 

2003) and the optimum temperatures for larval survival (Yamamoto et al., 2014). Zoeae were reared at 

11 experimental salinities: 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, and 38 (three beakers per concentra-

tion, 20 individuals per beaker). Megalopae were reared at 10 salinities: 20, 22, 24, 26, 28, 30, 32, 34, 

36, and 38 (five beakers per concentration, four individuals per beaker). Diluted seawater was pre-

pared by adding freshwater to seawater, and high-salinity water was prepared by adding synthetic 

seawater salt (Instant Ocean, Napqo Ltd., Tokyo, Japan) to seawater. Salinity was measured using a 

multiparameter water-quality meter (556MPS, YSI Inc., Yellow Springs, OH, USA). Larvae were 

transferred directly from the holding tank (salinity ~33) to the experimental salinity at the beginning of 

the experiment. Larvae were cultured at 14°C and salinity 33 to prepare test animals for the megalopal 

experiment. 

Larval culture was based on the method of Yamamoto et al. (2014). Zoeae were fed rotifers Bra-

chionus plicatilis at a density of 20 individuals/mL. Rotifers were enriched with 0.5 mL/L commercial 

condensed marine phytoplankton (Nannochloropsis sp., Mercian Co., Ltd., Tokyo, Japan), 14 µL/L 

emulsified DHA 70G oil, and 28 µL/L EPA 28G oil (Hokkaido Fine Chemicals Co., Ltd., Hokkaido, 

Japan) at 16°C for 18 h prior to feeding. Artemia nauplii (Utah strain) were enriched with 1.5 mL/L of 

a commercial emulsion of n-3 polyunsaturated fatty acids (Hyper Glos, Marinetech Co., Ltd., Aichi, 
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Japan) at 22°C for 24 h then given to megalopae at a density of five individuals/mL. The rearing water 

was not aerated. Baths were covered with Styrofoam boards to stabilize the water temperature. Each 

morning, larvae were transferred to newly prepared beakers with fresh experimental seawater and food, 

using a large-mouthed pipette, and the survivors were counted. Larval developmental stages were con-

firmed by visual examination with the unaided eye. Dead larvae were removed from the rearing beak-

ers, and their developmental stage was recorded. After each transfer of larvae, 20 mg/L dihydrostrep-

tomycin sulfate (Tamura-seiyaku Co., Ltd., Tokyo, Japan) was added to the rearing water to prevent 

bacterial attachment to the larvae. Larval rearing was terminated when all larvae had molted to the 

megalopal or crab stage, or had died. 

2.2.3.3 Statistical analyses 

 
Figure 2.2.1 (A–K) Changes in the number of larvae surviving from the first zoeal to megalopal 
stage with respect to the number of days after hatching of the snow crab Chionoecetes opilio, 
reared at 11 constant salinities: 18.0 (A), 20.0 (B), 22.0 (C), 24.0 (D), 26.0 (E), 28.0 (F), 30.0 
(G), 32.0 (H), 34.0 (I), 36.0 (J), and 38.0 (K). Z1 and Z2 represent the first and second zoeal 
stages, respectively. M is the megalopal stage. Vertical bars indicate SD (n = 3). 
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We tested for differences between the salinity treatments in the mean survival rate and the num-

ber of days (n = 3) from hatching to the second zoeal stage and to the megalopal stage, using one-way 

ANOVA and Tukey’s post-hoc test. In the calculations of survival rates and the mean number of days 

from megalopal to crab stage, data for the individual larvae in each treatment group (five beakers) 

were pooled because of the small number of larvae reared in each beaker. We tested for differences 

between salinity treatments in the total number of individuals developing from megalopal to crab stage 

using a χ2 test and Tukey’s test. One-way ANOVA and Tukey’s test were employed to test for differ-

ences in the mean period from the megalopa to the crab stage. All statistical analyses were performed 

in R (R3.1.1; R Core Team, 2014) with a 5% significance level. 

 

2.2.4 Results 

The first-stage zoeae reared at salinity 18 did not molt to second-stage zoeae (Fig. 2.2.1, Table 

2.2.1). Survival to the second zoeal stage was significantly higher at salinities 20–38 (>77%) than at 

salinity 18 (0%). Second-stage zoeae did not molt to megalopae at salinity 20. The survival to mega-

Table 2.2.1. Survival rates and number of days from hatching to the second zoeal stage and 
the megalopal stage in snow crab Chionoecetes opilio larvae reared at 11 salinities. 

Each value is the mean ±SD of three replicates (one replicate is the mean value of all surviving 
zoeae per beaker). Values in parentheses represent the range. Values with different superscript 
letters in the same column are significantly different (P < 0.05). 

18.0 0a

20.0 76.7 ± 2.9b 0a 33.0 ± 3.1f 29 – 41
22.0 85.0 ± 5.0b 3.3 ± 2.9a 27.2 ± 3.5e 21 – 37 69.5f 69 – 70
24.0 93.3 ± 5.8b 31.7 ± 2.9b 22.2 ± 2.8bc 19 – 31 58.4 ± 5.5e 51 – 78
26.0 95.0 ± 5.0b 93.3 ± 7.6cde 20.5 ± 2.0a 17 – 30 47.0 ± 4.9bc 40 – 62
28.0 93.3 ± 2.9b 88.3 ± 2.9cde 20.4 ± 1.8a 17 – 27 44.3 ± 3.7ab 40 – 61
30.0 93.3 ± 2.9b 88.3 ± 2.9cde 20.3 ± 2.1a 18 – 30 43.3 ± 2.1a 41 – 54
32.0 95.0 ± 8.7b 90.0 ± 8.7cde 21.1 ± 1.9ab 18 – 27 45.4 ± 2.5ab 41 – 54
34.0 95.0 ± 8.7b 86.7 ± 2.9cde 22.2 ± 2.8bc 18 – 35 46.7 ± 2.8bc 43 – 58
36.0 91.7 ± 2.9b 75.0 ± 5.0cd 23.1 ± 2.1cd 19 – 30 48.9 ± 3.0cd 44 – 59
38.0 81.7 ± 7.6b 68.3 ± 2.9c 24.7 ± 3.5d 20 – 43 52.2 ± 3.6d 46 – 62

Salinity
Survival rate (%) Days

To second zoea To megalopa To second zoea To megalopa
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lopae tended to be lower at salinities 20–24 (<32%) than for larvae reared at salinities 26–38 (>68%). 

Megalopae molted to the first crab stage at salinities 22–38 but not at salinity 20 (Fig. 2.2.2, Table 

2.2.2). The survival rates of megalopae reared at salinities 24–38 did not differ significantly among 

treatments, although survival tended to be higher at salinities 28–36 (>75%). 

The mean duration of the periods from hatching to the second zoeal stage, and from hatching to 

the megalopal stage, were both shortest at salinity 30. The period from the megalopa to the first crab 

stage was shortest at salinity 32 (Tables 2.2.1, 2.2.2). Larvae took 20–33 d to reach the second zoeal 

stage at salinities 20–38 and 43–70 d to reach the megalopal stage at salinities 22–38. The duration of 

the megalopal stage ranged from 43–52 d at salinities 22–38. Thus, the total duration of the larval pe-

riod ranged from 86–122 d at salinities 22–38. 

 
Figure 2.2.2 (A–J) Changes in the number of larvae surviving from the megalopal to first crab 
stage with respect to the number of days after metamorphosis to megalopa in the snow crab 
Chionoecetes opilio. Larvae were reared at 10 constant salinities: 20.0 (A), 22.0 (B), 24.0 (C), 
26.0 (D), 28.0 (E), 30.0 (F), 32.0 (G), 34.0 (H), 36.0 (I), and 38.0 (J). M and C1 refer to the 
megalopal stage and first crab stage, respectively. 
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2.2.5 Discussion 

We tested the effect of a wide range of salinities (18–38 for zoeae and 20–38 for megalopae) and 

demonstrated that salinity influenced the survival and developmental rates of snow crab larvae. Kon 

(1973) reared snow crab zoeae in seawater with specific gravities ranging from 1.015–1.030 (salinities 

19.8–39.1, calculated from Millero et al., 1980) and concluded that the optimal salinities for molting 

from the first to second zoeal stage and from the second zoeal to megalopal stage were 1.022–1.027 

(salinities 28.9–35.3) and 1.019–1.026 (salinities 25.0–34.0), respectively. This author also reared 

megalopae at specific gravities ranging from 1.016–1.029 (salinities 21.1–37.9) and noted that the 

molting rate from megalopa to first crab stage increased with decreasing salinity. Nevertheless, the 

analysis in this early study was confounded by including data from larvae that died during or immedi-

ately after molting. Despite this, the results are generally consistent with our observations. Charman-

Table 2.2.2. Survival rates and number of days to develop from the 
megalopal to first crab stage in the snow crab Chionoecetes opilio 
reared at 10 salinities. 

 
Each value for number of days is the mean ± SD of individual larvae in 
each salinity group. Values in parentheses represent the range. Values 
with different superscript letters in the same column are significantly dif-
ferent (P < 0.05). 

Salinity Survival rate (%)
20.0 0.0a

22.0 30.0b 51.8 ± 8.3c 40 – 61
24.0 60.0bc 47.5 ± 4.5abc 42 – 59
26.0 55.0bc 47.5 ± 4.6abc 42 – 57
28.0 80.0c 44.8 ± 5.2ab 39 – 56
30.0 85.0c 43.4 ± 3.8a 36 – 52
32.0 85.0c 42.6 ± 2.8a 37 – 49
34.0 75.0bc 44.6 ± 2.9ab 39 – 50
36.0 75.0bc 46.5 ± 3.1abc 41 – 51
38.0 55.0bc 49.2 ± 6.4bc 44 – 63

Days
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tier & Charmantier-Daures (1995) evaluated the salinity tolerance of snow crab first-stage zoeae and 

concluded that the lower and upper median lethal salinities were ~10 and ~42 at 24 h, 18 and ~41 at 48 

h, and 22–25 and ~38 at 96 h, respectively. In the current study, we did not test the effect of salinity 

levels below 10 or above 38. Nevertheless, the survival rates at the lower and upper median lethal sa-

linities reported by Charmantier & Charmantier-Daures (1995) were lower than in our study (i.e. sur-

vival rates for first-stage zoeae were 98.5% at salinity 18 after 48 h, 96.5–98.5% at salinities 22–26, 

and 98.5% at salinity 38 after 96 h). In the current study, larvae were transferred directly from sea-

water (salinity ~33) to the appropriate test concentration at the beginning of the rearing experiments. 

Generally, survival rates are lower and development times are longer for larvae that are directly trans-

ferred compared with larvae that are gradually acclimated to test conditions (e.g., Baylon & Suzuki, 

2007; Baylon, 2010). Thus, our results should be interpreted with this in mind.  

Zoeae and megalopae were unable to molt to the next stage when reared at salinities 18 and 20. 

Furthermore, the range of salinities associated with high survival became narrower during larval de-

velopment; i.e. the rates of survival to the second zoeal, megalopal, and first crab stages were high at 

salinities of 20–38, 26–38, and 28–36, respectively. This phenomenon is consistent with observations 

in other decapod crustacean species, including the mud crab Rhithropanopeus harrisii (Costlow et al., 

1966), the red king crab Paralithodes camtschaticus (Kurata, 1960), the fiddler crab Uca subcylindri-

ca (Rabalalis & Cameron, 1985), the Chinese mitten crab Eriocheir sinensis (Anger, 1991), the red 

frog crab Ranina ranina (Minagawa, 1992), the grapsid crab Armases miersii (Anger, 1996), the man-

grove crab Sesarma curacaoense (Anger & Charmantier, 2000), the crucifix crab Charybdis feriatus 

(Baylon & Suzuki, 2007), the mud crab Scylla serrata (Baylon, 2010; Dan et al., 2011), and the 

horsehair crab Erimacrus isenbeckii (Jinbo et al., 2012). 

The Sea of Japan contains two Chionoecetes species, C. opilio and C. japonicus, whereas the 

southeastern Bering Sea primarily contains C. opilio and C. bairdi (C. angulatus and C. tanneri are 

also found but are rare). The distribution of Chionoecetes larvae has been documented without distin-

guishing between these species because of their morphological similarity (Incze, 1981; Incze et al., 



Ph D Dissertation: Takeo Yamamoto, 2015 
Chapter 2 

 

31 
 

1987; Kon et al., 2003). Snow crab zoeae occur at salinities 24–32 in the Gulf of St. Lawrence (Conan 

et al., 1996). In the Sea of Japan, snow crab larvae (including C. opilio and C. japonicus) are found 

from early spring to early summer at 0–400-m depths (Kon et al., 2003). In this season, the salinities 

range from ~33–34.5 at these depths (Naganuma, 2000). In the southeastern Bering Sea, zoeae (only C. 

opilio) are found primarily from April to June in the upper 40 m and megalopae (C. opilio and C. 

bairdi) are present from July to September in the upper 60 m (Incze, 1981; Incze et al., 1987). The 

surface salinity is ~32 in April (Incze et al., 1987). Thus, the salinity in these regions matches the op-

timum salinity range for survival of snow crab larvae in our study. Moreover, the lower limit of the 

vertical distribution of Chionoecetes larvae becomes deeper during development (Incze, 1981; Conan 

et al., 1996; Kon et al. 2003). Thus, the decrease in the optimum salinity range for survival with the 

progression of larval development may be an adaptation to the shift in vertical distribution of larvae in 

the water column. 

The periods from hatching to the second zoeal stage, from hatching to the megalopal stage, and 

from the megalopal to the first crab stage were shortest at salinities 30, 30, and 32, respectively, and 

increased outside these salinities. This appears to be a general phenomenon in decapod crustaceans 

and has been reported in several species, including Rhithropanopeus harrisii (Costlow et al., 1966), 

the southern king crab Lithodes antarcticus (Vinuesa et al., 1985), Eriocheir sinensis (Anger, 1991), 

Ranina ranina (Minagawa, 1992), the giant spider crab, Macrocheira kaempferi (Okamoto, 1995), A. 

miersii (Anger, 1996), Sesarma curacaoense (Anger & Charmantier, 2000), and Erimacrus isenbeckii 

(Jinbo et al., 2012). Kon (1973) reported that the minimum intermolt periods for the first and second 

zoeal stages and the megalopal stage were 210 day-degrees (~19 d at 11°C) at specific gravities of 

1.022–1.024 (salinities 29–31), 210 day-degrees (~19 d at 11°C) at 1.020–1.022 (salinities 26–29), and 

390 day-degrees (~35 d at 11°C), respectively. These values are consistent with our observations in the 

current study. 

The effect of salinity on larval survival is important information for inferring larval distribution in 

natural habitats. Such information could also be incorporated into biophysical modeling (Parada et al., 
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2010; Szuwalski & Punt, 2013; Mullowney et al., 2014) to more accurately infer the larval distribution 

and transport of snow crabs in their natural habitat. 
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FOOD CONSUMPTION PATTERN IN MEGALOPAE 
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3.1 Food consumption pattern in snow crab Chionoecetes opilio (Decapoda, 

Majoidea) megalopae under laboratory conditions 

 

3.1.1 Summary 

The food consumption pattern in megalopae of the snow crab Chionoecetes opilio was investi-

gated in the laboratory. Ten megalopae were individually cultured and given an excess of Artemia 

nauplii each day. All megalopae moulted into first-instar crabs 28–34 days after metamorphosis. The 

mean total number and total weight of Artemia consumed during the megalopal stage were 1920 indi-

viduals and 5.2 mg, respectively. Hence, the food requirement of snow crab megalopae was estimated 

as ~190% of the dry body weight of the first-instar crab. Initially, the number of Artemia consumed 

was nearly constant or decreased only slightly but, later, Artemia consumption decreased with devel-

opment days. Two-segmented regressions provided good fits to the relationship between the number of 

days after metamorphosis and the cumulative number of Artemia consumed by individual megalopae. 

The mean value of the time after metamorphosis of the breakpoint in the rate of the food consumption 

was estimated as 69% of the stage duration, which corresponds to the intermediate of late premoult. 

Crab size (carapace width, wet and dry body weight) were not significantly dependent on the number 

of Artemia consumed during the entire megalopal period although a positive correlation between these 

variables was observed. These results provide useful information on the appropriate feeding schedule 

and management practice for culturing snow crab megalopae and contribute to understanding of meg-

alopal growth efficiencies to the first-instar crab in their natural habitat. 

