西部北太平洋、特に南西部日本沿岸におけるニタリクジラの資源生態学的研究

<table>
<thead>
<tr>
<th>著者</th>
<th>木白 俊哉</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位名</td>
<td>博士（海洋科学）</td>
</tr>
<tr>
<td>学位授与機関</td>
<td>東京海洋大学</td>
</tr>
<tr>
<td>学位授与年度</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://id.nii.ac.jp/1342/00000920/</td>
</tr>
</tbody>
</table>
博士学位論文

西部北太平洋、特に南西部日本沿岸におけるニタリクジラの資源生態学的研究

平成23年度
（2012年3月）

木 白 俊 哉

主査 加藤 秀弘教授
副審 桜本 和美教授
副査 北門 利英准教授
副査 須之部 友基准教授
目次

緒言 .. 1

第一章 西部北太平洋におけるニタリクジラ標識個体の移動 5

序論 ... 5
材料と方法 ... 5
結果 .. 6
標識の努力量 ... 6
捕鯨操業の概要 .. 7
捕獲物性比 ... 8
標識再捕個体の移動 ... 9
緯度方向への季節移動 ... 10
経度方向への季節移動 ... 10
考察 ... 12

第二章 南西部日本沿岸(土佐湾、鹿児島県南西部)におけるニタリクジラの分布動態 ... 26

序論 ... 26
材料と方法 .. 27
対象海域と調査の経緯 ... 27
調査手法 .. 28
来遊頭数の推定 ... 32
結果 ... 33
土佐湾南西部の季節分布 ... 33
土佐湾南西部における来遊頭数の推定 .. 35
土佐湾の広域分布 .. 36
鹿児島県南西部の季節分布 .. 38
考察 ... 39
第三章 写真個体識別法に基づく沿岸ニタリクジラの出現動態 61

序論 .. 61

材料と方法 ... 62

1989-2001年の既存識別データ（土佐湾） .. 62
個体識別調査（Photo-ID調査：1999-2008年） ... 62
ホエールウォッチング船からの提供データ ... 63
写真の評価とカタログ化 ... 63
識別写真の照合 .. 65

結果 ... 65

調査海域と発見分布 .. 65
識別形質の有効性 ... 66
識別形質の経時変化 .. 67
写真撮影率と個体の識別率 ... 68
識別個体数 .. 68
識別個体の発見間隔 .. 69
各海域における滞在期間 .. 69
各海域における識別個体の年間再発見率 ... 70
海域間の再発見と混合率 ... 70
親仔連れの出現 .. 72
出産間隔と出産率 ... 72
摂餌行動の出現 .. 73

考察 ... 75

第四章 沿岸ニタリクジラへの衛星標識法の開発と移動追跡 103

序論 ... 103

材料と方法 .. 104

予備調査（突棒による装着の試み） ... 104
<table>
<thead>
<tr>
<th>項目</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>試射実験（空気銃による装着試験）</td>
<td>107</td>
</tr>
<tr>
<td>ニタリクジラへの装着</td>
<td>109</td>
</tr>
<tr>
<td>結果</td>
<td>110</td>
</tr>
<tr>
<td>2004年調査における装着</td>
<td>110</td>
</tr>
<tr>
<td>射撃時の状況</td>
<td>110</td>
</tr>
<tr>
<td>衛星の受信状況</td>
<td>111</td>
</tr>
<tr>
<td>衛星による追跡結果と標識個体の再発見</td>
<td>112</td>
</tr>
<tr>
<td>装着前後の鯨の行動の変化</td>
<td>112</td>
</tr>
<tr>
<td>装着後の標識の状況</td>
<td>113</td>
</tr>
<tr>
<td>2005年調査における装着</td>
<td>114</td>
</tr>
<tr>
<td>標識銃の改良</td>
<td>114</td>
</tr>
<tr>
<td>射撃時の状況</td>
<td>115</td>
</tr>
<tr>
<td>衛星の受信状況</td>
<td>118</td>
</tr>
<tr>
<td>衛星による追跡結果</td>
<td>120</td>
</tr>
<tr>
<td>2006-2008年調査における装着</td>
<td>121</td>
</tr>
<tr>
<td>標識銃および装着法の改良</td>
<td>121</td>
</tr>
<tr>
<td>射撃時の状況</td>
<td>122</td>
</tr>
<tr>
<td>衛星の受信状況</td>
<td>125</td>
</tr>
<tr>
<td>衛星による追跡結果</td>
<td>126</td>
</tr>
<tr>
<td>標識鯨の目視による再発見</td>
<td>127</td>
</tr>
<tr>
<td>考察</td>
<td>128</td>
</tr>
<tr>
<td>装着法の開発</td>
<td>128</td>
</tr>
<tr>
<td>標識個体の地理的移動</td>
<td>130</td>
</tr>
<tr>
<td>第五章総合考察</td>
<td>150</td>
</tr>
<tr>
<td>要約</td>
<td>163</td>
</tr>
<tr>
<td>謝辞</td>
<td>168</td>
</tr>
<tr>
<td>引用文献</td>
<td>170</td>
</tr>
</tbody>
</table>
付図1．土佐湾ニタリクジラ個体識別カタログ 180
付図2．野間池沖ニタリクジラ個体識別カタログ 234
緒言

鯨類は、ヒゲクジラ亜目(Mysticeti)とハクジラ亜目(Odontoceti)に大別され、ヒゲクジラ亜目には、セミクジラ科(balaenidae)、コセミクジラ科(Anobalaenidae)、ナガスクジラ科(Baraenopteridae)、コククジラ科(Eschrichtiidae)の4科が含まれる(加藤, 2006)。

