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Structure of Uncertainties in Robust
Nonlinear Control

Feifei Zhang , Koichi Suyama

1 Introduction

As an effective design approach to nonlinear

systems, the feedback linearization method has
attracted a great deal of interest. A lot of theo-

retical results have been made out. In practical
application, however, it seems there exist some

limitations caused by the approach itself. Among
them, a remarkable defect is that the lineariza-

tion depends entirely on a model of a given non-
linear plant, which makes the resulting control

system highly sensitive to parameter uncertain-
ties. Although there are several research reports
in which a linearized system is compensated by a

robust control, such as H-infinity control, the ro-
bustness against parameter uncertainties in lin-

earized system does not necessarily correspond
to that in nonlinear ones.

Here, from a viewpoint of robust control de-

sign by the feedback linearization approach, it

is ideal that the feedback linearization must be

hold by perturbated parameters as well as nom-
inal ones, then the robustness against parameter

uncertainties can be guaranteed by applying lin-
ear robust control to the linearized model.

Of course, not all kind of parameter uncer-
tainties can be treated in such a way. But, it

is very important to clearify the structure of
above-mentioned nonlinear model uncertainties.
To such class of nonlinear systems, the physi-

cal meaning of parameter uncertainties are pre-

served in the linearizing process, therefore, the
conservative design can be avoided. The another

advantage of this approach exclude the state-

dependence of model uncertainty which occurs

usually in the case where parameter uncertain-
ties are drawn together to one model uncertainty.

The purpose of this paper is to propose a new

concept on parameter uncertainties which can be

entirely seperated from the linearization and be
treated by the robust control in section 2. To a
class of nonlinear systems which is widely used,

the structure of such parameter uncertainties is

derived out in section 3. A practical example is
presented to examine the result in section 4.

2 Problem Statement

Before stating our problem, let's review the
feedback linearization approach. Consider a

nonlinear single-input single-output system desi-
cribed by

x = f(x)+g(x)u (2.1)

where x(t) G Rn is a state vector, f(x) and g(x)

are real smooth vector fields on Rn, and u is a

control input. The feedback linearization aims
at finding a state transformation z = T(x) and

a nonlinear feedback u = a(x) +(3(x)v such that
the system (2.1) can be rewritten by a linear

state equation

z=Az+Bv (2.2)

in terms of a new state variable z and a new

input v. The existence condition of such T(x) ,

a(x) and f3(x) is as follows.

1. the vector fields \g,adfg,-å å ,adnf~lg\ are

linearly indenpendent.
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2. ^ad^ad^j G span[g,adfg,å å å ,adnf 2gj,

fori,j=0,1,•E•E•E,n-2

where [,] indicates Lee-Bracket, and ad^g is de-

fined by

ad°fg(x) = g(x)
a d?fg(x) = [/.adJ^jW]

(2.3)

If the conditions 1 and 2 are satisfied, we can

take

z = T(x) = [L°f<!>(x),L)4>(x), •E•E•E,Lnf-14>(x)]T

(2.4)

where L\^> is defined by

d cf>Lf<}>(x) = -£-f(x), L}4>(x) = Lf(Lyl<f>(x))

(2.5)

and </>(#) is a scalar function satisfying the fol-

lowing conditions:

f ^adjfg(x)=0, *=l,2,--.,n-2

1
 d
-^ladnf-lg{x) ± 0

(2.6)

In terms of the new state variable z and the new
input v, the system (2.1) can be represented in

the following linear equation :

/

z =

0 1 0

0

0

0 1

0 0

0 0 0

0\

0

0

0

z +

0

0

1

V.

(2-7)

Prom the linearization process, it is clear that
(2.7) is strictly available only if the parameters

in (2.1) are all fixed. In practical cases, however,

the paremeters of a nonlinear system are usu-
ally uncertain, then the linear model (2.2) corre-

sponds only to the one case represented by the
value of the parameters. So, it is necessary to

treat the problem in the following form :

x =f(x,A) +g(x,A)u (2.8)

where A denotes parameter uncertainty.

Here, we are interested in whether or not the
system (2.8) can be transformed into

z =A(A)z +B(A)v (2.9)

by a suitable feedback linearization. In other

words, we want to find the structure of the pa-

rameter uncertainty A which is invariant with
respect to the feedback linearization. Then, the
control input v stabilizing (2.9) for all A guar-

antees the robustness of the original nonlinear
system (2.8).

[Definition 1]

The parameter uncertainty A in the system
(2.8) is said to have property IFL (Independent

of Feedback Linearization) if there exists a feed-
back linearization z = T(x), u = a(x) + (3(x)v
such that the system (2.8) can be represented as
(2.9).

In this paper, as the first step, we consider
the following kind of popular nonlinear systems

with parameter uncertainty which often appears
in most physicla systems, for example, mechani-

cal system or electrical systems.

X I   =   X o

x 2  =  x 3

E (a ?, A , u )  :

i n - i  =  f n - i ( x , A )

i n  =  f n ( x , A ) + g n (x , A ) u

(2 .1 0 )

I n  t e r m s  o f  t h e  a b o v e  d e fi n it io n ,  t h e  p r o b le m  c o n -

s id e r e d  in  t h is  p a p e r  c a n  b e  s t a t e d  a s  f o ll o w s  :

[Problem] Given a system E(x,A,n) , find

the class of A which has IFL property.