 

3.1.2 Introduction 

The snow crab Chionoecetes opilio (Fabricius, 1788) (Brachyura, Majoidea) is widely distributed 

on muddy and sandy-mud grounds at depths between 3 m and 1400 m in cold waters in the Northern 

Hemisphere (e.g., Squires, 1990; Yosho & Hayashi, 1994; Lovrich et al., 1995; Dawe & Colbourne, 

2002) and is an important fishery resource in the United States, Canada, Russia, Greenland, Japan, and 



Ph D Dissertation: Takeo Yamamoto, 2015 
Chapter 3 

 

35 
 

Korea (Jadamec et al., 1999). Larvae of this species hatch in spring and metamorphose to the benthic 

crab stage after spending several months of pelagic life in the oceanic water column as two zoeal 

stages and one megalopal stage (Yamamoto et al., 2014). 

The pelagic larval phase generally plays an important role in sustaining the population by facili-

tating larval dispersal and recruitment (Sulkin, 1984; Anger, 2001, 2006). The survival and develop-

ment of pelagic larvae are influenced by many environmental factors, including water temperature, 

salinity, food availability and quality, predation, and ocean currents (Sulkin, 1984; Anger, 2001; For-

ward, 2009). Among these factors, the effects of water temperature and salinity on survival and devel-

opment of snow crab larvae have been studied (Yamamoto et al., 2014, 2015b). Food availability and 

quality are also considered to be important factors influencing snow crab larval survival and develop-

ment. The food consumption of larval snow crabs has been studied in the laboratory (Paul et al., 1979; 

Harada & Yamamoto, 2000, 2006; Kogane et al., 2009, 2010).  

Paul et al. (1979) examined the relationship between prey concentration and the food consump-

tion of first-stage zoeae of snow crab, using copepods. Harada & Yamamoto (2000) examined the rela-

tionship between prey size and the food consumption of first- and second-stage zoeae and megalopae, 

using rotifers, newly hatched Artemia nauplii and cultured Artemia. However, these authors examined 

megalopal food consumption for only 52–59 days after hatching. Harada & Yamamoto (2006) studied 

effective diets for second-stage zoeae using rotifers, Artemia nauplii and cultured Artemia. Kogane et 

al. (2009, 2010) examined the optimal prey density and feeding schedule, and the effects of varying 

levels of dietary n-3 highly unsaturated fatty acids and the ratios of docosahexaenoic acid / eicosapen-

taenoic acid, throughout the whole zoeal stage. 

Food consumption, however, has not been studied for the entire period of the snow crab megalo-

pal stage. Therefore, the present study aimed to elucidate the pattern of food consumption of snow 

crab megalopae by examining daily Artemia intake before moulting to first-instar crabs in the labora-

tory. 
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3.1.3 Material and methods 

3.1.3.1 Larval source 

Laboratory-born snow crab megalopae used in this study were obtained as newly hatched 

first-stage zoeae from broodstock females collected from the Sea of Japan in 2009. They were cultured 

from zoeae to megalopae at the Obama Laboratory, Japan Sea National Fisheries Research Institute, 

Fisheries Research Agency, Fukui Prefecture, Japan. Zoeae were reared using a 20-kL tank at 14°C 

according to the method of Kogane et al. (2007a). Second-stage zoeae just prior to metamorphosing 

into megalopae were collected from the 20-kL tank and stocked in 1-L plastic beakers without feeding. 

Beakers were placed in a temperature-controlled bath at 10°C. 

3.1.3.2 Megalopa culture experiments 

Megalopae that metamorphosed on April 10, 2009 from zoeae that hatched on March 3, 2009 

were used in experiments. The culture experiments were conducted from April 10, 2009 until the meg-

alopae moulted to first-instar crabs. Immediately after moulting from zoeae to megalopae, 10 megalo-

pae were individually stocked in 200-mL screw-top polystyrene bottles containing 60 mL of filtered 

sea water. The bottles were placed in an incubator controlled at 10°C (Cool-Incubator A5501; Iku-

ta-Sangyo Co., Ltd., Japan). This rearing temperature was selected based on the thermal distribution in 

the natural habitat (Kon et al., 2003) and the optimum temperatures for megalopal survival (Yamamoto 

et al., 2014). Larval culture was based on the method of Yamamoto et al. (2014). Each megalopa was 

given 200 Artemia nauplii (Utah strain) each day. Artemia were hatched over 24 h at 28°C and they 

were enriched with 1.5 mL L–1 of a commercial emulsion of n-3 polyunsaturated fatty acids (Hyper 

Glos, Marinetech Co., Ltd., Aichi, Japan) at 22°C for 24 h prior to feeding. The larval rearing water 

was not aerated. Illumination from light-emitting diodes was adjusted to a 12:12 h light-dark cycle 

with lights on at 06:00. Each morning, megalopae were transferred to newly prepared bottles with 

fresh experimental seawater and food, using a large-mouthed pipette. After each transfer of larva, 20 

mg L–1 dihydrostreptomycin sulphate (Tamura-seiyaku Co., Ltd., Tokyo, Japan) was added to the 

rearing water to prevent bacterial attachment to the larvae. Numbers of Artemia consumed were de-
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termined by counting the Artemia remaining in each experimental bottle using a stereomicroscope 

(SMZ1000, Nikon Corp., Tokyo, Japan). After moulting to first-instar crabs, the carapace width (CW) 

of each animal was measured to the nearest 0.01 mm using the stereomicroscope equipped with a dig-

ital photomicrographic camera (DS-Fi1-L2, Nikon Corp., Tokyo, Japan). Each crab was gently blotted 

on filter paper for wet body weight measurements. After drying for 24 h at 60°C, dry body weight was 

determined. Wet and dry body weights were measured on a digital analytical balance (model AE163, 

Mettler Toledo, Greifensee, Switzerland) to the nearest 0.1 mg. To estimate the quantity of food in-

gested during the megalopal stage on a dry weight basis, the mean dry weight of individual Artemia 

was determined. Three groups of about 500 Artemia were dried as described for first-instar crabs. 

3.1.3.3 Data analysis 

Statistical analyses were performed with the R language (R3.1.3; R Core Team, 2015) at a 5% 

significance level. Two-segment linear regressions were fitted to the relationship between the number 

of days after metamorphosis and the cumulative number of Artemia consumed (see the Results sec-

tion) for each larva. To estimate the slopes and the possible breakpoint in the regressions, the ‘seg-

mented’ package (Muggeo, 2003) was used. The relationship between Artemia consumption and crab 

size was also analyzed by linear regression. 

Table 3.1.1. The total numbers of Artemia consumed by individual megalopae and the body 
sizes of the first-instar crabs of the snow crab Chionoecetes opilio (Fabricius, 1788). 

Mean dry weight of Artemia per individual: 0.0027 mg. 

No. Individuals
Dry weight

(mg)
Days to

crab
Carapace

width (mm)
Wet body

weight (mg)
Dry body

weight (mg)
Dry weight ratio
(Artemia /crab)

1 2242 6.0 33 2.97 14.5 2.5 2.4
2 2060 5.6 30 3.19 17.2 3.7 1.5
3 1855 5.0 31 3.17 14.3 2.4 2.1
4 1898 5.1 29 2.88 14.0 2.2 2.3
5 1990 5.4 31 2.95 15.3 3.0 1.8
6 2053 5.5 34 2.92 14.4 2.3 2.4
7 1913 5.2 28 2.99 14.5 2.9 1.8
8 1976 5.3 30 2.96 15.3 3.2 1.7
9 1742 4.7 28 3.02 14.1 2.5 1.9

10 1470 4.0 31 2.89 14.3 2.3 1.7
Mean (SD) 1920 (208) 5.2 (0.6) 30.5 (2.0) 2.99 (0.11) 14.8 (1.0) 2.7 (0.5) 1.9 (0.3)

Crab measurementsTotal Artemia  consumption



Ph D Dissertation: Takeo Yamamoto, 2015 
Chapter 3 

 

38 
 

 

3.1.4 Results 

All megalopae moulted to first-instar crabs 28–34 days after metamorphosis (Table 3.1.1, Fig. 

3.1.1). The mean (± SD) total number of Artemia consumed during the megalopal stage was 1920 

(±208). Initially, the daily rate of consumption of Artemia varied but was essentially constant or de-

creased slightly. Later, the Artemia consumption tended to decrease with development days. 

Two-segmented regressions provided good fits to the relationship between the number of days after 

metamorphosis and the cumulative number of Artemia consumed in individuals (Table 3.1.2). The 

breakpoints in the food consumption rates of the larvae were estimated as 18.5–23.7 days after meta-

morphosis, which represented 56–74% (mean 69%) of the entire megalopal period, except for one 

larva with a breakpoint estimate of 7.2 days (~23% of the megalopal period) (Table 3.1.2, Fig. 3.1.2). 

The crab sizes (carapace width, wet body weight, and dry body weight) were not significantly de-

pendent on the numbers of Artemia consumed during the entire megalopal period although positive 

correlations between these variables were observed (Fig. 3.1.3). The mean dry weight of individual 

Artemia was 0.0027 mg; thus, the mean total weight of Artemia consumed during the megalopal stage 

Table 3.1.2. Estimated two-segmented linear equations and breakpoints in the relationships 
between the cumulative number of Artemia consumed by megalopae (y) and the days after 
metamorphosing into megalopae (x) of the snow crab Chionoecetes opilio (Fabricius, 
1788). 

 

No. < Break point > Break point Adjusted R square
1 18.6 (0.2) y  = 97.5 x  + 58.1 y  = 26.5 x  + 1380.8 0.9991
2 20.7 (0.3) y  = 86.8 x  + 78.3 y  = 22.7 x  + 1407.9 0.9985
3 22.4 (0.6) y  = 73.8 x  + 109.7 y  = 9.3 x  + 1556.2 0.9932
4 21.5 (0.2) y  = 78.6 x  + 84.6 y  = 17.4 x  + 1400.7 0.9993
5 22.4 (0.3) y  = 76.2 x  + 138.1 y  = 18.4 x  + 1432.6 0.9986
6 23.7 (0.3) y  = 73.3 x  + 159.9 y  = 16.3 x  + 1511.6 0.9989
7 20.6 (0.7) y  = 75.0 x  + 165.4 y  = 31.1 x  + 1070.2 0.9963
8 19.6 (0.4) y  = 82.3 x  + 89.8 y  = 30.4 x  + 1107.2 0.9983
9 18.5 (0.4) y  = 72.3 x  + 139.1 y  = 31.1 x  + 900.3 0.9987

10 7.2 (0.3) y  = 91.6 x  + 87.3 y  = 31.8 x  + 520.4 0.9981

Breakpoint (SE)
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was calculated as 5.2 (±0.6) mg, and the mean ratio of the total dry weight of Artemia consumed to the 

crab dry weight was 1.9 (±0.3). 

 

3.1.5 Discussion 

This was the first study to examine the food intake of snow crabs over the entire megalopal peri-

od in the laboratory. We demonstrated that snow crab megalopae feed predominantly during the early 

to middle phase of this stage, after which feeding rates decrease towards the moult to the first-instar 

crab. Food consumption during the entire megalopal period has been reported for Florida stone crabs 

Menippe mercenaria (Say, 1818) (Mootz & Epifanio, 1974), great spider crabs Hyas araneus (Lin-

naeus, 1758) (Anger & Dietrich, 1984; Harms et al., 1991), and European shore-crabs Carcinus mae-

nas Linnaeus, 1758 (Dawirs & Dietrich, 1986), using newly hatched Artemia nauplii that were not 

enriched with fatty acids. The food consumption of these megalopae also decreased in the period 

immediately before moulting to crabs. Therefore, this phenomenon might be general in decapod meg-

alopae. In these studies, Artemia consumption was expressed as numbers of individuals, except in that 

Figure 3.1.1. Changes in the daily number of Artemia nauplii consumption of ten individual 
megalopae of the snow crab Chionoecetes opilio (Fabricius, 1788). A–J correspond to numbers 
1–10 in Tables 3.1.1 and 3.1.2. 
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Figure 3.1.2. Changes in the cumulative number of Artemia nauplii consumed by ten individual 
megalopae of the snow crab Chionoecetes opilio (Fabricius, 1788). A–J correspond to numbers 
1-10 in tables I and II. The segmented solid lines were drawn from segmented regression analy-
sis of the relationship between cumulative consumption and time. The vertical dotted lines in-
dicate the breakpoints (see Table 3.1.2). 
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of Harms et al. (1991) who represented consumption on a weight basis. The mean daily consumptions 

were ~69 individuals in M. mercenaria (~590 individuals during 8.5 days; Mootz & Epifanio, 1974), 

12.7 individuals in H. araneus (546 individuals during 42.9 days; Anger & Dietrich, 1984), and 7.1–

27.9 individuals in C. maenas at 12–25°C (170–229 individuals during 7.5–23.9 days; increasing with 

temperature; Dawirs & Dietrich, 1986). Snow crab megalopae consumed 1920 individuals during the 

entire megalopal period (30.5 days), and the mean daily Artemia consumption was 63 individuals. 

Despite the use of 24-hour-old Artemia nauplii that were enriched with fatty acids, in the present study, 

the daily consumption of snow crab megalopae was relatively high, and higher than in those other 

species. The carapace width of the megalopa of the snow crab is larger than that of other species: 1.6 

mm in M. mercenaria (Johnson & Allen, 2012), 1.5 mm in H. araneus (Roff et al., 1984), 0.9 mm in C. 

maenas (Mohamedeen & Hartnoll, 1989), and 2.2 mm in snow crabs (Kurata, 1963). In addition, the 

intermoult period in snow crab megalopae (30.5 days) was longer than in the other species, except for 

H. araneus. Therefore it seems that the daily and total Artemia consumptions are related to megalopal 

size and the length of the megalopal period. 

High growth rates associated with the intake of large quantities of food appear to be general fea-

tures of decapod crustaceans. Higher growth rates under conditions of higher food density have been 

reported in several species, including Penaeus indicus Milne-Edwards, 1837 (Emmerson, 1980), red 

frog crabs Ranina ranina (Linnaeus, 1758) (Minagawa & Murano, 1993), Atlantic mud crabs Panop-

eus herbstii Milne-Edwards, 1834 (Welch & Epifanio, 1995), rock lobsters Jasus edwardsii (Hutton, 

1875) (Tong et al., 1997), horsehair crabs Erimacrus isenbeckii (Brandt, 1848) (Jinbo et al., 2005), 

snow crabs (Kogane et al., 2010), and exotic freshwater prawns Macrobrachium equidens (Dana, 

1852) (Gomes et al., 2014). In the present study, the carapace widths and body weights of first-instar 

crab stages of the snow crab tended to increase with the total number of Artemia consumed during the 

megalopal stage although there was no statistically significant relationship between these variables. 

We estimated the food requirement of snow crab megalopae as ~190% of the dry body weight after 

successful moulting to the first-instar crab. 
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A breakpoint in the rate of food consumption by snow crab megalopae was observed at a mean of 

69% of the elapsed time from the beginning of the megalopal stage to the juvenile moult. This timing 

corresponds to the intermediate of the late premoult stage of snow crab megalopae (Yamamoto et al., 

2015c). The decreased feeding rates before ecdysis are generally known for decapod crustaceans (An-

ger, 2001). Moreover, the “point of reserve saturation” when animals become independent from food 

for the rest of the moulting cycle is generally found in the transition between stages C (intermoult) and 

D0 (early premoult) in first stage zoeae of several decapod species (Anger, 1987). Similarly in mega-

lopae of some decapod crustaceans, starvation during the late phase of the moulting cycle did not af-

fect the survival or moult into crabs (e.g., Farrelly & Sulkin, 1988; Figueiredo et al., 2008). In the nat-

ural habitat, the vertical distribution range of larval snow crabs tends to become deeper with larval 

development in the southeastern Bering Sea (Incze, 1981; Incze et al., 1987) and in the Sea of Japan 

(Kon et al., 2003). In particular, megalopae occur within a layer 50–200 m deep in April to May but, in 

May in the Sea of Japan, some megalopae migrate downward and moult at 200–400 m (Kon et al., 

2003). Ingesting food and accumulating energy until the intermediate premoult stage may allow them 

to concentrate on selecting appropriate settlement habitats for moulting into crabs. 