ニタリクジラは、このうちナガスクジラ科に属する体長13〜14m程度に達する中型のヒゲクジラ類である(Kato, 2002)。本種は外見的な形態がイワシクジラと似ていることもあり、種として記載されたのは比較的新しく、Anderson (1879)によって、1871年に英領ビルマに座礁した標本に基づき、学名 Balaenoptera edeni と名付けられたのが最初であった。一方、南アフリカのダーバンで捕獲されたイワシクジラの中からも新種が発見され、Olsen (1913)によって、学名 B. brydei と名付けられた。その後、Junge(1950)の頭骨形態の比較分析によって両者は同種であるとの提案がなされ、さらにOmura (1959)、Best(1960)らの研究の進展により、これらは、イワシクジラと異なる種「ニタリクジラ」として、一般に学名 B. edeni、英名 Bryde's whale に統一された。我が国においても、少なくとも1800年代の古式捕鯨の時代から捕獲されてきた歴史があるが(Omura, 1977)、長らくイワシクジラと混同されており、日本の捕獲統計でニタリクジラがイワシクジラから区別されて記載されるようになったのは1955年からであった(Omura, 1959)。また、国際捕鯨委員会においても、ニタリクジラとして独立に捕獲枠が設定されるようになったのは1976年からであった(Ohsumi, 1993)。

ニタリクジラとイワシクジラの外見上の違いは、喉から胸にかけての腹面にある畝の長さ（後者は臍より前方の体中央部付近までだが、前者は臍周辺まで達する）やヒゲ板の形状（後者は前方に比較してより細長く、繊毛も細い）などにみられるが、最もわかりやすい違いは、上顎にある稜線である(Omura and Fujino, 1954, Omura, 1962)。イワシクジラを含むナガスクジラ類には、通常、上顎先端から噴気孔前方にかけて、体軸に沿って1本の稜線（すじ状の高まり）がみられるが、ニタリクジラはこの稜線の左右にも副稜線と呼ばれる稜線が1本づつあり、計3本の稜線が認められ(Omura, 1962)、この特徴が洋上の目視観察などで種を識別する際の重要な鍵となった。
しかし、このようにして一種に統合されたニタリクジラの中にも、体サイズのやや小型のものや頭骨形態の異なるものなど、海域によって幾つかの変異があることが知られている(Soot-Ryen, 1961)、さらにアソサイムやmtDNA分析などの分子生物学的な研究手法の進展に伴い、種の分類に疑問が残されてきた(Wada and Numachi, 1991; Dizon, et al., 1998; Yoshida and Kato, 1999)。このような状況を受けて、水生哺乳類の分類体系と学名を包括的に再検討したRice (1998)は、ニタリクジラの学名として再びB. edeniとB. brydeiの2つを列記し、分類を確定せず、少なくとも2種が存在する可能性があるという暫定的な認識を提唱した。さらに近年、mtDNAと頭骨形態の分析によって、Wada, et al.(2003)より、B. edeniとB. brydeiはやはり別種であり、前者を英名Eden's whale、後者を従来のBryde's whaleとする論文が発表された。しかし、B. edeniとB. brydeiについては、前者の方が、体長がやや小さいこと以外に、外部形態の違いは明らかでなく、分布の実態や世界各地に見られる小型のニタリクジラとの関係についてもはっきりとわかっていない。このため、国際捕鯨委員会では、両者の分類を保留し、当面、従来通り1種B. edeniとして扱うこととされている。

このように、「ニタリクジラ」の分類学的な位置づけについては今日においても決着していない。本研究では、これまでの慣例に従い、これらを広義の意味でニタリクジラと呼ぶこととする。

一般にニタリクジラは、世界各洋の北緯40度から南緯40度にかけて、およそ表面水温20度以上の海域に分布することが知られている(Omura and Nemoto, 1955)。我が国周辺にも来遊し、前述のように沿岸での古式捕鯨の時代から、沖合、外洋にまで展開した近代捕鯨に至るまで、ニタリクジラは捕鯨対象の一つであり、三陸から和歌山、高知、九州西方にかけて、また小笠原諸島や西部北太平洋の広範囲な海域で捕獲されてきた。これらの捕獲物の解析や目視調査に基づき、国際捕鯨委員会の科学委員会(IWC, 1996)では、資源管理上の単位として、北太平洋に少なくとも3つの系群（東経130度から西経150度にかけての沖合域に広く分布する西部北太平洋系群、黄海、東シナ海にみられる東シナ海系群、西経150度以東に分布する東部北太平洋系群、ただしフィリピン近海やソロモン諸島、カリ
フォルニア湾内などの沿岸域に見られるものを除く）が存在するものと想定している。

我が国のニタリクジラの商業的捕獲は、1988年以降、商業捕鯨モラトリアムへの異議申し立ての取り下げによって停止されたが、その後も、国際捕鯨委員会科学委員会において、商業捕獲の再開に向けた資源の包括的評価作業が進められている。一方、1980年代の後半頃から、我が国においてもホエールウォッチングが全国各地で徐々に行われるようになり、
1989年より、南西部日本に位置する土佐湾の南西部沿岸域においても、ニタリクジラを対象としたホエールウォッチング事業が開始された（森岡, 2000）。同地のウォッチングは、漁村地域の振興を目指し高知県や大方町などの自治体支援のもとに沿岸の漁業者が主体となって開始されたが、使用される船舶は数トンから十数トンの小さな漁船であり、海域もごく沿岸域に限られていた。このような沿岸寄りでの本種の発見は、当時の知見としては珍しく、沖合域に広く分布する西部北太平洋系群との関係も明らかでなかった。