3 Main Result

For a given system (2.10), it can be shown that
the nominal system E(cc, 0,u) is feedback lin-

earizable. To the perturbated case, the system

can be linearized into the form (2.9) by the iden-
tical feedback linearization if the parameter un-

certainty has the following IFL property :
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[Theorem]

The parameter uncertainties A in system (2.10)

have IFL property if the elements /n_i and /

can be written by the following forms:

a. /n_i(a?,A) = ai(A)i2 + a,2(A)x3 + å å å +

on(A)/B_i (aj)

b. fn(x,A) = b1(A)x2 + 62(A)x3 + •E•Eå +

6n (A)/n_i (aj)

where, aj(A) , 6,(A), i = 1,2,•E•E•E,n are functions

ofA.

( Brief proof)

Consider the following transformaton:

z =

/ ~ \-"1

Zn-1

\ Zn /

Xi \

Zn-1
V /»-!(») J

(3.1)

For the nominal system E(ar,0,u), the last ele-
ment zn is equivalent to xn-i. Differentiating z

yields

Z 2

Z2

ZZ

Zn
dfn-l

=̂ X2+u^ i ~~
+ l-Zn-l

+3&=r/«-i + %r-(/« + *.«)•E

(3.2)

Then, selecting a nonlinear input u as follows
yields a linearized model of the form (2.9).

u = --,3/n-l
. (dfn-1

dx\
X2+ + -3 xn-i

OXn-1

+d^r1fn-i+-^rfn-v)- (3-3)

In the pertubated system case, however,
the right side of in_i(equation(2.10)) becomes
/n_i(cc, A) which causes the form of zn-\ to be

different from that in the nominal case. Also, the

last term of u is changed. Using the relations a
and b in the theorem, the following linear equa-

tion can be obtained which coincides with the

form (2.9)

z =

0
0

1
0

0

1

n \
0

ai(A) a2(A) a3(A)

V6i(A) MA) h(A)

a»(A)

6n(A)

+

\
0

1

\ -1- /

V. (3.4)

4 Example

In this section, we present a practical design

example to show how the parameter uncertainty
in the nominal nonlinear plant is attenuated by a

linear robust control method. The design effects
are evaluated by simulation results.

The controlled object is a magnetic levitating
system shown in figure 1, which consists of an

electromagnet, an iron ball and a gap sensor.
The iron ball is levitated by an attraction force /
caused by the electromagnet which is controlled

by electricity i.The control objective is to keep
the ball at some position /iq against the gravity.

Li+Ri=u (4.1)

Suppose that the ball moves only in the verti-
cal direction, then the dynamics of the plant can

Fig.l Magnetic Levitating System
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be represented by

dh A f

/ = K (h+H)2

di
LJt+Rt =

(4.2)

(4.3)

(4.4)

where, the parameter K and H are determined
by the physical properties of the electromagnet

and the iron ball. L and R denote the impedance

and resistance of the coil. The parameter 6 is an
uncertainty factor used to represent changeable

mass of the iron ball practical system. Let

x =(*! x2 x3)T=(h h if. (4.5)

then, the nolinear state equatioon of the system
is of the following form

X ^^
-Kx\

Om(H+xiy

-£*3

0
+ 9|+| 0 | u (4.6)

1
T

It can be shown that a scalar funtion

<j>(x) = xx (4.7)

is suitable to construct a state transformation

(4.8)

<K x )

牀 = T {x ) = L U (x )

L U (x )

su ch th at

｣

6a {x ) + [3 (x )u

(4 .9 )

where

a(x) - KRX3 \ KX2X3liW)

P(x) = 5/ (4.ll)
mL(H+x\)

Let the control input u(t) he

a(x)

u=- +P(x) p(xy
(4 .12)

then a linearized model of the plant can be ob-

tained as follows:

£ =

(4 .13)

The form of the above equation is nothing but
(2 .9 ) .

To the linearized model (4.13), a robust control

method for linear systems can be used to design

the input v. The following is a test for the per-

formance of the exact linearization method. Let

v=(h h fs) t=Mi+h&+Mz
(4 .14)

be the state feedback such that the closed-loop

system

t= (A(6)+BF)t (4 .15)

is stable for all the 6. Then the result ing control

u = Rxz+H+xi
mL{H+zi)L , , -Kx\ , 1

-b^-i /ixi+fai'+*ro(g+«.)'+H
(4 .16)

robustly stabil izes the original system (4.6)
against uncertainty 9. Figure 2 shows the
responses h(t) in case where mass-parameter
changes when the controller(4.16) is used. The

mass is changes as m = OAkg, m = O.52kg,

m=0.7kg, while the nominal mass used to de-
termine the controller is 0.52kg. From the Fig-

ure 2 it is clear that all the curves show good

responses ,
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5 Conclusion

In this paper, a new concept on parameter un-
certainties in roubst nonlinear control has been

proposed. To a class of nonlinear systems, the
structure of such parameter uncertainties has
been derived. A practical example has been pre-

sented to examine the result.
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Fig.2 Step response of gap h(t) with mass changes