In conclusion, we have revealed the food consumption pattern and requirements of the megalopal 

stage of the snow crab. Our results provide useful information for developing a feeding schedule and 

 
Figure 3.1.3. Relationships between the total number of Artemia consumed by megalopae and 
the body sizes of the first-instar crabs of the snow crab, Chionoecetes opilio (Fabricius, 1788): 
A, carapace width; B, wet body weight; and, C, dry body weight. 
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management plan for the culture of snow crab megalopae. Szuwalski & Punt (2013) hypothesized that 

larval survival is influenced by food availability and advection to suitable nursery grounds and that 

these are the mechanisms driving the recruitment dynamics of snow crabs. Therefore, these data could 

be also used to more accurately infer megalopal survival and growth efficiencies to the first-instar crab 

stage of snow crabs in their natural habitat. 



 

 
 

 

 

 

 

Chapter 4
 

CHANGES IN MOULTING CYCLE AND BODY DENSITY OF 
LARVAE 
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4.1 The moulting cycle and changes in body density in larvae of the snow crab 

Chionoecetes opilio (Brachyura: Majoidea) under laboratory conditions 

 

4.1.1 Summary 

The moulting cycle and the time course of changes in body density from hatching to the end of 

the megalopal stage in the snow crab (Chionoecetes opilio) larvae were investigated in laborato-

ry-reared specimens. Morphological changes in the epidermis and cuticle were photographically 

documented to characterize the moult-cycle stages: A–B (postmoult), C (intermoult), D (premoult) and 

E (ecdysis). Moult-stage characteristics were based on a microscopical examination of integumental 

modifications, particularly of the telson. During stages A–C, the larval cuticle changed from a spongy 

structure to become conspicuously thicker and more solid in appearance. In stage D, the epidermis 

retracted from the cuticle and new setae and appendages were formed. The body densities of larval 

snow crabs were lowest just after moulting; they increased greatly during the stage C; and then gradu-

ally increased to reach a plateau at 1.0897–1.0931 g cm–3 during the stage D. Over the whole larval 

period, they have a density greater than that of seawater. These observations will assist in understand-

ing of larval distribution and transport in snow crabs in their natural habitat, and provide a useful tool 

to determine the developmental stages of larvae sampled from the plankton and from larval cultures. 

 

4.1.2 Introduction 

Crustaceans grow by moulting. As a basis for understanding the behavioural, physiological and 

biochemical changes that take place between successive moults (i.e., during the course of the moulting 

cycle; Chang, 1995), staging techniques have been developed that characterize the morphologically 

distinct phases of the moulting cycle in adult decapods and other crustaceans. The moulting cycle is 

generally divided into five principal stages (A–E) with numerous substages (Drach, 1939; Skinner, 

1962; Drach & Tchernigovtzeff, 1967). Moult-staging techniques have also been applied to the larvae 

of several species of decapod crustaceans in the laboratory (Freeman & Costlow, 1980; McNamara et 
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al., 1980; Anger, 1983, 1987; González-Gordillo et al., 2004; Hayd et al., 2008; Guerao et al., 2010). 

In general, marine benthic decapods do not migrate long distances so that dispersal and recruit-

ment of their pelagic larvae play an important role in sustaining their populations (Sulkin, 1984; Anger, 

2001, 2006). Zoeae and megalopae of decapods migrate in the sea by regulating their vertical distribu-

tions in relation to the different directions and strengths of water currents at different depths and phas-

es of the tidal cycle (Forward & Tankersley, 2001). The depth distribution of larvae in the water col-

umn is influenced by their swimming activity (Sulkin, 1984). Laboratory experiments have shown that 

larval behaviour changes in response to abiotic and biotic factors, including light intensity and wave-

length, barometric pressure, gravity, temperature, salinity and chemical cues from predators (Forward, 

1988, 2009; Sulkin, 1984). Moreover, the direction of larval swimming can be modelled in terms of 

drag forces, the downward gravitational force and the upward buoyant force (Konishi et al., 2011); 

body density is an important dimension for calculating these parameters. However, larval body density 

has been examined for only a few decapod crustacean species (Hamasaki et al., 2012, 2013; Ichikawa 

et al., 2014), and no study has investigated the ontogeny of larval body density in relation to the 

moulting cycle. 

The snow crab Chionoecetes opilio (Fabricius, 1788) (Brachyura: Majoidea) is widely distributed 

throughout the cold waters of the northern hemisphere and is an important fishery resource (Elner, 

1982; Sinoda, 1982). Snow crab larvae hatch as prezoeae; after a brief developmental period of less 

than one hour, they have a long developmental period while passing through first and second zoeae 

and megalopae before metamorphosing into benthic crabs (Kon, 1980). The duration of the entire lar-

val period, from hatching until moulting to the first crab stage, is estimated to be 74–123 days (~2.5–4 

months) based on larval culture experiments at different temperature levels, coupled with information 

of larval distribution and water temperature in natural habitats (Yamamoto et al., 2014). The estimated 

entire larval duration is similar to that in natural habitats inferred on the basis of the time lags in the 

occurrence of peak abundance between each larval stage; e.g., ~100 days in the Sea of Japan (Kon et 

al., 2003), over 90 days in the southeastern Bering Sea (Incze et al., 1982), and over 4 months in the 
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Gulf of Sainte Lawrence (Lovrich et al., 1995). The average depth of larvae increases with develop-

ment (Incze, 1981; Conan et al., 1996; Kon et al., 2003); e.g., in the Sea of Japan, pelagic larvae (first 

and second zoeae) are found mainly in waters shallower than 150 m, whereas megalopae are found in 

deeper layers (Kon et al., 2003). A number of studies have elucidated the general biology of snow crab 

larvae, focused on managing stocks or on the mechanisms of fluctuations in stock abundance (e.g., 

Kon, 1980; Incze et al., 1984; Davidson & Chin, 1991; Lovrich & Ouellet, 1994). Their phototactic 

and geotactic behaviours have been studied to better understand the mechanisms of their spatiotem-

poral distribution (Kogane et al., 2007b; Konishi et al., 2011). However, their body densities were 

measured using specimens preserved in formalin solutions (Konishi et al., 2011) and might not reflect 

values in living animals. Moreover, moult-cycle stages have not been fully defined for snow crab lar-

vae; Incze et al. (1984) described the epidermal retraction process in first and second zoeae caught 

from the plankton. 

This study describes the integumentary changes occurring during the course of the moulting cycle 

in snow crab zoeae and megalopae, and examines the ontogenetic changes of larval body density in 

relation to the moulting cycle. 

 

4.1.3 Material and methods 

4.1.3.1 Source of larvae 

A total of 185 ovigerous females were caught in November 2011 in the Sea of Japan off Ishikawa 

Prefecture, Japan. They were transferred to the Obama Laboratory, Japan Sea National Fisheries Re-

search Institute, Fisheries Research Agency, Fukui Prefecture, and reared at 3°C in one 4-kL (1.3 × 3.9 

× 0.85 m) rectangular tank with a recirculating system. The crabs were fed with frozen Antarctic krill 

Euphausia superba twice weekly. The main hatching season extended from February to March in 2012 

and several females hatched their larvae on the same day. 

The following larval stages were used in the study: prezoeae and first zoeae that hatched on Feb-

ruary 20, 2012; second zoeae that moulted on February 20, 2012 from first zoeae that hatched on Feb-
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ruary 1, 2012; and megalopae that metamorphosed on March 16, 2012 from second zoeae that hatched 

on February 1, 2012. One-litre plastic beakers were prepared for larval culture and placed in tempera-

ture-controlled baths. Water temperatures were regulated at 11°C for zoeae and 8°C for megalopae, 

reflecting their thermal distributions in their major natural habitats (Kon et al., 2003) and the optimum 

temperatures for larval survival (Yamamoto et al., 2014). Prezoeae were stocked in one beaker (10 

individuals) for measuring the body density. Six beakers (100 individuals per beaker), eight beakers 

(50 individuals per beaker) and 25 beakers (20 individuals per beaker) were prepared for culturing first 

zoeae, second zoeae and megalopae, respectively to measure larval body density and to observe 

moult-cycle stages. In addition, one beaker (20 individuals per beaker) was established for each cul-

ture series to examine the time course of moulting success (the cumulative percentage that moulted 

completely relative to the number of larvae initially stocked). 

Larval culture was based on the method of Yamamoto et al. (2014). Zoeae were fed rotifers of the 

Brachionus plicatilis species complex at a density of 20 individuals mL–1. Rotifers were enriched with 

0.5 mL L–1 of commercial condensed marine phytoplankton (Nannochloropsis sp., Mercian Co., Ltd., 

Tokyo, Japan), 14 µL L–1 emulsified DHA 70G oil and 28 µL L–1 EPA 28G oil (Hokkaido Fine Chem-

icals Co., Ltd., Hokkaido, Japan) at 16°C for 18 h prior to feeding. Artemia nauplii (Utah strain), en-

riched with 1.5 mL L–1 of a commercial emulsion of n-3 polyunsaturated fatty acids (Hyper Glos, Ma-

rinetech Co., Ltd., Aichi, Japan) at 22°C for 24 h, were given to megalopae at a density of 5 individu-

als mL–1. The rearing water was not aerated. Baths were covered with Styrofoam boards to stabilize 

water temperature. Each morning, larvae were transferred to newly prepared beakers with new water 

and food using a large-mouthed pipette. After transferring the larvae, 20 mg L–1 dihydrostreptomycin 

sulphate (Tamura-seiyaku Co., Ltd., Tokyo, Japan) was added to the rearing water to prevent bacterial 

attachment to the larvae. 

4.1.3.2 Moult-stage analysis 

Moult-cycle stages were observed in groups of five larvae at intervals of 1–3 days, from 0–24 days 

after moulting to first and second zoeae, and at intervals of 1–2 days, from 0–43 days after moulting to 
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megalopae. 

Larval morphological details were observed using a microscope (Eclipse 80i, Nikon Corp., Tokyo, 

Japan) equipped with a digital photo-micrographic camera (DS-Fi1-L2, Nikon Corp., Tokyo, Japan). 

The moult-cycle stages followed those determined for common spider crab Maja brachydactyla larvae 

by Guerao et al. (2010), based on Drach’s classification system (Drach, 1939; Drach & Tcherni-

govtzeff, 1967): moult stage A–B (early and late postmoult combined), C (intermoult), D (premoult) 

with substages D0, D1 and D2 (early, intermediate and late premoult), and E (ecdysis). The analysis of 

moult-cycle stages concentrated mainly on the telson because this part of the larval body is easy to 

examine without requiring dissection (Anger, 1983, 2001; Guerao et al., 2010). In addition, to examine 

synchronization of the moulting cycle in different structures, we also considered changes in: following 

the dorsal spine of the carapace, the endites of the maxillule and the endopod of the maxilla in second 

zoeae; and the rostrum, the endites of the maxillule and the endopod dactyl of the second maxilliped in 

megalopae. The distal tips of the epidermis in the dorsal spine of second zoeae and the rostrum of 

megalopae separate from the old cuticle and gradually retract and degenerate (Hamasaki, 1996; 

Guerao et al., 2010). Just before moulting, the epidermis of the dorsal spine of second zoeae com-

pletely disappeared, and in megalopae, the ratio of new cuticle length to old cuticle length in the ros-

trum decreased to ~1/2 (see the Results section). Therefore, the ratios of new cuticle length to old cuti-

cle length in the dorsal spine of second zoeae and in the rostrum of megalopae were categorized as 

>3/4, 1/2–3/4, 1/4–1/2 and ≤1/4 in second zoeae and >3/4, 1/2–3/4 and ≤1/2 in megalopae, respective-

ly. 

4.1.3.3 Body density measurement 

Larval body density was measured for 10 individual prezoeae. For first and second zoeae, groups 

of ten larvae were used for body density measurements at intervals of 1–3 days from 0–24 days after 

moulting; for megalopae, groups of five larvae were used for body density measurements at intervals 

of 1–3 days from 0–45 days after moulting. The body densities of individual larvae were determined 

by measuring their specific gravity using the method of Tsukamoto et al. (2009). We prepared a series 
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of solutions of sucrose in 500 mL distilled water adding 46–170 g sucrose at 2–10-g intervals. The 

temperatures of the sucrose solutions were regulated at 11°C for zoeae and 8°C for megalopae. The 

specific gravities of these solutions were measured using a standard hydrometer (Wakairo Keiki Sei-

sakusho Co. Ltd., Tokyo, Japan). Individual larvae were anaesthetized with ethyl carbamate (0.5 M for 

10 min), washed with a sucrose solution of the designated specific gravity, and then transferred into a 

glass test beaker filled with the same solution (50 mL). This procedure was repeated with different 

sucrose solutions. The vertical position of the larva was observed, and when the larva maintained neu-

tral buoyancy at the mid-depth of a beaker, the specific gravity of the solution was deemed to be equal 

to the body density of the larva. The test larvae were not returned to the culture beakers. 

An asymptotic relationship was observed between the number of days after moulting and the 

body density of larvae (see the Results section); these relationships were expressed by the asymptotic 

regression model: y = abx + c, and by the Gompertz model (Gompertz, 1825): y = abexp(–cx), where y is 

the body density of the larva, x is the time (in days), and c in the asymptotic regression model and a in 

the Gompertz model are numeric parameter representing the asymptote. The parameters a, b and c 

were estimated using a non-linear ordinary least squares method and evaluated with a t-test. Akaike’s 

information criteria (AIC) were calculated and the model having the minimum AIC value was selected 

as the optimum model. Statistical analyses were performed with R language (R3.1.1; R Core Team 

2014) with a 5% significance level. 

 

4.1.4 Results 

4.1.4.1 Moult-cycle stages 

First zoea 

Stages A–B: (Fig. 4.1.1A). Immediately after moulting from prezoeae, the epidermal tissues had a 

spongy structure with numerous interconnected lacunar spaces (stage A; Fig. 4.1.1A). Subsequently, 

most of the endocuticle was secreted (stage B). The epidermal tissues began to concentrate along the 

inner cuticle surface, becoming gradually denser in appearance. Together, stages A and B lasted for 1 



Ph D Dissertation: Takeo Yamamoto, 2015 
Chapter 4 

 

50 
 

day (Fig. 4.1.2A). 

Stage C: (Fig. 1B). The epidermal lacunae were absent and the cuticle became conspicuously 

thicker and more solid in appearance. Throughout this stage, the epidermal tissues continued to grow, 

gradually increasing in density and extent (Fig. 4.1.1B). The stage was characterized by a lack of any 

major morphological change, by the completion of the endocuticle and by an apparent accumulation of 

biomass (tissue growth) in the entire larval body. Stage C was observed after 1–9 days after moulting 

(Fig. 4.1.2A). 

Substage D0: (Fig. 4.1.1C). The beginning of early premoult was indicated by an incipient sepa-

ration of the epidermis from the cuticle (apolysis). This process was observed near the base of the se-

tae of the telson (Fig. 4.1.1C). Substage D0 was observed 6–13 days after moulting (Fig. 4.1.2A).  

Substage D1: (Fig. 4.1.1D). The beginning of the intermediate premoult substage was character-

ized by the appearance of a circular epidermal invagination at the base of the retracted setae (Fig. 

4.1.1D). Deep epidermal folds are a prerequisite for the enlargement of the size of setae as well as for 

formation of new setae in the following second zoeal stage. Substage D1 was observed 12–15 days 

after moulting (Fig. 4.1.2A). 

Table 4.1.1. Morphological changes in the maxillule, maxilla and maxilliped, and their duration 
in larval Chionoecetes opilio. 