鯨類資源の適切な管理は系群毎に行うことが基本とされる。本種を捕鯨対象資源あるいはホエールウォッチング対象資源として、持続的に利用していく為には、その系群単位を把握し、系群ごとに生態学的な特性を解明し管理していくことが必要不可欠である。

本研究は、我が国の周辺海域に出現するこれらのニタリクジラについて、資源生態学的な観点から系群構造を把握するとともに、特に南西部日本沿岸にみられるニタリクジラに着目し、その分布回遊、来遊頭数など、生態学的な挙動を明らかにすることを目的とした。第一章では、商業捕鯨時代に行われた標識再捕のデータを用い、広く沖合域を含めた西部北太平洋における移動回遊について分析を行った。第二章では、土佐湾および鹿児島県南西部沿岸で実施した目視調査に基づき南西部日本沿岸にみられるニタリクジラの分布動態を把握するとともに、土佐湾内の来遊頭数の推定を行った。第三章では、同じく土佐湾と鹿児島県南部沿岸にて写真を用いた個体識別を行い、両海域間における個体の出現履歴、移動等を明らかにした。さらに第四章では、ニタリクジラへの衛星標識の装着法を開発し、人工衛星による移動軌跡の可能性について検討した。最終章において、これらの結果に他の知見も合わせ、本種の系群構造、沿岸域における分布動態、生態特性等について総合考察を行うとともに、資源の持続的利用の観点から提言を行った。
第一章 西部北太平洋におけるニタリクジラ標識個体の移動

序論
標識再捕法は、個体の移動回遊の把握、資源量の推定などを目的に、古くから行われてきた手法であり、水産資源のみならず広く生態学の分野においても重要な手法のひとつである（田中, 1985）。鯨類についても、かつて商業捕鯨時代に金属製の標識銛を鯨体に打ち込み捕獲時に回収するという形で盛んに行われてきた（宮下, 2008）。西部北太平洋のニタリクジラの標識再捕法を用いた分析については、Nemoto (1959) が、6例の標識再捕を報告したのが最初である。その後も標識は年々行われ、再捕記録の蓄積に伴って本種の標識再捕に関する数多くの研究が精力的に行われた（Omura and Ohsumi, 1964; Ohsumi and Masaki, 1975; Ohsumi, 1978; 1980; Tilman and Breiwick, 1983; Miyashita and Kasamatsu, 1985）。しかしこれらの研究は、主として資源量推定ないし系群識別を目的としたものであった。特に、鯨類の資源量推定については、標識再捕法を用いた場合、標識装着の判定（標識銛が有効に命中したか否か）の困難さや、標識の脱落率が不明であるといった不確実な要素があることから、目視調査による推定が最も有効であるとされ、標識再捕を用いた手法は次第に用いられなくなっていった（宮下, 2008）。このため、標識再捕の記録は本種の商業捕獲の最終年に当たる1987年まで蓄積されていたものの、1981年以降に再捕された記録については分析が行われていなかった。しかし、個体の移動を把握するという点においては、標識再捕の記録は、依然として重要な情報となり得る。そこで、本章では、商業捕獲の最終年である1987年までに日本と旧ソビエト連邦（現ロシア）の捕鯨操業によって再捕された本種に関する全ての標識記録をまとめ、移動回遊について分析を行った。

材料と方法
標識と再捕の記録は、国際水産資源研究所（旧遠洋水産研究所）が所蔵する「北太平洋における鯨の標識記録」を用いた。また、旧ソビエト連邦による標識再捕記録については、Ivashin (1977)およびIvashin(1978)によった。また、本種の北太平洋における捕獲統計に
ついては、国際水産資源研究所（旧遠洋水産研究所）が所蔵する 1955 年から 1987 年までの捕獲統計「NP froms」および「NORPAC」を用いた。さらに、補足情報として、1983 年から 1989 年の 8 月から 9 月にかけて国際水産資源研究所（旧遠洋水産研究所）が北太平洋で実施した鯨類目視調査 23 航海によって得られた本種の発見記録を用いた。

結果

標識の努力量

年から1985年にかけて、日本の調査で実施されたニタリクジラの標識位置と標識頭数を図1.1と表1.3に示す。同期間中、有効に標識されたニタリクジラの頭数（標識銛の発射時、命中（H）と判定されたもの）は537頭であった。標識を行った時期と海域は、2月から9月にかけて、北緯10度以北の捕鯨漁場周辺海域で操業船によって実施されたものが主体であった。また、1972年から1978年にかけては、1月から3月の間、および10月から11月の間に、北緯10度より南方の赤道周辺海域において専門調査船による標識も実施された。

捕鯨操業の概要

標識再捕の有無は、標識を行った時期、海域、頭数などの標識を行った努力量に加えて、再捕の前提となる捕獲が行われた時期、海域、頭数などの捕獲努力量の影響も受ける。そこで以下に、北西太平洋における本種を対象とした捕鯨と捕獲の概要について述べる。