 

Larval stage Region Morphological observation Range (days)
Second zoea Endites of maxillule Before apolysis 0–4

Apolysis 6–15
Epidermal invaginated new setae 15–18
Completely formed new setae 20–24

Endopod of maxilla Before apolysis 0–4
Apolysis 4–13
Fibrous structured in retracted setae 12–24
Completely formed megalopal shape 20–24

Megalopa Endites of maxillule Before apolysis 0–15
Apolysis 13–37
Epidermal invaginated new setae 30–42
Completely formed new setae 37–45

Endopod dactyl of the second maxilliped Before apolysis 0–9
Apolysis 11–37
Epidermal invaginated new setae 28–38
Completely formed new setae 36–45
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Figure 4.1.1. Larval telson of Chionoecetes opilio: (A)–(E): first-stage zoea; (F)–(J): sec-
ond-stage zoea; (K)–(N): megalopa; (A), (F): moult-stage B (postmoult); (B), (G), (K): 
moult-stage C (intermoult); (C), (H): moult-stage D0 (early premoult); (L): moult stage D0–1; 
(D), (I), moult-stage D1 (intermediate premoult); (E), (J), (M), (N): moult-stage D2 (late pre-
moult). (A) 0 days; (B) 1 day; (C) 6 days; (D) 14 days; (E) 17 days; (F) 0 days; (G) 1 day; (H) 
15 days; (I) 18 days; (J) 24 days; (K) 3 days; (L) 9 days; (M) 24 days; (N) 42 days. ap, apolysis; 
co, epidermal condensation; in, epidermal invagination; re, retraction of tissues. Scale bar = 0.1 
mm. 
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Substage D2: (Fig. 4.1.1E). The beginning of late premoult was characterized by the appearance 

of new cuticle on the epidermal surface of the setae and spines, which reached their greatest retraction 

from the old cuticle sheath. The new setae of the telson were completely formed, and their secondary 

spinules were clearly visible because of a distinct lining with a thin microscopically conspicuous new 

 
Figure 4.1.2. Changes in the relative proportions (%) of Chionoecetes opilio larvae exhibiting 
different moulting substages and larval body density with respect to days after hatching, or after 
the previous moult: (A) first-stage zoea; (B) second-stage zoea; (C) megalopa. The dashed line 
shows the cumulative percentage of the initial number of larvae stocked that successfully 
moulted. The solid line curves were drawn from the asymptotic equations (see Table 4.1.2) ap-
plied to the relationship between the number of days and the body density of larvae. 
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cuticle on their surface (Fig. 4.1.1E). Therefore, the main characteristics of substage D2 were the ter-

mination of morphogenesis and the protection of the newly formed structures with a new exoskeleton. 

The thickness and visibility of the new cuticle increased considerably throughout this substage. Sub-

stage D2 was observed at 15–24 days and ecdysis (stage E) occurred 19–26 days after moulting (Fig. 

4.1.2A). 

 

Second zoea 

Stages A–C: (Fig. 4.1.1F, G). Postmoult and intermoult stages were morphologically very similar 

to those in the first zoea. Moult stages A–B (Fig. 4.1.1F) lasted for 1 day and stage C (Fig. 4.1.1G) 

 
 
Figure 4.1.3. Second zoeae of Chionoecetes opilio. (A)–(C): dorsal spine, (D)–(F): basal endite 
of the maxillule, (G)–(I): endopod of the maxilla. (A) 14 days; (B) 20 days; (C) 24 days; (D) 13 
days; (E) 15 days; (F) 21 days; (G) 13 days; (H) 15 days; (I) 24 days. ap, apolysis; ep, epider-
mis; fs, fibrous structure; in, epidermal invagination. Scale bar = 1 mm (A)–(C) and 0.1 mm 
(D)–(I). 
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was observed 1–14 days after moulting (Fig. 4.1.2B). 

Substage D0: (Figs. 4.1.1H and 4.1.3A, D, G). As in the first zoea, apolysis was observed at the 

base of the setae of the telson (Fig. 4.1.1 H). Substage D0 was characterized by setal degeneration and 

was observed 6–18 days after moulting (Fig. 4.1.2B). At the distal tip of the dorsal spine, retraction of 

epidermis from its sheath began 6 days after moulting (Fig. 4.1.4A). From 14 days on, retraction of the 

spines was much advanced, and the ratio of new cuticle length to old cuticle length in the dorsal spine 

decreased to 3/4–1/4 (Fig. 4.1.4A). Apolysis was also observed at the bases of the setae of the endites 

of the maxillule (Fig. 4.1.3D) during the period of 6–15 days and at the margin of the endopod of the 

maxilla (Fig. 4.1.3G) 4–13 days after moulting (Table 4.1.1). 

Substage D1: (Figs. 4.1.1I and 4.1.3B, E, H). The epidermal matrix degenerated, beginning at the 

distal tips of the furca and setae, so that gradually the typical round or slightly bilobed shape of the 

megalopal telson formed (Fig. 4.1.1I). Remains of the setae became fibrous in structure. Substage D1 

was observed 17–21 days after moulting (Fig. 4.1.2B). The ratio of new cuticle length to old cuticle 

length in the dorsal spine decreased to less than 1/2 in most larvae (Figs. 4.1.3B and 4.1.4A). Deeply 
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folded epidermal invaginations were observed at the bases of the setae of the endites of the maxillule 

(Fig. 4.1.3E) 15–18 days after moulting (Table 4.1.1). The retracted epidermis of the setae of the en-

dopod of the maxilla became fibrous in structure (Fig. 4.1.3H) and this phase was observed 12–24 

days after moulting (Table 4.1.1). 

Substage D2: (Figs. 4.1.1J and 4.1.3C, F, I). The epidermal matrix had completely retracted from 

the zoeal furca; the posterior margin of the megalopal telson became clearly visible and was now cov-

ered by a new cuticle (Fig. 4.1.1J). This phase was observed 21–24 days after moulting (Fig. 4.1.2B). 

The new cuticle of the dorsal spine completely disappeared 21–24 days after moulting (Figs. 4.1.4A 

and 4.1.3C). New setae appeared in the endites of the maxillule (Fig. 4.1.3F) and were observed 20–24 

days after moulting (Table 4.1.1). The megalopal shape of the endopod of the maxilla was complete 

(Fig. 4.1.3I) and the fibrous structure of the setae almost disappeared. This structure was observed 20–

24 days after moulting (Table 4.1.1). After this phase, ecdysis (stage E) was observed 20–27 days after 

moulting (Fig. 4.1.2B). 

 

Megalopa 

Stages A–C: (Fig. 4.1.1K). The morphological characters were similar to those of these stages in 

the zoea (Fig. 4.1.1K). These moult stages were observed for 0–6 days after moulting (Fig. 4.1.2C). 

Unlike the first and second zoeae, stage C was not clearly distinguished from stages A–B. 

Table 4.1.2. Estimates of parameters (with SEs) of the asymptotic equation (y = abx + c) and the 
Gompertz model (y = abexp(–cx)) relating the number of days after moulting to each stage to the 
body density of larval Chionoecetes opilio. 

 
H0, a, b, or c = 0. 
* P < 0.05. 

Period Model n a b c AIC 
Z1–Z2 Asymptotic regression model 120 –0.0563 (0.0012)* 0.7683 (0.0104)* 1.0931 (0.0007)* –966.5 

 
Gompertz model 120 1.0930 (0.0007)* 0.9486 (0.0011)* 0.2686 (0.0137)* –965.5 

Z2–M Asymptotic regression model 120 –0.0386 (0.0015)* 0.6376 (0.0235)* 1.0897 (0.0006)* –932.8 

 
Gompertz model 120 1.0897 (0.0006)* 0.9646 (0.0014)* 0.4550 (0.0373)* –932.2 

M–C1 Asymptotic regression model 95 –0.0423 (0.0010)* 0.8135 (0.0092)* 1.0923 (0.0004)* –844.7 

 
Gompertz model 95 1.0923 (0.0004)* 0.9613 (0.0009)* 0.2091 (0.0116)* –843.9 
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Substage D0–1: (Figs. 4.1.1L and 4.1.5A, D, G). The beginning of substage D0 was observed in 

the terminal margin of the telson when the epidermis detached from the cuticle (Fig. 4.1.1L). Unlike 

the second zoea, substage D1 could not be clearly distinguished from substage D0. This phase (D0–1) 

was observed 7–21 days after moulting (Fig. 4.1.2C). Apolysis started at the tip of rostrum (Fig. 

4.1.5A) 12 days after moulting (Fig. 4.1.4B). The ratio of new cuticle length to old cuticle length in 

the rostrum was mostly greater than 3/4 (Fig. 4.1.4B). Likewise, apolysis commenced in the endites of 

the maxillule (Fig. 4.1.5D) and in the endopod dactyl of the second maxilliped (Fig. 4.1.5G) 13 and 11 

days after moulting, respectively (Table 4.1.1). 

Substage D2: (Figs. 4.1.1M, N and 4.1.5B, C, E, F, H, I). Substage D2 was characterized by the 

 
 
Figure 4.1.5. Megalopae of Chionoecetes opilio. (A)–(C): rostrum, (D)–(F): basal endite of the 
maxillule, (G)–(I): endopod dactyl of the second maxilliped. (A) 12 days; (B) 23 days; (C) 42 
days; (D) 26 days; (E) 33 days; (F) 41 days; (G) 26 days; (H) 32 days; (I) 41 days. ap, apolysis; 
ep, epidermis; fs, fibrous structure; in, epidermal invagination. Scale bar = 1 mm (A)–(C) and 
0.1 mm (D)–(I). 
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appearance of a new cuticle. The epidermis in the posterior margin of the megalopal telson appeared 

strongly retracted and the fibrous structure gradually disappeared, so that the characteristic margin of 

the crab telson was formed (Fig. 4.1.1M, N). This moult stage was observed 19–45 days after moulting 

(Fig. 4.1.2C). The ratio of new cuticle length to old cuticle length in the rostrum gradually decreased 

from more than 3/4 to less than 3/4 (Figs. 4.1.4B, 4.1.5B, C). In this substage, new setae gradually 

formed in the endites of the maxillule (Fig. 4.1.5E, F) and in the endopod dactyl of the second maxil-

liped (Fig. 4.1.5H, I). These new setae were completely formed by 36 or 37 days after moulting (Table 

4.1.1). Megalopae underwent ecdysis (stage 4.1.E) 36–50 days after moulting (Fig. 4.1.2C). 

 

4.1.4.2 Body density 

The body densities of larvae decreased immediately after moulting from prezoeae to first zoeae 

(Fig. 4.1.2). The same phenomenon was observed at subsequent moults. Later after ecdysis, during 

stage C (intermoult), the body densities of zoeae and megalopae greatly increased and then gradually 

increased to a plateau during stage D (premoult) (Fig. 4.1.2). Estimates of all parameters in the as-

ymptotic regression models and in the Gompertz models were statistically significant (Table 4.1.2). 

The AIC values were lower in the asymptotic regression models than the Gompertz models. The nu-

meric parameters representing the asymptote were 1.0931 g cm–3 (asymptotic regression model) and 

1.0930 g cm–3 (Gompertz model) in first zoeae, 1.0897 g cm–3 in second zoeae (both models) and 

1.0923 g cm–3 in megalopae (both models), respectively (Table 4.1.2). 

 

4.1.5 Discussion 

A problem preventing the precise staging of moulting of crustacean larvae is that the larval in-

tegument is thin and relatively unstructured and morphological changes are often indefinite (Anger, 

2001; Hayd et al., 2008; Guerao et al., 2010). Thus, transitions between moult stages and substages 

could not be identified with the same accuracy and timing precision as in Drach’s classification for 

adult crabs (Drach, 1939; Drach & Tchernigovtzeff, 1967). As in studies of the larvae of the Amazon 
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River prawn Macrobrachium amazonicum (Hayd et al., 2008) and M. brachydactyla (Guerao et al., 

2010), for snow crab larvae we combined all postmoult stages (A–B) as well as Drach’s substages D2–4 

within the premoult period (stage D); also, substages D0–1 in megalopae could not be separated be-

cause of the absence of setagenesis in the telson. 

The course of the moulting cycle of larval snow crabs determined by morphological analysis of 

the telson was similar to that previously described in larval Majoidea by Anger (1983) for great spider 

crab Hyas araneus and Guerao et al. (2010) for M. brachydactyla. Additionally, a lack of synchrony of 

developmental speed within different parts of the larval body was recognized in snow crab larvae as 

described for H. araneus and M. brachydactyla (Anger, 1983; Guerao et al., 2010). 

Anger (1987) studied the moulting cycle of first zoeae of nine decapod species and concluded that, 

at a constant culture temperature, stages A–C and substage D0 comprise 35–50% and 17–20%, respec-

tively of the moulting cycle in most species. Most of the interspecific variation was observed after 

substage D1. Observations on other decapod species (McNamara et al., 1980; Hamasaki, 1996; Hayd 

et al., 2008; Guerao et al., 2010) generally agree with those on first zoeae reported by Anger (1987). In 

snow crab first zoeae, stages A–C lasted for 10 days (0–9 days after hatching but usually less than 7 

days: 0–6 days) and substage D0 lasted for 8 days (6–13 days after hatching). First zoeae moulted to 

second zoeae 19–26 days after hatching (mean 21.6 days). Therefore, the percentages of stages A–C 

and substage D0 of the mean duration of the first zoeal development were 46% (mostly less than 32%) 

and 37%, respectively. Although the relative duration of stages A–C in snow crab first zoeae was sim-

ilar to that in decapod first zoeae examined in previous studies (McNamara et al., 1980; Anger, 1987; 

Hamasaki, 1996; Hayd et al., 2008; Guerao et al., 2010), the relative duration of substage D0 in snow 

crabs was much longer than in these first zoeae. The developmental periods of first zoeae examined by 

these authors lasted for ~1–13 days after hatching, much shorter than that of snow crabs (mean 21.6 

days in the present study). Therefore, the longer substage D0 of first zoeae in snow crabs compared to 

other decapods might be related to the longer development period. 

Anger (1983) studied changes in the schedule of stages of the moulting cycle of H. araneus larvae 
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reared at constant temperature, during successive moults from first zoea to megalopa. The percentage 

of the moult cycle occupied by stage B slightly increased, stage C markedly increased, substage D0 

became shorter, substage D1 remained fairly constant and substages D2–4 became slightly shorter. Thus, 

the relative interval of the premoult stage (substages D0–4) became shorter with larval development. 

However, this tendency was not observed in the swimming crab Portunus trituberculatus (Hamasaki, 

1996) or M. brachydactyla (Guerao et al., 2010). However, in Hamasaki (1996), Guerao et al. (2010), 

and this study, some stages or substages were combined. Hamasaki (1996) reported that the combined 

stages A–C, stage D, substage D0 and substage D1 remained fairly constant relative to larval develop-

ment in P. trituberculatus. Guerao et al. (2010) showed that, in M. brachydactyla, the relative lengths 

of combined stages A–B, stage C and stage D remained fairly constant at 15°C whereas at 18°C stages 

A–B and stage C became slightly shorter and stage D became slightly longer with larval development. 

In the snow crab, we observed that stages A–C were longest and stage D was shortest in the second 

zoeae, which is different from that observed in H. araneus larvae. 

The body densities of larval snow crabs were lowest just after moulting; they increased greatly 

during the intermoult phase (stage C); and then gradually increased to reach a plateau at 1.0897–

1.0931 g cm–3 during the premoult phase (stage D). Physiological and biochemical changes occur dur-

ing the moulting cycle of crustaceans and tissue growth is mainly achieved during the intermoult pe-

riod (Skinner, 1962; Stevenson, 1985; Chan et al., 1988). Therefore, tissue growth might be related to 

the rapid increase in the body density during the premoult period in snow crab larvae. Konishi et al. 

(2011) measured the body densities of snow crab larvae using formalin-preserved specimens and re-

ported that their body densities increased with larval development. These observations differ from 

values obtained using living animals in the present study, which presumably are more reliable indica-

tors of the natural state.  

To live planktotrophically within a certain depth range in the ocean, snow crab larvae must have a 

means of adjusting their vertical distribution. The specific gravities of seawater in which genus Chi-

onoecetes larvae occurs are ~1.019–1.026 in the Gulf of Saint Lawrence (calculated based on Millero 
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et al., 1980 and Conan et al., 1996) and 1.025–1.030 in the Sea of Japan (based on Naganuma, 2000 

and Kon et al., 2003). Therefore snow crab larvae have a density greater than that of seawater and they 

continuously sink in the water column if they are inactive. The vertical distribution range of larval 

snow crabs tends to become deeper with larval development in the natural habitat. Kon et al. (2003) 

intensively examined the vertical distribution of snow crab larvae (including C. opilio and C. japoni-

cus) off Wakasa Bay in the Sea of Japan. They found that the first zoeae mainly occurred at a depth of 

0–100 m, second zoeae occurred in a layer 0–150 m deeper than that of first zoeae and megalopae oc-

curred in a layer 50–200 m deeper than the second zoeae. Furthermore, some megalopae migrate 

downward and moult at 200–400 m. Similarly, in the southeastern Bering Sea, zoeae (only C. opilio) 

are found in the upper 40 m and megalopae (including C. opilio and C. bairdi) are present in the upper 

60 m (Incze, 1981; Incze et al., 1987). Kogane et al. (2007b) examined snow crab larval phototaxis 

and geotaxis in the laboratory and reported that first zoeae exhibited positive phototaxis and negative 

geotaxis, second zoeae showed slight phototaxis and positive geotaxis, while megalopae are negatively 

phototactic and positively geotactic. Kogane et al. (2007b) also observed that first zoeae floated in the 

upper layer of the rearing water, but almost all of the later larvae sank to the bottom of the rearing tank. 

Moreover, Konishi et al. (2011) reported that zoeae swam more frequently than megalopae. Snow crab 

larvae might sink with larval development because of decreasing upward swimming activity in the 

natural habitat. The passive sinking velocities of snow crab larvae are considered to increase even 

though their body density remains the same because their body volumes increase with larval develop-

ment (Konishi et al., 2011) and this may help their downward migration. 

Body densities were measured in laboratory-reared larvae of the Japanese spiny lobster Panulirus 

japonicus (Hamasaki et al., 2012), the coconut crab Birgus latro (Hamasaki et al., 2013) and the 

horsehair crab Erimacrus isenbeckii (Ichikawa et al., 2014). The mean body density of Japanese spiny 

lobster larvae was 1.097 g cm–3 and did not change with growth and development during the phyllo-

somal period (Hamasaki et al., 2012). The mean body densities of the coconut crab larvae were 1.086–

1.089 g cm–3 in first to third zoeae and decreased to 1.072–1.075 g cm–3 in fourth zoeae and megalo-
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pae (Hamasaki et al., 2013). Hamasaki et al. (2013) speculated that the reduction in body density after 

the fourth zoeae in the coconut crab might be related to the emigration behaviour of the megalopae, 

which acquire shells and migrate from the sea to the land. In contrast, the body density of horsehair 

crab larvae significantly increased from 1.080 g cm–3 in zoeae to 1.148 g cm–3 in megalopae (Ichikawa 

et al., 2014). Ichikawa et al. (2014) inferred that the increased body density of the horsehair-crab meg-

alopae might be adaptive to shallow coastal environments with cyclic tidal currents, where megalopal 

settlement occurs (Abe, 1977). Unlike the horsehair crab megalopae, the asymptotic larval body densi-

ties were similar in zoeae and megalopae of the snow crab. Kon et al. (2003) reported that snow-crab 

megalopae migrate downward from 50–200 m to 200–400 m and settle on the bottom in the weak wa-

ter currents of the Sea of Japan. Therefore, the difference in the body densities of megalopae between 

horsehair crabs and snow crabs may be attributed to the different physical conditions in their settle-

ment environments. This inference could be tested in further studies of the ontogeny of body density in 

decapod crustaceans having different settlement habitats. 

In conclusion, we have characterized and have provided a time scale for the moult-cycle stages of 

snow crab larvae. The ontogeny of body density in relation to the moulting cycle is described in zoeae 

and megalopae. These data could be incorporated into a biophysical model (Parada et al., 2010, Kon-

ishi et al., 2011, Szuwalski & Punt, 2013, Mullowney et al., 2014) to more accurately infer the larval 

distribution and transport of snow crabs in their natural habitat. Furthermore, the time scale data and 

the moult-staging technique could provide a useful tool for evaluating the developmental process of 

larvae sampled from the plankton and from larval cultures. 



 

 
 

 

 

 

 

Chapter 5
 

GROWTH AND DEVELOPMENT OF IMMATURE CRABS 
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5.1 Effects of temperature on growth of juvenile snow crabs, Chionoecetes opilio, 

in the laboratory 

 

5.1.1 Summary 

The effect of water temperature on the growth of juvenile snow crabs Chionoecetes opilio (Fab-

ricius, 1788) was investigated in laboratory culture experiments. Laboratory-born juveniles were cul-

tured from instar I to VIII at four temperatures (approximately 1, 3, 5 and 8°C). The growth indices 

(size increments at moulting in mm and in % of premoult carapace width) were significantly higher in 

crabs reared at 5°C than in those reared at other temperatures. The relationship between the mean 

temperature (T) and intermoult period (D) of each instar was described by the heat summation theory 

equation: D = K / (T – α). The thermal constant K is the summation of the effective temperature for 

development (above the threshold temperature, α) up to a selected biological end point. The thermal 

constant tended to increase and the threshold temperature tended to decrease with increasing mean 

premoult carapace width of each instar, reaching asymptotes of 1573 day-degrees and −4.7°C, respec-

tively. Size- and temperature-dependent growth models were developed for snow crab juveniles. 

 

5.1.2 Introduction 

Estimation of the age and growth of a commercially-harvested species provides information of 

life history traits that are important for fisheries management, e.g., lifespan, age at recruitment, age at 

first capture, age at maturity, and cohort identification. These parameters are important for modelling 

population dynamics for the development of an appropriate stock management strategy towards sus-

tainable fisheries (Hoggarth et al., 2006; Chang et al., 2012). Age and growth of aquatic organisms are 

often estimated from body parts, such as the scales and otoliths of fishes and the shells of molluscs 

(Stevenson & Campana, 1992; Schӧne et al., 2005; Dan et al., 2012), which show annual or even daily 

growth rings. However, crustaceans grow by moulting and they generally lack physical structures 

suitable for age estimation (Kilada et al., 2012). Therefore, estimation of age and growth of crusta-
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ceans has relied on other methods, e.g., captive rearing; mark and recapture experiments; 

length-frequency distribution analyses in wild populations; and assays of the age pigment, lipofuscin 

(Kurata, 1962; Hartnoll, 2001; Vogt, 2012). 

The snow crab Chionoecetes opilio (Fabricius, 1788) (Brachyura: Majoidea) is widely distributed 

on muddy or sandy mud grounds at depths between 3 m and 1400 m in cold waters in the northern 

hemisphere (Yosho & Hayashi, 1994; Squires, 1990; Lovrich et al., 1995; Dawe & Colbourne, 2002; 

Yanagimoto et al., 2004) and is an important fishery resource in the United States, Canada, Russia, 

Greenland, Japan, and Korea (Jadamec et al., 1999). Larvae of this species hatch in spring and meta-

morphose to the benthic crab stage after spending several months of pelagic life in the oceanic water 

column, as two zoeal stages and one megalopal stage (Yamamoto et al., 2014). After settlement on the 

sea bottom, snow crabs change their spatial distributions in relation to temperature and bottom sub-

strate, and also seasonally according to reproductive and growth status (Kon, 1980; Lovrich et al. 

1995; Comeau et al., 1998; Dawe et al., 2012). Snow crabs undergo a terminal moult to reach mor-

phologically mature stages exhibiting secondary sexual characteristics: males with large chelae, and 

females with a broad abdomen (Ito, 1957; Conan & Comeau, 1986; Yamasaki & Kuwahara, 1991; 

Alunno-Bruscia & Saint-Marie, 1998). Analysis of periodic changes of carapace size distributions in 

field collections has been used to estimate the approximate age of snow crabs from the sizes of the 

instars at the moult and the annual moulting frequency (Ito, 1970, 1984; Saint-Marie et al., 1995; 

Alunno-Bruscia & Sainte-Marie, 1998; Comeau et al., 1998). 

Among environmental factors, water temperature is the most important factor influencing moult 

increment and intermoult period, which determine crustacean growth (Kurata, 1962; Hartnoll, 1982; 

Anger, 2001). It has been suggested that the water temperature affects growth and survival of juvenile 

snow crabs in their natural habitat (Lovrich et al., 1995; Dionne et al., 2003; Boudreau et al., 2011). 

Captive rearing is an effective tool for elucidating the effect of temperature on moult increment and 

intermoult period in crustaceans (Kurata, 1962; Anger, 2001). However, the effect of temperature on 

growth of snow crabs has not been experimentally evaluated, except for a laboratory study on growth 
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to maturity of laboratory-born juveniles at 3°C and 8°C (Kobayashi, 1989). Under group culture con-

ditions, the intermoult period was shorter in crabs reared at 8°C than in those reared at 3°C. Therefore, 

to improve our knowledge of the temperature-dependence of growth in snow crabs before the terminal 

moult, further laboratory studies covering a wider range of temperatures should be conducted, and 

more thoroughly analysed. 

The present study aimed to elucidate the effects of water temperature on growth parameters of 

juvenile snow crabs (moult increment and intermoult period), through laboratory culture experiments 

at four temperatures (1, 3, 5, and 8°C). We compared the moult increment at different temperatures 

and applied the day-degree model for the relationship between body size and intermoult period among 

the different instars. 

 

5.1.3 Material and Methods 

5.1.3.1 Crab source 

Laboratory-born juvenile snow crabs were used in this study. Crabs were cultured from newly 

hatched larvae (first stage zoeae), which originated in broodstock females collected from the Sea of 

Japan, through second stage zoeae and megalopae to first-instar crabs in 2009–2011 at Obama Labor-

atory, Japan Sea National Fisheries Research Institute, Fisheries Research Agency, Fukui Prefecture, 

Japan. Zoeae were reared using 0.5 kL and 20 kL tanks at 14°C according to the method of Kogane et 

al. (2007a). Megalopae were stocked in 1 kL and 6 kL tanks at a density of ~1 individuals L−1, and 

reared at 10°C until they moulted to first-instar crabs. Megalopae were fed Artemia (Utah strain) at a 

density of 3 individuals mL−1 throughout the culture period. Artemia-nauplii were enriched with 1.5 

mL L−1 commercial emulsion of n-3 polyunsaturated fatty acids (Hyper Glos; Marinetech Co., Ltd., 

Japan) at 22°C for 24 hours prior to feeding. Additionally, newly hatched snow-crab zoeae were given 

to megalopae at a density of 0.5 individuals L−1 on the first day of culture. 

5.1.3.2 Crab culture experiments 

Juvenile snow crabs were cultured at nominally 1°C, 3°C, 5°C, and 8°C (see Table 5.1.1 for mean 
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culture temperatures). We used three cohorts of juveniles born in 2009, 2010 and 2011. The initial 

numbers of first-instar crabs in the four culture temperatures were: 60 at 1°C (30 each from 2010 and 

2011 cohorts), 30 at 3°C (2009 cohort), 30 at 5°C (2011 cohort), and 30 at 8°C (2011 cohort). In addi-

tion, 19 third-instar crabs from the 2009 cohort that were cultured at 3°C in another tank were also 

provided for the 1°C-group. The culture experiments were conducted from August 29, 2009, May 9, 

2010, and May 23, 2011 until the juveniles reached instar VIII. 

Crabs were individually housed and cultured using 1-L (10 × 10 × 10 cm), 5-L (15 × 26 × 13 cm), 

and 27-L (40 × 26 × 26 cm ) box shaped plastic mesh cages, and 100-L (46 × 78 × 28 cm) fibre-

glass-reinforced plastic (FRP) tanks, according to the growth stage. The cages were placed in 600-L 

(2.0 × 1.0 × 0.3 m) rectangular FRP tanks in which water temperatures were controlled using a circu-

lating cooling system. The water flow rate was regulated at 5 L min−1 in 100-L tanks and 30 L min−1 in 

600-L tanks. Water temperatures were recorded every 2 hours using temperature-recording loggers 

(HOBO Water Temp Pro v2, Onset Computer Corp., MA, USA). Tanks were covered with Styrofoam 

boards to stabilise the water temperatures. Crabs were fed ad libitum three times per week with thawed 

North Pacific krill Euphausia pacifica Hansen, 1911 (Body length, ~15 mm) at 2–6 individuals per 

crab for instars I–V, thawed Antarctic krill Euphausia superba Dana, 1850 (Body length, ~50 mm) at 1 

individual per crab for instars VI–VII, and artificial pellets for kuruma prawn Marsupenaeus japonicus 

(Bate 1888) culture (Higashimaru Co., Ltd, Kagoshima, Japan) at ~20–300 mg per crab for all instars. 

The given number of North Pacific krill and amount of artificial pellets were increased with crab 

growth. Before each feeding, uneaten foods, feces, and grime were removed from the culture cages 

and tanks by siphoning. Survival and moulting of cultured crabs were checked every 1–3 days, and the 

intermoult period of each crab was determined. If crabs had died during moulting, they were treated as 

the moulted individuals; however, the occurrence of these crabs was low (2.3% of all moulting events). 

Dead crabs and exuviae were collected and sexed according to their abdominal morphology. The car-

apace width (CW) of each intact animal was measured to the nearest 0.1 mm using a digital calliper 

(CD-S20C, Mitutoyo Corp., Kanagawa, Japan) or with a digital photomicrographic camera 
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(DS-Fi1-L2, Nikon Corp., Tokyo, Japan) and stereomicroscope (SMZ1000, Nikon Corp., Tokyo, Ja-

pan). Measurements taken prior to moulting were termed premoult CW (PreCW), and those taken after 

moulting were termed postmoult CW (PostCW). 

5.1.3.3 Data analysis 

Statistical analyses were performed with the R language (R3.1.1; R Development Core Team, 

2014) with a 5% significance level. 

Statistical differences between temperature groups of the survival rates at instars I–VII were 

evaluated with the χ2 test and Tukey’s post-hoc test. PostCW, moult increment (MI = PostCW – 

PreCW) in mm, and proportional growth rate (GR = MI × PreCW−1) have been used as representative 

of the growth of crustaceans (Chang et al., 2012; Stevens, 2012). We used a general linear model 

(GLM) (McCullagh & Nelder, 1989; Everitt & Hothorn, 2009) to evaluate the effect of temperature on 

the growth of juvenile snow crabs. Three indices of crab growth were used as response variables. In 

these analyses, taking into account the effect of PreCW, the explanatory variables were PreCW (con-

tinuous variable) and temperature (categorical variable), as well as the interaction between PreCW and 

temperature. The GLM analysis was performed with the lm function and the significance of the ex-

planatory variables was evaluated with an F test using the Anova function (type II) implemented in the 

car package (Fox & Weisberg, 2011) in R. Because the interaction term between PreCW and tempera-

ture in the GLM analysis was not significant, a multiple comparison test with the Tukey method was 

applied to assess the differences between temperature levels in the GLM analysis with the explanatory 

variables of PreCW and temperature using the glht function implemented in the multcomp package 

(Hothorn et al., 2008). 

To express the intermoult period as day-degrees, the relationship between the number of days 

between the moults of individuals (intermoult period, D) and the mean culture temperature (T) was 

fitted to the following equation for each instar: D = K / (T – α). This equation, known as Réaumur’s 

Law, is part of the theory of heat summation; the parameters K and α are the so-called ‘thermal con-

stant’ and ‘threshold temperature’ for development, respectively (Hamasaki 2003; Sudo 2003; Ha-
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masaki et al., 2009; Yamamoto et al., 2014). The thermal constant (day-degrees) is the summation of 

the effective temperature for development (above threshold temperature) up to a selected biological 

end point. An asymptotic relationship was found between the mean PreCW and estimates of the ther-

mal constant and the threshold temperature of instars (see the Result section); therefore, these rela-

tionships were expressed as the following equation: K or α = a(1 – (1/exp(bPreCW))). The parameters 

K, α, a and b were estimated using a non-linear ordinary least squares method and evaluated with a 

t-test. 

In the growth analyses, sex was not considered because our sample size was rather small; sex can 

be determined from instar V and similar growth at the moult was reported in immature males and fe-

males (Ito, 1970; Comeau et al., 1998; Alunno-Bruscia & Sainte-Marie, 1998). 

 

5.1.4 Results 

Data on the culture temperatures, survival rates, and intermoult periods of each instar are summa-

rised in Table 5.1.1.The survival rates of instar-I and instar-II juvenile crabs were significantly higher 

at 3–8°C (97–100%) than at 1°C (63–74%) (Fig. 5.1.1). The survival rates of instar III crabs were 

higher at 3–8°C (83–93%) than at 1°C (70%) but the difference was not significant. The survival rates 

at instar IV were significantly higher at 5–8°C (88–96%) than at 1–3°C (50–58%). Thus, crabs at in-

stars I–IV tended to show lower survival rates at 1°C. From instar V, survival rates did not differ 

among temperatures, except for instars VI and VII crabs that showed lower survival rates at 5°C. 

PreCW and temperature significantly affected all growth indices but the interaction term was not 

significant (Table 5.1.2); thus, the regression lines between PreCW and growth indices of crabs had 

similar slopes regardless of temperature (Fig. 5.1.2). A multiple comparison test showed that all 

growth indices were significantly higher in crabs reared at 5°C than in those reared at other tempera-

tures (P < 0.05). 
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Table 5.1.1. Mean culture temperature, number of crabs cultured, survival rate, and intermoult 
durations (number of days) of laboratory-born juveniles of the snow crab Chionoecetes opilio 
reared at four temperatures. 