本種は、我が国において、少なくとも約200年前の網捕り式の古式捕鯨時代から捕獲され、その後ノルウェー式の近代捕鯨の導入以降も捕獲が行われてきたが、1952年まではイワシクジラと区別されていなかった（Omura, 1977）。我が国において、捕獲統計上、ニタリクジラが独立に記録され始めたのは1955年からである（Omura, 1959）。ただし、Omura and Fujino (1954)、Ohsumi(1977)らは、1946年から1952年の間に、小笠原諸島近海で行われた日本の母船式操業で「イワシクジラ」として捕獲されたものも、捕獲された季節と捕獲分布から、実際にはニタリクジラであったであろうと報告している。本章では、彼らの見解に従って、これらもニタリクジラとみなし、表1.2に、1946年以降1987年までの北西太平洋におけるニタリクジラの捕獲頭数を捕鯨漁場別に示す。なお表中には、旧ソビエト連邦の北洋母船式操業による捕獲頭数もあわせて示した。

一方、日本の太平洋側沿岸における基地式操業は、この間継続して行われ、母船式操業が撤退した翌年の1980年には307頭の捕獲がなされた。しかし1982年以降、捕獲は年間50頭を下回り、1987年を最後に操業が中止された。

捕鯨漁場は、概ね北緯22度から北緯43度、西経160度以西の範囲に分布した。鯨類目視調査は、より広い範囲をカバーしているが、ニタリクジラの発見は、北緯40度以北、西経160度以東の海域では稀であった。漁場および目視調査による発見分布の北限は、表面水温20度の等水温線の分布と概ね一致しており、これは、Omura and Nemoto (1955)が報告したとおり、本種の夏季における分布の北限を示すものと考えられる。なお、東経150度から159度にかけての海域は、目視調査では発見があるものの、漁場は分布せず捕獲もなされていない。このような沿岸域と沖合域の漁場の分離は、当時の漁業規制によるもので、沖合の母船式操業の操業海域が、沿岸基地式操業の保護の観点から、東経159度以東に制限されていたことによることが知られている（Ohsumi, 1993）。

捕獲物性比

次に、北西太平洋における本種の分布動態をより詳しくみる為に、漁場の季節移動と捕獲物性比について分析を行った。図1.3に、日本の母船式操業および基地式操業（1971年
～1987年）で捕獲されたニタリクジラについて、南北方向の緯度帯ごとにみた捕獲物性比の月変化を示す。母船式操業による沖合漁場は4月から9月にかけて徐々に北上し、また緯度が高いほど捕獲物に占める雌の割合が高かった。このような緯度帯間の性比の違いは、沖合漁場では5月、6月、7月において、いずれも統計的に有意であった（カイ二乗検定、P<0.01）。また、基地式操業についても4月から8月にかけて、太平洋沿岸漁場における雌の割合は、それより低緯度に位置する小笠原漁場のものより有意に高かった（カイ二乗検定、P<0.01）。特に、表面水温20度の等水温線が位置する緯度より北の海域では、いずれの月においても雌の占める割合が高かった。これらの点から、本種の分布は、春季から夏季にかけて徐々に北上するとともに、分布の北限周辺では常に雄よりも雌の方が多く分布するものと考えられた。

次に、東西方向の経度帯ごとにみた捕獲物性比の月変化を図1.4に示す。母船式操業による沖合漁場は4月から9月にかけて徐々に東に移動した。しかし捕獲物性比については、東西で明瞭な違いは認められなかった。

標識再捕個体の移動
標識再捕された52個体の標識位置と再捕位置を直線で結んだものを図1.5に示す。52個体中、標識と再捕が同一年内になされたものは4個体あり、これらは1月から2月にかけて赤道周辺の低緯度海域で標識され、6月から10月にかけて中緯度海域（北緯25-30度、東経141-175度の範囲）の捕鯨漁場で再捕された。残りの48個体は年をまたいでの再捕であり、標識から再捕に至る経過年数が最も長かったものは34年間であった。

赤道周辺を含む太平洋西部低緯度の熱帯亜熱帯域（南緯1度から北緯9度、東経130-170度）で標識されたものは、日本の太平洋沿岸、小笠原諸島近海および北太平洋沖合のいずれの捕鯨漁場からも再捕され、またこれらの捕鯨漁場間においても標識個体の移動が認められた。再捕位置は、小笠原諸島近海に比較的多く集中していたが、これは主として標識を実施した年代と捕鯨が行われた年代の違いによるものと考えられる。標識は1985年まで実施されたが、北洋母船式操業は1979年を最後に行われておらず、またその後の沿岸基地
式操業と小笠原基地式操業においても、捕獲頭数は後者の方が多く、小笠原諸島近海での捕獲が主体であった。このため、標識の再捕も同海域に集中したものと考えられる。

緯度方向への季節移動

図1.6に、再捕個体の緯度方向の季節移動を示す。冬季（1月から3月）に、低緯度海域（南緯1度から北緯9度）で標識されたものは、12個体が再捕された。これらは4月から7月にかけて、より北方の中緯度海域（北緯24-33度）の捕鯨漁場で再捕され、冬から夏にかけての北上移動がみとめられた。一方、同じく冬季に中緯度域（北緯25度付近）で標識され再捕された個体は3個体あったが、これらには南北方向の動きは見られず、ほぼ同じ緯度帯で5月から6月にかけて再捕された。これらのことから、春から夏にかけて中緯度の捕鯨漁場にみられたものは、冬季には、少なくとも南緯1度から北緯25度までの広い範囲の海域に分布するものと考えられた。低緯度から中緯度へ北上したものと、中緯度に留まっていったものについて、雌の割合を比較すると、前者は75%（雄3頭、雌9頭）、後者は33%（雄2頭、雌1頭）であり、北上したものの方が雌の占める割合が高かった。しかし、サンプル数は少なく、統計的な有意差はみとめられなかった（Fisher's exact test, p>0.1）。