 

Temperature Survival rate
(ºC) Tested Molted (%)

I 0.99 2010 30 20 66.7 122 ± 17 72 – 149
0.99 2011 30 18 60.0 120 ± 21 77 – 161
3.48 2009 30 30 100.0 64 ± 13 43 – 97
4.90 2011 30 30 100.0 37 ± 10 28 – 74
8.02 2011 30 30 100.0 31 ± 7 21 – 43

II 0.95 2010 20 12 60.0 129 ± 7 119 – 145
1.12 2011 17 16 94.1 112 ± 13 70 – 130
3.96 2009 30 29 96.7 70 ± 11 56 – 100
4.83 2011 30 29 96.7 55 ± 10 43 – 91
7.94 2011 30 29 96.7 41 ± 12 16 – 67

III 0.96 2009 19 12 63.2 133 ± 33 76 – 222
0.96 2010 12 7 58.3 134 ± 14 117 – 155
1.21 2011 16 14 87.5 149 ± 23 119 – 183
3.39 2009 29 26 89.7 86 ± 10 70 – 107
4.90 2011 29 27 93.1 65 ± 11 52 – 106
7.60 2011 29 24 82.8 51 ± 10 17 – 70

IV 0.92 2009 12 9 75.0 148 ± 13 133 – 165
1.01 2010 6 5 83.3 149 ± 32 120 – 200
1.15 2011 14 5 35.7 170 ± 19 151 – 201
3.33 2009 26 13 50.0 123 ± 41 59 – 192
4.93 2011 27 26 96.3 72 ± 16 30 – 108
7.72 2011 24 21 87.5 68 ± 21 52 – 130

V 0.98 2009 9 5 55.6 189 ± 50 157 – 276
1.15 2010 5 5 100.0 179 ± 27 143 – 203
3.20 2009 13 11 84.6 141 ± 22 113 – 194
4.98 2011 26 19 73.1 76 ± 14 34 – 100
8.45 2011 21 13 61.9 87 ± 30 52 – 145

VI 0.95 2009 5 4 80.0 166 ± 9 155 – 174
1.19 2010 3 2 66.7 168 154 – 181
3.55 2009 11 7 63.6 125 ± 37 72 – 178
5.05 2011 19 4 21.1 97 ± 16 75 – 113
8.39 2011 13 10 76.9 73 ± 15 59 – 109

VII 1.06 2009 4 2 50.0 214 210 – 218
3.17 2009 7 3 42.9 167 ± 30 134 – 193
5.05 2011 4 1 25.0 124
8.14 2011 10 4 40.0 83 ± 2 81 – 85

Instar
N Number of days

Mean±SD RangeYear cohort
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The intermoult periods (days) of crabs decreased with increasing temperature (Fig. 5.1.3); how-

ever, they tended to be longer in some individuals of instars IV and V reared at 8°C compared with 

crabs at 5°C. Estimates of thermal constants (K) and threshold temperatures (α) were statistically sig-

nificant in all instars (Table 5.1.3). Thermal constants tended to increase and threshold temperatures 

tended to decrease with increasing mean PreCW of each instar (Fig. 5.1.4). Their relationships were 

described by asymptotic regression curves with significant parameter estimates (Table 5.1.4). The as-

 
Figure 5.1.1. Survival rates of juvenile snow crabs Chionoecetes opilio during each crab instar: 
A, instar I; B, instar II; C, instar III; D, instar IV; E, instar V; F, instar VI; G, instar VII. Differ-
ent lower case letters within the same panel indicates statistically significant differences be-
tween temperatures (Tukey’s HSD, P < 0.05). 
 
 
Table 5.1.2. Results of the general linear model of the dependence of growth indices (PostCW, 
postmoult carapace width; GI, growth increment; GR, growth rate) of juvenile snow crabs Chi-
onoecetes opilio on premoult carapace width (PreCW) and water temperature (WT). 
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WT 3 5.3 15.68 0.000 3 5.3 15.55 0.000 3 14.6 14.59 0.000
PrCW × WT 3 0.9 2.55 0.055 3 0.9 2.52 0.057 3 0.1 0.13 0.942
Residuals 502 0.3 502 0.3 502 72.2
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ymptotes from these equations were 1573 day-degrees for the thermal constant and −4.7°C for the 

threshold temperature. 

 

5.1.5 Discussion 

This is the first study of the growth of juvenile snow crabs in the laboratory over the relatively 
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Figure 5.1.2. Relationships between 
premoult carapace widths and 
postmoult carapace widths (A), 
growth increment (B), and growth 
rate (C) of juvenile snow crabs 
Chionoecetes opilio. The straight 
lines were drawn from regression 
analyses. Differences in growth 
indices between temperature groups 
(P < 0.05) are represented by a dif-
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the temperature in the table. 
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wide range of temperature of 1–8°C. We demonstrate that temperature greatly affects their growth and 

develop a growth model based on the number of day-degrees in the intermoult periods and the size of 

the animals. 

Foyle et al. (1989) examined the bioenergetics of snow crabs in the laboratory by measuring ox-

ygen uptake, activity, and food consumption in morphologically mature males (85–95 mm CW) at 3°C 

increments between 0°C and 18°C. They demonstrated that: 1) food consumption increased up to 6°C; 

2) metabolic costs increased with temperature and exceeded caloric intake above 7°C; and 3) growth 

becomes slightly negative below 1°C. Furthermore, a comparison of the curves for digestible energy 

and total metabolic cost suggested that growth is optimum at around 4°C. This is consistent with the 

present observation that the growth indices were highest in snow-crab juveniles reared at 5°C and the 

intermoult periods of some individuals were extended at 8°C compared with crabs at 5°C. 

Field studies have estimated the mean CW of each instar of juvenile snow crabs using 

size-frequency analysis and have demonstrated that CWs are similar in snow crab populations in the 

 
Figure 5.1.3. Relationships between mean water temperature and the intermoult period of each 
instar of juvenile snow crabs Chionoecetes opilio: A, instar I; B, instar II; C, instar III; D, instar 
IV; E, instar V; F, instar VI; G, instar VII. The curves were drawn from the equation of heat 
summation theory (see Table 5.1.3) applied to the relationship between the two variables. 
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Gulf of St. Lawrence, the eastern Bering Sea, and the Sea of Japan (Table 5.1.5) (Orensanz et al., 

2007; Ernst et al., 2012). However, the mean CW values at each instar of laboratory-cultured snow 

crab juveniles were much smaller than those of wild crabs (Table 5.1.5) (Kobayashi, 1989; 

Saint-Marie &Lafrance, 2002). This phenomenon has been reported in other decapod crustaceans 

(Kurata, 1962; Hartnoll, 1982) and may be a laboratory artefact that arises from a number of sources, 

such as diet, the limited size of the culture containers, and water quality (Stevens, 2012). 

The intermoult periods of juvenile snow crabs increased with decreasing temperature, as previ-

ously reported for many decapod crustaceans (Kurata, 1962; Hartnoll, 1982). Heat summation theory 

equations were used to fit the relationship between temperature and intermoult period and estimated 

the thermal constants and threshold temperatures for snow crab juveniles. The estimates of the thresh-

old temperature for development decreased asymptotically from −1.29°C at instar I to −4.87°C at in-

star VI and −4.02°C at instar VII. Yamamoto et al. (2014) estimated the threshold temperatures for 

larval development at 0.63°C from the first to second zoeal stages, −0.02°C from the first zoeal to 

megalopal stages, and −2.24°C during the megalopal stage. Therefore, the threshold temperatures for 

development of the snow crab decrease from the pelagic zoeal stages through megalopal and early 

Table 5.1.4. Estimates of parameters (with 
SEs) of asymptotic equations (K or α = 
a(1 − (1 / exp(bPreCW)))) between mean 
premoult carapace widths (PreCW) and 
thermal constants (K) or threshold tem-
peratures (α) from the theory of heat 
summation equations (see Table 5.1.3) for 
juvenile snow crabs Chionoecetes opilio. 

 
H0, K or α = 0; ∗P< 0.05. 

K 1573.00 (154.5)* 0.07 (0.01)*
α –4.71 (0.70)* 0.14 (0.05)*

Response
variable a b

Estimate (SE)

Table 5.1.3. Estimates of parameters (with SEs) 
of the heat summation theoryequation (D = K / (T 
− α)) expressing the relationship between mean 
temperature (T) and the intermoult period in each 
crab instar (number of days, D) of juvenile snow 
crabs Chionoecetes opilio. K and α are the 
‘thermal constant’ and ‘threshold temperature 
constant’ for development, respectively. 

 
H0, K or α = 0; ∗P< 0.05. 

Instar n
I 128 276.07 (15.93)* –1.29 (0.14)*
II 115 429.06 (18.99)* –2.54 (0.19)*
III 110 511.44 (33.06)* –2.63 (0.28)*
IV 79 726.62 (74.77)* –3.68 (0.58)*
V 53 801.73 (98.33)* –3.28 (0.67)*
VI 27 996.53 (133.14)* –4.87 (0.95)*
VII 10 1115.32 (177.68)* –4.02 (0.10)*

Estimate (SE)
αK
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benthic crab stages, suggesting that snow crabs strengthen their lower temperature tolerance towards 
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Figure 5.1.4. Relationships between 
mean premoult carapace width and 
the thermal constant (A) and thresh-
old temperature (B) in the heat sum-
mation equations (see Table 5.1.3) es-
timated for juvenile snow crabs Chi-
onoecetes opilio. The curves were 
drawn from the asymptotic equations 
(see Table 5.1.4) applied to the rela-
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Figure 5.1.5. Relationships between 
premoult carapace width and inter-
moult period (A) and age represented 
by cumulative months after moulting 
to instar I (B) at −1°C to 4°C calcu-
lated from the asymptotic equations 
between premoult carapace width and 
thermal constant or threshold temper-
ature for juvenile snow crabs Chi-
onoecetes opilio (see Table 5.1.4). 
Roman numerals (I–VIII) indicate in-
star nos. Ages at instars I–VIII esti-
mated for wild populations in the 
north-western Gulf of Saint Lawrence 
(Alunno-Bruscia and Sainte-Marie, 
1998) are also shown. 
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their cold-water benthic life. This may explain the relatively higher survival rates of instar-V crabs 

reared at 1°C. However, it should be noted that some threshold temperature estimates fell below the 

sea-water freezing temperature (−1.8°C). Therefore, threshold temperature estimates for larvae and 

juveniles of the snow crab might be considered the relevant indices to represent thermal adaptation. 

This hypothesis should be evaluated by future physiological investigations of low-temperature adapta-

tion by snow crab juveniles. 

It has been documented that the size at terminal moult is positively correlated with habitat tem-

perature in snow-crab populations (Somerton, 1981; Alno-Bruscia & Sainte-Marie, 1998; Zheng et al., 

2001; Orensanz et al., 2007; Burmeister & Sainte-Marie, 2010; Dawe et al., 2012). It was hypothe-

sised that this relationship depends on the assumptions that: 1) moult increment is largely temperature 

independent (Burmeister & Sainte-Marie, 2010; Sainte-Marie et al. 2010); 2) intermoult period de-

creases with increasing temperature during the immature phase (Orensanz et al., 2007; Burmeister & 

Sainte-Marie, 2010); and 3) there exists an age-related trigger for the pre-pubertal and terminal moults 

(Orensanz et al., 2007; Burmeister & Sainte-Marie, 2010), coupled with the variable frequency of 

skip-moulting, which is directly related to size and inversely related to temperature (Dawe et al. 2012). 

Our experimental results support assumption #1 for the temperature-independent moult increment 

within 1–3°C and assumption #2 for the temperature-dependent intermoult period. 

Our asymptotic equations between PreCW, and thermal constant and threshold temperature allow 

calculation of the intermoult period at each instar at designated temperatures. Thermal constant 

(day-°C) and threshold temperature (°C) can be calculated by substituting the CW value of the instar 

into the equations; then, intermoult period (days) of the instar can be calculated by dividing the ther-

mal constant by the effective temperature for development as the value obtained by subtracting the 

threshold temperature from the designated temperature. Using these calculated intermoult periods at 

the mean CW of instars I–VIII of juvenile female snow crabs in the north-western Gulf of Saint Law-

rence reported by Alunno-Bruscia & Sainte-Marie (1998), we obtained contour lines expressing the 

relationship between PreCW and the intermoult period in months at temperatures of −1°C to 4°C, as 
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shown in Fig. 5.1. 5A. An inverse relationship between mean CW and intermoult period was observed 

during instars I–IV at −1°C, suggesting that early benthic juvenile snow crabs could achieve faster 

growth rates at habitats with temperatures above 0°C. Our results are in agreement with field observa-

tions showing that juvenile snow crabs of instars I–IV are scarce in the core of the cold intermediate 

layer with temperatures below 0°C but are present immediately above and below this layer with tem-

peratures of 0–1°C in the north-western Gulf of Saint Lawrence (Dionne et al., 2003). 

In the Gulf of Saint Lawrence, the eastern Bering Sea, and the Sea of Japan, the ages of snow 

crab populations have been estimated using size-frequency distributions from periodic field sampling 

(Ito, 1970, 1984; Saint-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998; Comeau et al., 1998; 

Ernst et al., 2012). In the Gulf of Saint Lawrence and the eastern Bering Sea, the intermoult period of 

snow crabs was estimated at 5–7 months for instars I-V and 1 year from instar VI (Saint-Marie et al., 

1995; Alunno-Bruscia & Sainte-Marie, 1998; Comeau et al., 1998; Ernst et al., 2012). Our calculated 

intermoult periods of instars I–V at 0–1°C (4–8 months) and from instar VI at −1–0°C (9–13 months) 

approximate the estimates of intermoult period in the wild populations. For example, the ages at in-

stars I–VIII estimated in the north-western Gulf of Saint Lawrence population (Alunno-Bruscia & 

Sainte-Marie, 1998) were similar to our age estimates of crabs grown at 0–1°C (Fig. 5.1. 5B). Dionne 

et al. (2003) reported that snow crabs of instars I–VIII were associated with temperatures between 0–

2.0°C and never occurred on bottoms warmer than 3.3°C in the north-western Gulf of Saint Lawrence. 

In the Sea of Japan, Ito (1970, 1984) estimated intermoult periods of 1–2 months and 2–3 months for 

instars I and II–III, respectively, a total duration of 1 year from instar I to IV, a 6-month intermoult for 

instar V, and an annual moult from instar VI. Ishikawa Prefectural Fisheries Experimental Station 

(1981, 1982) investigated the distribution of snow-crab juveniles in the central Sea of Japan and doc-

umented that instars I and II were associated with larger temperature ranges of 0–10°C and 0–8°C, 

respectively, and that instars III–IV were mainly found within a narrower temperature range of 0–2°C. 

Moreover, Yosho & Hayashi (1994) reported that juvenile snow crabs > 10 mm carapace length, i.e., 

instar III > 8 mm CW; calculated from Ito (1984), lives at a temperature range of 0.3–0.9°C. The in-
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termoult periods of instar I at 0–10°C and instar II at 0–8°C were estimated as 1–6 months (mean, 2 

months) and 1–6 months (mean, 3 months), respectively and for instars III–VIII reared at 0–1°C, they 

tended to increase from about 5–6 to 8–10 months. Thus, the intermoult periods estimated by Ito (1970, 

1984) for the wild population in the Sea of Japan also correspond to the estimates of intermoult dura-

tion inferred from their habitat temperatures based on our growth model. Consequently, our 

day-degree-based growth model approximates the growth trend of wild snow-crab populations in the 

north-western Gulf of Saint Lawrence and the Sea of Japan. 

Age estimations of the snow crabs at individual and population levels have been performed using 

lipofuscin assays (Allain et al., 2011a, b), radiometry of the exoskeleton (Nevissi et al., 1996), num-

bers of growth bands in the eyestalks (Kilada et al., 2012), and size-frequency distributions with a pe-

riodic sampling from wild populations. Further information on habitat temperatures of snow crabs, and 

changes with growth, could be used with our day-degree-based growth model to evaluate the feasibil-

ity of those methods of age estimation. 
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5.2 Growth and moulting of wild-born immature snow crabs, Chionoecetes 

opilio, in the laboratory 

 

5.2.1 Summary 

Growth and moulting of wild-born immature snow crabs Chionoecetes opilio were investigated 

by laboratory culture experiments. Crabs with 16.2–42.9 mm carapace width caught from the Sea of 

Japan were cultured at a temperature of their natural habitat (approximately 1°C). The growth indices 

(size increments at moulting in mm and in % of premoult carapace width) and intermoult period were 

significantly affected by premoult carapace width, but sex did not affect these variables. Furthermore, 

we demonstrated that premoult carapace width and days after moulting significantly affected moulting 

probability and we developed a moulting probability model based on these variables. From this model, 

the number of days of intermoult periods when moults occurred in 50% of crabs of instars VI, VII, and 

VIII was estimated at 234, 284, and 346 days, respectively. 

 

5.2.2 Introduction 

The snow crab Chionoecetes opilio Fabricius, 1788 (Brachyura, Majoidea) is widely distributed 

on muddy and sandy mud at depths between 3 m and 1400 m in cold waters off Alaska, Canada, Rus-

sia, Greenland, Japan, and Korea and is an important fishery resource in these regions (Yosho & 

Hayashi, 1994; Lovrich et al., 1995; Jadamec et al., 1999; Dawe & Colbourne, 2002; Burmeister & 

Sainte-Marie, 2010). Larvae of this species hatch in spring and metamorphose to the benthic crab 

stage after spending several months of pelagic life in the oceanic water column as two zoeal stages and 

one megalopal stage (Yamamoto et al., 2014). After settlement on the sea bed, snow crabs change their 

spatial distribution seasonally according to reproductive and growth status (Kon, 1980; Lovrich et al., 

1995; Comeau et al., 1998; Dawe et al., 2012). Snow crabs undergo a terminal moult to reach mor-

phologically mature stages exhibiting secondary sexual characteristics: male snow crabs with large 

chelae, and female snow crabs with a broad abdomen (Ito, 1957; Conan & Comeau, 1986; Yamasaki & 
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Kuwahara, 1991; Alunno-Bruscia & Saint-Marie, 1998). Analysis of periodic changes of carapace size 

distributions in field collections have been used to estimate the approximate age of snow crabs from 

the sizes of the instars at the moult, and the annual moulting frequency (e.g., Ito, 1970, 1984; 

Saint-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998; Comeau et al., 1998).  

Estimation of the age and growth of a commercially harvested species provides information of 

life history traits that are important for fisheries management, e.g., lifespan, age at recruitment, age at 

first capture, age at maturity, and cohort identification. These parameters are important for modelling 

population dynamics for the development of an appropriate stock management strategy toward sus-

tainable fisheries (Hoggarth et al., 2006; Chang et al., 2012). However, crustaceans grow by moulting 

and they generally lack physical structures suitable for age estimation (but see Kilada et al., 2012). 

Therefore, captive rearing is an effective method for estimation of age and growth of crustaceans. The 

growth and intermoult period of the snow crab were studied by Kobayashi (1989) and Yamamoto et al. 

(2015a) using laboratory-born juvenile crabs. However, the mean carapace width (CW) values of each 

instar of laboratory-cultured snow crab juveniles were much smaller than those of wild crabs (Koba-

yashi, 1989; Yamamoto et al., 2015a). Moreover, Kobayashi (1989) reared crabs from instar I to instar 

XI (mature) at 3 and 8 °C, temperatures that are higher than that of the natural habitat in the Sea of 

Japan (Yosho & Hayashi, 1994). Yamamoto et al. (2015a) reared crabs from instar I to instar VIII at 1–

8°C and estimated the effect of temperature on the snow crab intermoult period, but the intermoult 

periods after instar VII remained unclear. Growth with moulting of laboratory-reared snow crab was 

also studied by Kon (1980), Moriyasu et al. (1987), Sainte-Marie et al. (1995), Alunno-Bruscia & 

Sainte-Marie (1998), and Hebert et al. (2002), using crabs captured from the wild, but the intermoult 

period was studied by Kon (1980) only. Kon (1980) attempted to elucidate the intermoult period of 

snow crabs, but was unsuccessful because crabs did not moult more than twice.  

This study aimed to elucidate the growth and intermoult period of immature snow crabs through 

laboratory culture experiments, using wild captured crabs. Moreover, we applied a generalized (bino-

mial) linear mixed-effect model (GLMM) to generate the relationship between carapace widths and 
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moulting probability. 

 

5.2.3 Material and methods 

5.2.3.1 Crab source and rearing experiments 

A total of 61 immature snow crabs were caught with a bottom otter trawl on June 2–11 and 30, 

2011 in the Sea of Japan off the coasts from Ishikawa to Kyoto Prefectures, Japan (Table 5.2.1). The 

numbers of female and male snow crabs were 30 (16.2–42.9 mm CW) and 31 (16.9–36.3 mm CW), 

respectively. On the vessel, crabs were kept in cooled boxes where temperatures were maintained at 

approximately 1°C by immersing frozen seawater and plastic bottles with frozen freshwater in the 

boxes. Each box was weakly aerated. Crabs were transferred to the Obama Laboratory, Japan Sea Na-

tional Fisheries Research Institute, Fisheries Research Agency, Fukui Prefecture on June 13 and 30, 

2011. The culture experiments were conducted from June 13 and 30, 2011 until December 28, 2012. 

Crabs were individually housed and cultured using 5-L (15 × 26 × 13 cm) and 27-L (40 × 26 × 26 

cm) box-shaped plastic mesh cages, and 100-L (46 × 78 × 28 cm) fibreglass-reinforced plastic tanks, 

according to the growth stage. The cages were placed in 600-L (2.0 × 1.0 × 0.3 m) rectangular fibre-

glass-reinforced plastic tanks in which water temperatures were controlled at 1°C using a circulating 

cooling system. The mean temperature (± standard deviation (SD)) during the culture experiment was 

1.1 (±0.1) °C. Rearing temperature was selected based on the crab’s thermal distribution in the Sea of 

Japan (Yosho & Hayashi, 1994). The water flow rate was regulated at 5 L min−1 in 100-L tanks and 30 

L min−1 in 600-L tanks. Water temperatures were recorded every 2 h using temperature-recording log-

gers (HOBO Water Temp Pro v2, Onset Computer Corp., Bourne, MA, USA). Tanks were covered 

with Styrofoam boards to stabilise the water temperatures. Crabs were fed ad libitum three times per 

week with thawed Antarctic krill Euphausia superba Dana, 1850 (body length approximately 50 mm) 

at one to four individuals per crab and thawed Japanese littleneck Ruditapes philippinarum Adams & 

Reeve, 1850 (wet weight approximately 5 g) at one individual per crab. The given number of Antarctic 

krill was increased with crab growth. Before each feeding, uneaten foods, faeces, and grime were re-
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moved from the culture cages and tanks by siphoning. Survival and moulting of cultured crabs were 

checked every 1–3 days, and the intermoult period of each crab was determined. If crabs had died 

during moulting, they were treated as the moulted individuals (the occurrence of these crabs was 4.5% 

of all moulting events). The CW of each intact crab was measured to the nearest 0.1 mm using a digi-

tal calliper (CD-S20C, Mitutoyo Corp., Kanagawa, Japan). Measurements taken prior to moulting 

were termed premoult CW (PreCW), and those taken after moulting were termed postmoult CW 

(PostCW). 

5.2.3.2 Data analysis 

Statistical analyses were performed with the R language (R3.1.3; R Core Team, 2015) with a 5% 

significance level. 

PostCW, moult increment (MI = PostCW − PreCW) in mm, and proportional growth rate (GR = 

MI × PreCW−1) have been used as representative of the growth of crustaceans (Chang et al., 2012; 

Stevens, 2012). We used a general linear model (GLM) (McCullagh & Nelder, 1989; Everitt & Ho-

thorn, 2009) to evaluate the effect of PreCW and sex on the growth or intermoult period of immature 

snow crabs. In these analyses, three indices of crab growth or intermoult period were used as response 

variables, and PreCW (continuous variable) and sex (categorical variable), as well as the interaction 

between PreCW and sex were explanatory variables. The GLM analysis was performed with the lm 

function in R.  

The probability of moulting was modelled according to the method of Durán et al. (2013) using a 

GLMM with a logit link function implemented in the lme4 package (Bates et al., 2014) in R. Succes-

Table 5.2.1. Number of crabs cultured, initial carapace width and survival number in successive 
moult times of wild-captured immature snow crab Chionoecetes opilio (Fabricius, 1788). 

 
CW, carapace width; SD standard deviation. 

Sex N 1 2 3 4
Male 31 24.1 ± 6.3 16.9 – 36.3 27 10 2 0
Female 30 24.1 ± 6.2 16.2 – 42.9 29 17 4 0

CW (mm)
Mean±SD Range

Survival number in successive moult times
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sive measurements from the same crab were considered non-independent repeated measurements, and 

the effect of the individual crab was considered a random factor. GLMM was specified as follows: 

Moult/nonij ~binomial �pijk, 1�  

Logit �pijk�= β0+β1DAMijk+β2PreCWij+Crab Effectj  

Crab Effectj~normal(0,  σ),  

where pijk is the probability of moulting after k days from the last moult. The ij ranges from 1 to 

33 intermoult period values (j = 27 crabs, i = 1 to 2 intermoult periods). DAM denotes the days after 

last moult. Crab Effect is assumed to be normally distributed with zero mean and standard deviation σ. 

In GLMM analysis, sex was not considered because there was no statistically significant difference 

between sexes in the intermoult period analysis (see Results section). 

 

5.2.4 Results 

Survival numbers in successive moult times of each sex are summarised in Table 5.2.1. Most 

crabs moulted once and nearly half the crabs twice, but only 10% of crabs moulted three times, and no 

crabs moulted four times. At the end of the experiment, 10 male crabs and 12 female crabs were alive. 

PreCW significantly affected all growth indices but sex did not affect growth (Table 5.2.2). 

Moreover, the interaction between PreCW and sex was not significant (Table 5.2.2); thus, the regres-

sion lines between PreCW and growth indices of crabs had similar slopes regardless of sex (Fig. 

5.2.1). 

The intermoult period (days) of crabs was highly variable, ranging from 129 days to 392 days. 

The intermoult periods increased significantly with increasing PreCW in both sexes (Fig. 5.2.1), and 

there was no statistically significant difference between sexes (Table 5.2.2). Estimates of the moult-

ingprobability as a function of the DAM experienced by a crab and the PreCW in the GLMM showed 

that both effects are significant in the sense that the 95% credibility intervals do not include zero (Ta-

ble 5.2.3). In this model, between-crab variability was important, as indicated by the highest value of 
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Figure 5.2.1. Relationships between premoult and postmoult carapace 
widths (A), growth increment (B), growth rate (C), and intermoult pe-
riod (D) of immature Chionoecetes opilio (Fabricius, 1788). The 
straight lines were drawn from regression analyses. 

 

 
Figure 5.2.2. Changes in the growth rate with premoult carapace width 
in male (A) and female (B) of the snow crab Chionoecetes opilio 
(Fabricius, 1788) in the current and previous studies. Culturing crabs 
were captured from the Sea of Japan (this study; Kon, 1980), Baie des 
Chaleurs in the Gulf of Saint Lawrence (Moriyasu et al., 1987; Hebert 
et al., 2002), and Baie Sainte-Marguerite in the Gulf of Saint Lawrence 
(Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998). The 
culturing temperatures are shown in the legend. Sainte-Marie et al. 
(1995) showed a breakpoint in the regression. Hebert et al. (2002) 
showed the regressions for immature and adolescent crabs. 
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5.2.5 Discussion 

In this study, snow crabs with 16.2–42.9 mm CW were reared and the growth of crabs with 16.2–

43.1 mm PreCW and the intermoult period of crabs with 16.2–33.9 mm PreCW were determined. We 

found that growth and intermoult period were significantly affected by PreCW, but sex was not af-

fected by these variables. Furthermore, we demonstrated that PreCW and DAM significantly affected 

Table 5.2.3. Parameter estimates (median and 95% credibility intervals) 
of the moulting probability model of immature snow crab Chionoecetes 
opilio (Fabricius, 1788). 

 
PreCW, premoult carapace width; DAM, days after last moult 

 
 

 
Figure 5.2.3. Moulting probability for progressively larger Chionoecetes opilio (Fabricius, 
1788), in instar VI (carapace width 19.5 mm), instar VII (carapace width 27.5 mm), and in-
star VIII (carapace width 37.5 mm), drawn from the generalized (binomial) linear 
mixed-effect model (see Table 5.2.3). Carapace widths of each instar are from wild snow 
crabs reported by Ito (1970). The vertical dotted lines indicate the days for half moulting 
probability. 

Parameter 2.5% Median 97.5% p
β0 –23.479 –21.211 –16.765 <0.000
β1 (DAM) 0.180 0.189 0.205 <0.000
β2 (PreCW) –1.248 –1.174 –1.028 <0.000
σ Crab effect 70.418 73.340 76.262
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moulting probability, and we developed a moulting probability model based on these variables. 

There have been several studies that conducted captive rearing experiments of immature snow 

crabs to reveal their growth, using crabs captured from the natural habitat: off Wakasa Bay in the Sea 

of Japan (Kon, 1980), Baie des Chaleurs in the Gulf of Saint Lawrence (Moriyasu et al., 1987; Hebert 

et al., 2002), and Baie Sainte-Marguerite in the Gulf of Saint Lawrence (Sainte-Marie et al., 1995; 

Alunno-Bruscia & Sainte-Marie, 1998). Moreover, laboratory-born juvenile snow crabs were used for 

captive rearing experiments to determine the growth and intermoult period (Kobayashi, 1989; Yama-

moto et al., 2015a). Like the current study, previous studies suggested that CW, growth rate (GR), and 

intermoult period of immature snow crabs are similar between the sexes under laboratory conditions 

(Kon, 1980; Moriyasu et al., 1987; Kobayashi, 1989; Alunno-Bruscia & Sainte-Marie, 1998). Here, we 

compared the relationships between PreCW and GR of captive wild-born snow crabs from different 

studies (Fig. 5.2.2). GR of the immature crabs in the Gulf of Saint Lawrence were relatively higher 

than those of the Sea of Japan, and this tendency was observed in both sexes. However, this difference 

might not be attributed to the geographical variation, because, field studies have estimated the mean 

CW of each juvenile snow crab instar using size-frequency analysis and have demonstrated that CWs 

are similar in snow crab populations in the Gulf of Saint Lawrence, the eastern Bering Sea, and the 

Sea of Japan (Comeau et al., 1998; Orensanz et al., 2007; Ernst et al., 2012). On the other hand, it has 

been reported that the mean CW values of each laboratory-cultured snow crab instar (Kobayashi, 

1989; Sainte-Marie & Lafrance, 2002; Yamamoto et al., 2015a) and also other decapod crustaceans 

(Kurata, 1962; Hartnoll, 1982) were smaller than those of wild crabs. Stevens (2012) suggested that 

this phenomenon may be a laboratory artefact that arises from a number of sources, such as diet, the 

limited size of the culture containers, and water quality. Therefore, the lower GR in the current result 

might be affected by these factors. 

The primary subjects in previous studies (Moriyasu et al., 1987; Sainte-Marie et al., 1995; Alun-

no-Bruscia & Sainte-Marie, 1998; Hebert et al., 2002) that collected crabs from their natural habitat 

and reared them in the laboratory were to mainly understand the moulting season and the growth at 
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moulting. Kon (1980), however, reared 341 immature crabs to determine the intermoult period, but 

crabs did not moult more than twice. Therefore, the intermoult period of captive wild immature snow 

crabs has not been determined. However, Kobayashi (1989) and Yamamoto et al. (2015a) reared la-

boratory-born snow crabs from instar I to XI and instar I to VIII, and showed intermoult periods from 

instar I to X and instar I to VII, respectively. Kobayashi (1989) reared crabs at 3 and 8°C, but these 

temperatures are higher than that of the natural habitat in the Sea of Japan. Yosho & Hayashi (1994) 

reported that juvenile snow crabs of >10 mm carapace length, i.e. instar III >8 mm CW (calculated 

from Ito (1984)), live at a temperature range of 0.3–0.9°C. Yamamoto et al. (2015a) reared crabs at 1–

8°C and estimated the effect of temperature on snow crab intermoult period, but the intermoult periods 

after instar VII were unclear. Ito (1970) estimated the modal value of CW in each instar as follows: 

instar VI, 19–20 mm; instar VII, 27–28 mm; and instar VIII, 37–38 mm. These values of CWs were 

assigned as 19.5 mm, 27.5 mm, and 37.5 mm to the moulting probability growth model in the current 

study (Table 5.2.3); then, the number of days of intermoult periods when moults occur in 50% of crabs 

in each instar increases with growth; 234 days (instar VI), 284 days (instar VII), and 346 days (instar 

VIII) (Fig. 5.2.3). These values of intermoult periods of the instars VI (PreCW 19.5 mm) and VII 

(PreCW 27.5 mm) crabs were relatively longer than those of the instars VI (PreCW 13.9 mm) and VII 

(PreCW 17.9 mm) laboratory-born crabs cultured at ~1°C by Yamamoto et al. (2015a). Yamamoto et 

al. (2015a) developed the growth model of the snow crab based on the relationships between PreCW 

(<19 mm) and thermal constant or threshold temperature in the heat summation theory equations. 