4月以降に標識されたものについては、一貫した緯度方向の動きはみられず、概ね北緯20度から35度の範囲内で標識と再捕がなされたが、個体ごとの標識ないし再捕位置は、捕鯨漁場の推移に見られるように、月の経過に伴って北上するものが若干多く見られた。なお、図1.6では4月以降、低緯度海域から北上した個体は見られない。しかし、低緯度における標識は4月以降実施されていないことから（表1.2）、このような再捕情報の欠如は、この時期に低緯度からの個体移動がないことを必ずしも示しているとは言えないと考えられる。

経度方向への季節移動

冬季に低緯度海域で標識され、春から夏にかけて中緯度の捕鯨漁場で再捕された12個体について、経度方向の季節移動を図1.7に示す。12個体中2個体は、東経140-145度付近
の太平洋沿岸基地式操業の漁場から再捕され、3 個体が小笠原近海の漁場から、また 7 個体が北洋母船式操業の漁場から再捕された。これらの再捕結果から、冬季に低緯度海域（少なくとも東経 170 度以西の範囲）に分布するものは、太平洋沿岸、小笠原近海、北洋沖合漁場の三漁場のいずれにも来遊するものと考えられた。なお、冬季に東経 170 度より東側の低緯度海域で標識されたものは 1 頭も再捕されなかった。これは同海域で標識された個体の総数（10 頭）が、それより西側で標識された総数（83 頭）に比較して少なかったことによるものと考えられる（表 1.5）。

次に、北緯 20 度以北の中緯度域で標識と再捕がなされたものについて、経度方向の季節移動を図 1.8 に示す。冬季（2-3 月）に標識されたもの 3 個体のうち、1 個体は東経 134 度の太平洋沿岸から東経 162 度の北洋沖合漁場に移動し、1 個体は小笠原近海（東経 142-144 度）に留まり、1 個体は北洋沖合漁場の緯度帯（東経 156-166 度）に留まった。4 月以降については、東経 130 度から 180 度の範囲内で標識と再捕がなされたが、これらは月の経過に伴って東西の両方向への移動し、東向きのみならず西向きもといった経度方向への定性的な動きはみられなかった。これらのことから、本種は北西太平洋において、東経 130 度から少なくとも 180 度までの広い範囲内を東西両方向に自由に移動しているものと考えられた。

一方、東経 165 度より東側の中緯度域で標識されたものは、東経 170 度以東の低緯度域で標識されたものと同様に 1 頭も再捕されなかった。同海域で標識された個体の総数は 68 個体あり、これらは 1973 年から 1984 年の間、1 月から 2 月および 6 月から 9 月にかけて標識された（表 1.5）。目視調査による本種の発見は、西経 160 度付近までほぼ連続しており（図 1.2）、このような再捕記録の欠如は、東経 165 度以東で標識されたものが、西側へは移動せず、分布範囲のより東側の海域に移動することを示している可能性も考えられる。しかし、このような東側の海域（東経 165 度から西経 160 度）においても北洋母船式操業で総計 2,677 頭が捕獲されたにもかかわらず再捕がなされていないこと（表 1.6）、また、東経 165 度より東側の海域の標識頭数（68 頭）は、それより西側の海域（376 頭）に比較して明らかに少ないことから（表 1.5）、標識努力の少なさが再捕のなかった原因である可能性も残されている。
従って、165度以東の海域については、本種の移動について標識記録から結論を得ることはできないものと考えられた。

考察
標識再捕の記録から、本種は、西部北太平洋において冬季から夏季にかけて、低緯度の熱帯亜熱帯域から、日本の太平洋沿岸、小笠原諸島近海、北洋沖合漁場のいずれにも回遊してくるとともに、中緯度海域（北緯25度付近）に留まっているものもあることが示された。
本種の冬季における分布の北限は、2月から3月に実施された目視調査の結果から、やはり表面水温20度の等水温線の分布にほぼ相当する北緯28度付近であることが報告されており（Miyashita, et.al., 1996）、本種は、冬季に、少なくとも南緯1度から北緯28度付近にかけての広い範囲に分布しているものと考えられる。一方、夏季の分布に関しては、近年の目視調査の結果から、北緯7度付近から北緯43度付近まで分布していることが報告されている（Shimada and Miyashita, 1995）。このことから、本種は冬季と夏季で分布の重なりが大きいものと考えられるが、少なくとも、赤道付近から北緯40度付近まで夏季にかけて大きく移動した個体もみられると、また春から夏にかけての北洋沖合漁場の分布も月の経過に伴い徐々に北上することから、北緯25度付近の中緯度域に留まる個体も若干みられるが、全般的には夏季に北上し、冬季に南下する緩やかな季節回遊があるものと推察される。特に、分布の北限付近では捕獲に占める雌の割合が大きく、このことから本種は、雌の方がより高緯度まで移動する個体が多い可能性も示唆された。この点については、再捕数が少なかったため、標識鯨の移動からは明らかにできなかったが、同様な雌雄間の回遊の違いは、南半球のクロミンククジラや北太平洋のミンククジラからも報告されている（Kato, et. al., 1990, Wada, 1989）。

系群識別の観点からは、低緯度の標識海域と、太平洋沿岸漁場、小笠原近海漁場、北洋沖合漁場の三漁場の間に標識鯨の移動があり、また、それぞれの漁場間にも標識鯨の移動があることから、少なくとも、赤道以北、経度180度以西の範囲においては、複数の異なる系群の存在は示されなかった。このことから、これら西部北太平洋系群として一つ
の系群を構成しているものと推察される。なお、本種は、東シナ海に位置する九州西方の海域でも1974年まで散発的に年間2-47頭が捕獲されたが（Ohsumi, 1993）、同海域、また次章以降で扱う日本の南西部沿岸の海域（土佐湾南西部および鹿児島県の南西部野間池冲）からは標識の再捕がなかった。これらの海域では標識は行われておらず、また捕獲数も少なかったため、再捕記録の欠如のみから結論を得ることはできないが、少なくとも既存の標識記録において、これらの海域に分布するものと、西部北太平洋系群との間に個体の交流を示す直接的な証拠はない、と言って良いものと思われる。
Table 1. Information on marks recovered from Bryde’s whales in the western North Pacific.

<table>
<thead>
<tr>
<th>Mark no.</th>
<th>Date marked</th>
<th>Date recovered</th>
<th>Years elapsed</th>
<th>Position marked</th>
<th>Position recovered</th>
<th>Sex</th>
<th>Length (m)</th>
<th>Judgement**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marks recovered from Japanese whaling fleets

| | | | | | | | | |

| | | | | | | | | |

Marks recovered from USSR whaling fleets

| | | | | | | | | |

*Marks recovered from Japanese whaling fleets

**Marks recovered from USSR whaling fleets

Table 1-2. Catch of Bryde's whales by the Japan and USSR whaling operations in the western North Pacific. From NP forms and NORPAC.

<table>
<thead>
<tr>
<th>Year</th>
<th>Japan Pacific coast of Japan proper</th>
<th>Bonin Island waters</th>
<th>Pelagic ground</th>
<th>USSR Pelagic ground</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>112*</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td>141</td>
</tr>
<tr>
<td>1947</td>
<td>45*</td>
<td>150</td>
<td>-</td>
<td>-</td>
<td>195</td>
</tr>
<tr>
<td>1948</td>
<td>92*</td>
<td>105</td>
<td>-</td>
<td>-</td>
<td>197</td>
</tr>
<tr>
<td>1949</td>
<td>115*</td>
<td>116</td>
<td>-</td>
<td>-</td>
<td>231</td>
</tr>
<tr>
<td>1950</td>
<td>27*</td>
<td>243</td>
<td>-</td>
<td>-</td>
<td>270</td>
</tr>
<tr>
<td>1951</td>
<td>24*</td>
<td>280</td>
<td>-</td>
<td>-</td>
<td>304</td>
</tr>
<tr>
<td>1952</td>
<td>75*</td>
<td>441</td>
<td>-</td>
<td>-</td>
<td>486</td>
</tr>
<tr>
<td>1953</td>
<td>57*</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>57</td>
</tr>
<tr>
<td>1954</td>
<td>70*</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>1955</td>
<td>89</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>89</td>
</tr>
<tr>
<td>1956</td>
<td>24</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>1957</td>
<td>39</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>39</td>
</tr>
<tr>
<td>1958</td>
<td>254</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>254</td>
</tr>
<tr>
<td>1959</td>
<td>263</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>263</td>
</tr>
<tr>
<td>1960</td>
<td>404</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>404</td>
</tr>
<tr>
<td>1961</td>
<td>167</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>167</td>
</tr>
<tr>
<td>1962</td>
<td>504</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>504</td>
</tr>
<tr>
<td>1963</td>
<td>210</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>210</td>
</tr>
<tr>
<td>1964</td>
<td>68</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>68</td>
</tr>
<tr>
<td>1965</td>
<td>8</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>1966</td>
<td>55</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>1967</td>
<td>45</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>1968</td>
<td>171</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>171</td>
</tr>
<tr>
<td>1969</td>
<td>89</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>89</td>
</tr>
<tr>
<td>1970</td>
<td>73</td>
<td>-</td>
<td>0</td>
<td>66</td>
<td>139</td>
</tr>
<tr>
<td>1971</td>
<td>172</td>
<td>-</td>
<td>109</td>
<td>638</td>
<td>919</td>
</tr>
<tr>
<td>1972</td>
<td>84</td>
<td>-</td>
<td>5</td>
<td>71</td>
<td>160</td>
</tr>
<tr>
<td>1973</td>
<td>40</td>
<td>-</td>
<td>2</td>
<td>656</td>
<td>698</td>
</tr>
<tr>
<td>1974</td>
<td>147</td>
<td>-</td>
<td>522</td>
<td>654</td>
<td>1,323</td>
</tr>
<tr>
<td>1975</td>
<td>116</td>
<td>-</td>
<td>688</td>
<td>629</td>
<td>1,433</td>
</tr>
<tr>
<td>1976</td>
<td>83</td>
<td>-</td>
<td>578</td>
<td>679</td>
<td>1,340</td>
</tr>
<tr>
<td>1977</td>
<td>76</td>
<td>-</td>
<td>424</td>
<td>275</td>
<td>775</td>
</tr>
<tr>
<td>1978</td>
<td>62</td>
<td>-</td>
<td>200</td>
<td>216</td>
<td>478</td>
</tr>
<tr>
<td>1979</td>
<td>52</td>
<td>-</td>
<td>175</td>
<td>227</td>
<td>454</td>
</tr>
<tr>
<td>1980</td>
<td>307</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>307</td>
</tr>
<tr>
<td>1981</td>
<td>167</td>
<td>317</td>
<td>-</td>
<td>-</td>
<td>484</td>
</tr>
<tr>
<td>1982</td>
<td>44</td>
<td>438</td>
<td>-</td>
<td>-</td>
<td>482</td>
</tr>
<tr>
<td>1983</td>
<td>27</td>
<td>508</td>
<td>-</td>
<td>-</td>
<td>535</td>
</tr>
<tr>
<td>1984</td>
<td>10</td>
<td>471</td>
<td>-</td>
<td>-</td>
<td>481</td>
</tr>
<tr>
<td>1985</td>
<td>13</td>
<td>304</td>
<td>-</td>
<td>-</td>
<td>317</td>
</tr>
<tr>
<td>1986</td>
<td>2</td>
<td>315</td>
<td>-</td>
<td>-</td>
<td>317</td>
</tr>
<tr>
<td>1987</td>
<td>11</td>
<td>306</td>
<td>-</td>
<td>-</td>
<td>317</td>
</tr>
</tbody>
</table>