From this growth model, the intermoult period at PreCW 19.5 mm (instar VI in the current study) 

could be estimated at 258 days. This calculated value is similar to the estimated intermoult period (234 

days) for instar VI crabs in current study. Thus, the intermoult period of the snow crab principally de-

pends on the PreCW. 

The intermoult periods of snow crab after instar VI were estimated as once per year by periodic 

field sampling in the Sea of Japan (Ito, 1970) and Gulf of Saint Lawrence (Sainte-Marie et al., 1995; 

Alunno-Bruscia & Sainte-Marie, 1998; Hebert et al., 2002). To clarify the difference in the intermoult 
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period between wild population and cultured crabs, further investigation of the environment of their 

habitat and further study of the effect of various factors on the intermoult period of snow crabs is 

needed. Understanding the factors influencing gaps of growth between wild and captive crabs would 

provide useful biological and environmental information for better understanding the causes of fluctu-

ations of snow crab populations in the wild. 



 

 
 

 

 

 

 

Chapter 6
 

CONCLUDING REMARKS 
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6.1 Conclusion 

It is important to understand the life history of a species to understand stock dynamics and man-

age stocks. Captive rearing experiments were conducted under laboratory conditions to better under-

stand early snow crab life history. The following results were shown in the current study. 

The effects of water temperature on snow crab larval survival and development were investigated 

in Chapter 2.1. The results show that higher survival rates were observed at 5–14°C from hatching to 

second-stage zoeae, 5–11°C from hatching to megalopae, and 5–11°C from megalopae to first-stage 

crabs. Water temperature greatly influenced snow crab larval developmental rate. The threshold tem-

peratures estimated from the heat summation theory equations for larval development were −2.24 to 

0.63°C; they decreased as the larvae developed and adapted to deeper vertical distributions in the wa-

ter column at later larval stages. 

The effects of salinity on snow crab larval survival and development were investigated in Chapter 

2.2. As results, higher survival rates were observed at 20–38 from hatching to second-stage zoeae, 26–

38 from hatching to megalopae, and 28–36 from megalopae to first-stage crabs. The mean durations 

from hatching to the second zoeal and megalopal stages and from the megalopal to the first-stage crab 

were shortest at salinities of 30, 30, and 32, respectively, and increased progressively at salinities 

above and below these values. 

Food consumption patterns of snow crab megalopae were examined using Artemia nauplii in 

Chapter 3. The results show that the mean total number and total weight of Artemia consumed during 

the megalopal stage were 1920 individuals and 5.2 mg, respectively, and the food consumption rate 

decreased after the beginning of the late premoult stage. The food requirement of snow crab megalo-

pae was estimated to be 190% of dry body weight of the first instar crab, and a positive correlation 

was detected between the number of Artemia consumed and crab size. 

The moulting cycle and time course changes in snow crab larval body density were examined in 

laboratory-reared specimens in Chapter 4. The moulting cycle was documented photographically to 

characterize the stages: A–B (postmoult), C (intermoult), D (premoult), and E (ecdysis). The body 
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density of larval snow crabs was lowest just after moulting, increased dramatically during stage C, and 

then increased gradually to reach a plateau at 1.0897–1.0931 g cm–3 during stage D. The snow crab 

larvae had a density greater than that of seawater during the entire larval period. 

The effects of water temperature on growth of instar I–VII snow crabs were investigated in 

Chapter 5.1. The results show that the growth indices, including postmoult carapace width, increased 

during the moult stage, and growth rate was significantly higher in crabs reared at 5°C than in those 

reared at other temperatures. The thermal constant and threshold temperature estimated from the heat 

summation theory equations for crab development tended to increase and decrease with increasing 

mean premoult carapace width of each instar, reaching asymptotes of 1,573 day-degrees and −4.7°C, 

respectively. 

Growth and moulting of wild-born immature snow crabs (carapace width, 16.2–42.9 mm) were 

assessed in the laboratory in Chapter 5.2. As results, growth and the intermoult period were signifi-

cantly affected by premoult carapace width, but not sex. Premoult carapace width and days after 

moulting significantly affected the probability of moulting, and a moulting probability model based on 

these variables was developed. The model revealed that the numbers of days during the intermoult pe-

riods when moults occurred in 50% of instar VI, VII, and VIII crabs were 234, 284, and 346 days, re-

spectively. 

These results provide important information for inferring snow crab larval distribution, transport, 

and survival and for estimating growth and the intermoult periods in the benthic stage in their natural 

habitat. Furthermore, these results will help in understanding the potential effects of climate change on 

the snow crab population. These results could be applied to snow crab larval and juvenile culture un-

der optimal conditions. 

 

6.2 Snow crab life history cycle in the Sea of Japan 
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The lifecycle of the snow crab in the Sea of Japan is discussed in this sub-chapter with reference 

to snow crab ecological and environmental information on their natural habitat, such as temperature, 

salinity, and water density. 

The snow crab hatching season occurs during February–April (Ito, 1963; Fukataki, 1969; Kon et 

al., 2003). Seasonal and horizontal larval distributions in the Sea of Japan have been reported by Fu-

kataki (1969) off Honshu, but he only investigated surface water. Seasonal and vertical larval zoeae 

and megalopae distributions have been reported by Kon et al. (2003) from mid-March to early June in 

waters off Fukui Prefecture, and Honda (2013) reported those for megalopae from the end of May to 

early July in the waters off Niigata and Shimane Prefectures. Fukataki (1969) and Honda (2013) 

mainly found snow crab larvae east of 133°E and south of 38°N in the middle and eastern parts of the 

Sea of Japan. Data on snow crab vertical distributions based on temperature and salinity at 132, 135.5, 

and 138.5°E were published on the website after 2003 as the “Japan Sea Data Assimilation Experiment 

ver. 2” (JADE 2, http://jade2.dc.affrc.go.jp/jade2/). Temperature, salinity, and specific gravity data for 

36, 37, and 38°N at 135.5°E from January to July 2014 were referred to as a representative location to 

estimate the general larval development trend in the Sea of Japan and are illustrated in Fig. 6.2.1, 6.2.2, 

and 6.2.3. The specific gravities were calculated from Millero et al. (1980). 

Kon et al. (2003) found that first zoeae, second zoeae, and megalopae occur mainly in the 0–100, 

0–150, and 50–200 m strata, respectively. Honda (2013) reported that megalopae occur mainly in the 

100–300 m stratum. Newly hatched first-stage zoeae might be exposed to a temperature range of 8–

12°C in the 0–100 m stratum in the middle of the hatching season in March (Fig. 6.2.1). Second zoeae 

are also exposed to 8–12°C in the 0–150 m stratum. The duration of the zoeal stage was estimated to 

be 37–66 days, based on the heat summation theory equation (Table 2.1.3). Thus, zoeae might meta-

morphose to megalopae during April and May. Megalopae could be exposed to a wider range of tem-

peratures than those of zoeae, such as 2–14°C in the 50–300 m stratum (Fig. 6.2.1). Thus, the duration 

of the megalopal period was estimated to be 26–98 days based on the heat summation theory equation, 

and megalopal settlement and moulting into crabs on the bottom of the sea would occur 2–5 months 
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after hatching. Salinity is maintained at a fairly constant 34.0–34.5 at this time, regardless of season 

and depth (Fig. 6.2.2). Thus, snow crab larval survival and development were not affected by salinity 

(Tables 2.2.1 and 2.2.2). The specific gravity of seawater decreased over time in the upper strata (~100 

m) but increased with increasing depth (Fig. 6.2.3). However, the specific gravity was always less than 

larval body density (Fig. 4.1.2). Therefore, the specific gravity of seawater may not affect larval verti-

cal distribution. The snow crab larval depth distribution increases during development (Incze, 1981; 

Incze et al., 1987; Kon et al., 2003), but the timing of the megalopal settlement phase is unknown. The 

megalopal feeding rate decreased significantly after the intermediate premoult stage (Fig. 3.1.3). Thus, 

megalopae may settle to the bottom during this phase, and then moult into crabs. 

Several studies have collected immature snow crabs from various depths of their natural habitat 

in the Sea of Japan (Kon, 1969; Ito, 1970, 1984; Ishikawa Prefectural Fisheries Experimental Station, 

1981, 1982; Yosho & Hayashi, 1994; Kanemaru, 1994). Here, the relationships between the collected 

depth, month, and snow crab instars from different studies were examined (Tables 6.2.1 and 6.2.2). As 

a result, crab instars I–II, III–VII, and VIII are collected mainly from 200–500 m, 250–500 m, and 

200–400 m, respectively, but the depth distributions after instar IX were ambiguous owing to differ-

ences in survey depth data (Kon, 1969; Ito, 1970; Ishikawa Prefectural Fisheries Experimental Station, 

1981, 1982), and the small number of crabs caught (Yosho & Hayashi, 1994). Crab instars I, II, III, 

and after IV are caught mainly during May/June–October (Ishikawa Prefectural Fisheries Experi-

mental Station, 1981, 1982; Ito, 1984), August/September–January (Ishikawa Prefectural Fisheries 

Experimental Station, 1981, 1982; Ito, 1984), September–May (Ito, 1984), and year round (Ito 1970; 

Ishikawa Prefectural Fisheries Experimental Station, 1981, 1982), respectively. Water temperature on 

the continental slope at 135.5°E in 2014 was referred from JADE 2 as a representative location to es-

timate the general moulting pattern of immature snow crab in this sub-chapter (Fig. 6.2.4). According 

to the crab depth distribution data and temporal-spatial temperature distribution, instar I–II crabs are 

exposed to 0.8–7°C, instar III–VII are exposed to 0.8–4°C, and instar VIII crabs are exposed to 0.9–

7°C. A snow crab growth model was developed in Chapter 5.1, based on the relationships between 
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PreCW (<19 mm) and the thermal constant or threshold temperature from the heat summation theory 

equations (Table 5.1.4). The value of PreCW 19 mm corresponds to the modal value of instar VI CW 

reported by Ito (1970). Moreover, the snow crab intermoult period depends on PreCW (Chapter 5.2). 

Therefore, the instar I–VI intermoult periods were estimated at these temperature ranges by using this 

growth model (Table 6.2.3). Ito (1970, 1984) estimated the modal value of CW in each instar as fol-

lows: instar I, 2.9–3.0 mm; instar II, 4.3–4.6 mm; instar III, 6.3–6.6 mm; instar IV, 9–10 mm; instar V, 

13–14 mm; instar VI, 19–20 mm. Thus, the values of 2.95 mm, 4.45 mm, 6.45 mm, 9.5 mm, 13.5 mm, 

and 19.5 mm were applied in this growth model. The relationship between temperature and PreCW 

>19 mm was not investigated in this study; therefore, the instar VII and VIII intermoult period of 

wild-born crabs reared at 1°C was used for calculating the age at terminal moult (Table 6.2.3). Fur-

thermore, the intermoult periods after instar IX could not be investigated in this study. Pubescent crabs 

reportedly undergo an annual moult in the Sea of Japan (Ito, 1970), except for some that skip moulting 

(Ueda et al., 2012). The instars of the terminal moult are assumed to be instars X–XIII in male crabs 

and XI in female crabs for managing the snow crab population in the Sea of Japan (Ueda et al., 2012). 

Therefore, the durations from hatching to terminal moult instars were estimated to be 4–9 years in 

male crabs and 5–7 years in female crabs (Table 6.2.3). 
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Figure 6.2.1. Vertical and seasonal 

temperature distributions in the Sea 

of Japan, in 2014 (from JADE 2): A, 

36°N, 135.5°E; B, 37°N at 135.5°E; 

C, 38°N at 135.5°E. 

Figure 6.2.2. Vertical and seasonal 

salinity distributions in the Sea of 

Japan, in 2014 (from JADE 2): A, 

36°N, 135.5°E; B, 37°N at 135.5°E; 

C, 38°N at 135.5°E. 
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Figure 6.2.4. Changes in water temperature on the continental shelf at 135.5°E off Honshu, Sea of Ja-

pan (from JADE 2). 
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Table 6.2.3. Estimated snow crab Chionoecetes opilio intermoult periods for each stage/instar and du-

rations from hatching to each stage/instar. 

 
Instars I–VI and VII–VIII intermoult periods were calculated by the growth models in Table 5.1.4 and 

Table 5.2.3, respectively, applying a value of PreCW in each instar estimated by Ito (1970, 1984). 

Instar IX–XIII intermoult periods are from Ito (1970). 

Terminal moult instars of male crabs (X–XIII) and female crabs (XI) were assumed values for man-

aging the snow crab population in the Sea of Japan (Ueda et al., 2012). 

 

 

6.3 Future directions 

Although a number of studies have elucidated the biology and ecology of mature-stage snow 

crabs, relatively few studies have been published on larval and early post-settlement stages. This study 

adds early snow crab life-history data; however, some important information is lacking, including be-

havioral characteristics, such as upward/downward swimming activities, responses to tidal currents, 

temperature and light preferences, preferred wavelengths of light, the benthic stage, and temperature 

and substrate preferences. In particular, the temperature and substrate preferences of benthic juveniles 

are important to understand the distribution of snow crabs in their natural habitat (e.g., Coulombe et al., 

1985; Brêthes et al., 1987; Robichaud et al., 1989; Dionne et al., 2003; Choi, 2010). These characteris-

tics must be described to develop a snow crab stock dynamics model.  

Larval stage Zoea 1 – 2
Megalopa 1 – 3 1 month – 2 months

Benthic stage I 1 – 4 2 months – 5 months
II 1 – 4 3 months – 9 months
III 3 – 5 4 months – 1 year 1 month
IV 3 – 6 7 months – 1 year 6 months
V 4 – 6 10 months – 2 years 0 month
VI 4 – 7 1 year 2 months – 2 years 6 months
VII 1 year 6 months – 3 years 1 month
VIII 2 years 3 months – 3 years 10 months
IX 3 years 2 months – 4 years 9 months
X 4 years 2 months – 5 years 9 months
XI 5 years 2 months – 6 years 9 months
XII 6 years 2 months – 7 years 9 months
XIII 7 years 2 months – 8 years 9 months

11
12
12
12
12

Stage/Instar Intermoult period (months) Duration reaching to each stage/instar

9
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Skip moulters are known in both sexes of adolescent snow crabs (e.g., Sainte-Marie et al., 1995; 

Comeau et al., 1998; Hebert et al., 2002; Ernst et al., 2012). Skip moulting is reportedly caused by 

temperature and food (Dutil et al., 2010). Adolescent male snow crab skip moulters occur in the Sea of 

Japan (Ueda et al., 2012), but the factor(s) affecting their occurrence have not been investigated. 

Moreover, four main diseases affect wild Chionoecetes crabs, including Bitter Crab Syndrome (BCS), 

caused by Hematodinium parasitic dinoflagellates (Meyers et al., 1987); Black Mat Syndrome (BMS), 

caused by the Trichomaris invadens ascomycete fungus on the exterior of the carapace (Van Hyning 

and Scarborough, 1973); hell disease, which is known as black spot caused by a chitinolytic bacterium 

(Benhalima et al., 1998); and Milky Hemolymph Syndrome (MHS), caused by a bacilliform virus 

(Kon et al., 2011). The prevalences of BCS, BMS, and MHS may affect snow crab and tanner crab, 

Chionoecetes bairdi, population dynamics (Sparks and Hibbits, 1979; Hicks, 1982; Dawe et al., 2010; 

Siddeek et al., 2010; Kon et al., 2011; Mullowney et al., 2011; Klinushkin and Ryazanova, 2014). 

Therefore, research on the pathogenicity and virulence of these diseases under laboratory conditions is 

needed to understand their impact on snow crab populations. Further studies on the biological and 

ecological characteristics of snow crab larval and benthic stages and pathogenic organisms would im-

prove the stock management strategy towards a sustainable snow crab fishery by modeling the disper-

sal and recruitment processes and interactions between pathogens and snow crab populations. 
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