*From Ohsumi (1993). Estimated number based on the proportion of Bryde's whales in the catch of sei whales.
Table 1-3. Number of Bryde’s whales marked by Japan in 1972 to 1985, given by month and latitude.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40°-45°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35°-40°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30°-35°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>27</td>
<td>16</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25°-30°N</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>27</td>
<td>181</td>
<td>18</td>
<td>5</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20°-25°N</td>
<td>-</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>37</td>
<td>19</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15°-20°N</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10°-15°N</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5°-10°N</td>
<td>-</td>
<td>4</td>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0°-5°N</td>
<td>19</td>
<td>22</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5°S-0°</td>
<td>4</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10°-5°S</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>44</td>
<td>44</td>
<td>0</td>
<td>45</td>
<td>246</td>
<td>66</td>
<td>40</td>
<td>22</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1-4. Number of Bryde’s whales caught by the Japanese whaling operations in 1971 to 1987, given by month and latitude.*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40°-45°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>111</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35°-40°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>44</td>
<td>102</td>
<td>187</td>
<td>123</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>30°-35°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>391</td>
<td>632</td>
<td>282</td>
<td>261</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>25°-30°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>331</td>
<td>780</td>
<td>1312</td>
<td>566</td>
<td>153</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20°-25°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>542</td>
<td>173</td>
<td>159</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15°-20°N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10°-15°N</td>
<td>-</td>
</tr>
<tr>
<td>5°-10°N</td>
<td>-</td>
</tr>
<tr>
<td>0°-5°N</td>
<td>-</td>
</tr>
<tr>
<td>5°S-0°</td>
<td>-</td>
</tr>
<tr>
<td>10°-5°S</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>497</td>
<td>1777</td>
<td>2219</td>
<td>1201</td>
<td>654</td>
<td>125</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*The catches off the Bonin Islands and the Pacific coast of Japan proper in 1971 and 1972 are not included.
Table 1-5. Number of Bryde's whales marked by Japan in 1972 to 1985, given by month and longitude.

<table>
<thead>
<tr>
<th>Month</th>
<th>130°E</th>
<th>135°E</th>
<th>140°E</th>
<th>145°E</th>
<th>150°E</th>
<th>155°E</th>
<th>160°E</th>
<th>165°E</th>
<th>170°E</th>
<th>175°E</th>
<th>180°</th>
<th>175°W</th>
<th>170°W</th>
<th>165°W</th>
</tr>
</thead>
<tbody>
<tr>
<td>South of 10°N</td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oct.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sep.</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aug.</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jul.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>23</td>
<td>20</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jun.</td>
<td>4</td>
<td>5</td>
<td>33</td>
<td>87</td>
<td>61</td>
<td>47</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>May</td>
<td>-</td>
<td>4</td>
<td>7</td>
<td>25</td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Apr.</td>
<td>-</td>
</tr>
<tr>
<td>Mar.</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feb.</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jan.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>12</td>
<td>11</td>
<td>44</td>
<td>135</td>
<td>95</td>
<td>78</td>
<td>10</td>
<td>23</td>
<td>4</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1-6. Number of Bryde's whales caught by the Japanese whaling operations in 1971 to 1987, given by month and longitude.*

<table>
<thead>
<tr>
<th>Month</th>
<th>130°E</th>
<th>135°E</th>
<th>140°E</th>
<th>145°E</th>
<th>150°E</th>
<th>155°E</th>
<th>160°E</th>
<th>165°E</th>
<th>170°E</th>
<th>175°E</th>
<th>180°</th>
<th>175°W</th>
<th>170°W</th>
<th>165°W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oct.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>18</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>41</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Sep.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>130</td>
<td>71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>113</td>
<td>33</td>
<td>105</td>
<td>151</td>
<td>44</td>
<td>5</td>
</tr>
<tr>
<td>Aug.</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>600</td>
<td>254</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>127</td>
<td>115</td>
<td>51</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Jul.</td>
<td>1</td>
<td>-</td>
<td>20</td>
<td>946</td>
<td>72</td>
<td>7</td>
<td>100</td>
<td>325</td>
<td>272</td>
<td>212</td>
<td>175</td>
<td>89</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jun.</td>
<td>-</td>
<td>7</td>
<td>289</td>
<td>929</td>
<td>9</td>
<td>7</td>
<td>332</td>
<td>76</td>
<td>45</td>
<td>82</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>May</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>274</td>
<td>9</td>
<td>11</td>
<td>53</td>
<td>25</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Apr.</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Mar.</td>
<td>-</td>
</tr>
<tr>
<td>Feb.</td>
<td>-</td>
</tr>
<tr>
<td>Jan.</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>9</td>
<td>441</td>
<td>2899</td>
<td>424</td>
<td>0</td>
<td>25</td>
<td>485</td>
<td>438</td>
<td>559</td>
<td>466</td>
<td>373</td>
<td>283</td>
<td>59</td>
</tr>
</tbody>
</table>

*The catches off the Bonin Islands and the Pacific coast of Japan proper in 1971 and 1972 are not included.
Fig. 1-1. Distribution (upper) and cumulative number (lower) of Bryde’s whales marked by Japanese marking operations, 1972-1987.
Fig. 1-2. Positions (by 1°square) of Bryde's whales sighted by the sighting vessels from August to September, 1983-1989, and the whaling grounds (dotted area) of Japanese whaling from April to September, 1971-1987.
Fig. 1-3. Monthly change of latitudinal difference in the sex ratio of Bryde's whales caught by the Japanese whaling operations from 1971 to 1987. Horizontal bar: 95% confidence interval. Arrows: isothermal latitude of 20°C SST. Circles: pelagic ground. Triangles: off the Bonin Islands. Squares: off the Pacific coast Japan.
Fig. 1-5. Movements of marked Bryde’s whales. Open circles: position marked. Closed circles: position recaptured. Triangles: whales recaptured in the year of marking. Arrow: exact recovery position is unknown.
Month and date of whales marked and recaptured

Fig. 1-6. North-south monthly movements of recaptured Bryde's whales. Open circles: position marked. Closed circles: position recaptured.
Fig. 1-8. East-west monthly movements of 37 recaptured Bryde’s whales both marked and recaptured in the waters between 20°N and 40°N. Open circles: position marked. Closed circles: position recaptured in the pelagic ground. Closed triangles: off the Bonin Islands. Closed squares: off the Pacific coast of Japan.
序論

本章では、このうち特に分布目視調査によって得られたデータについてまとめ、土佐湾
ならびに鹿児島県南西部沿岸にみられるニタリクジラの分布動態を把握することを目的とした。また、土佐湾についてはライントランスエクト法を用いて来遊頭数の推定を行った。

材料と方法

対象海域と調査の経緯

本章の対象海域を図 2-1 に示す。土佐湾は、四国、高知県の南部に位置し、足摺岬から室戸岬にかけての海岸線に沿って広がる太平洋に面した比較的大きな湾である。ニタリクジラを対象としたホエールウォッチングは、湾南西部の距岸約 10 海里程度の沿岸域が主体であり、幡多郡黒潮町（旧大方町）を主体に、高知市より西側の桂浜、宇佐から土佐清水市隠津にかけての沿岸各市町村の漁港を基地に、延べ約 50 数隻の小型漁船によって行われている。一方、野間池は、九州、鹿児島県の薩摩半島南西部にあり、同半島から東シナ海に面して伸びた野間埼の先端に位置する。野間池沖のホエールウォッチングは、1990 年代中頃から、野間池漁港に所属する 10 隻前後の小型漁船によって開始され、同港を基地に、野間埼から下甑島にかけての 15-20 海里的沿岸域で行われている。なお、同地のウォッチングは、事業として集客し収益を得るには地の利が悪かったことなどもあり、2000 年代中頃から従事する漁業者が減少し、現在は専業船1 隻のみとなっている。

これらの海域で実施された調査の概要を表 2-1 に示す。分布目視調査は、1994 年に土佐湾の南西部沿岸で開始され、1994 年 5 月から 1997 年 2 月にかけて、高知県水産試験場所属の海洋調査船「土佐海洋丸(48t)」を用いた目視調査が年 4 回（春季、夏季、秋季、冬季）ずつ実施された。また 1996 年からは、地元小型漁船（ウォッチング船）を複数隻同時に用いた分布目視調査（一斉調査）が開始され、1996 年と 1997 年には、同調査に併せてヘリコプターを用いた航空調査も実施された。その後、2000 年からは、調査目的を遊泳個体の写真撮影による個体識別に移して地元小型漁船を用いた調査が行われている。一方、野間池では、1998 年より調査が開始された。開始当初は、地元小型漁船を複数隻同時に用いた一斉調査が主体であったが、早い段階で個体識別を目的とした調査に切り替え、同海域の調査は 2005 年まで実施された。
なお、1994年5月から1997年2月にかけての土佐海洋丸による調査は、高知県による土佐湾ホエールウォッチング育成事業のもと、高知県水産試験場と遠洋水産研究所の共同プロジェクト事業の一環として行われたものである。また1996年以降の地元小型漁船を用いた調査は、遠洋水産研究所が実施主体となり、水産庁委託国際資源調査事業ならびに（独）水産総合研究センター交付金プロジェクト研究事業のもとに、土佐湾においては、高知県海洋局、土佐湾ホエールウォッチング推進協議会、大方町遊漁船主会、野間池においては、鹿児島県水産振興課、野間池漁業協同組合、鹿児島大学の協力を得て実施された。

調査手法

表2-1に示したように、これらの調査は、調査年および調査目的によって、使用した船舶、調査手法が多様であった。これらの調査を、以下に示す6つのタイプ（A, B1, B2, C1, C2, Photo-ID）に分類し、各々について手法を記す。

1. タイプA（土佐海洋丸調査：ライントランセクト型）

調査海域は、ニタリクジラの分布が予想されるホエールウォッチング海域をカバーするため、土佐湾の南西部沿岸域とし、分布を定量的に把握するため、高知沖から足摺岬沖にかけての距岸約15海里の範囲に、事前に短冊状の調査コースを設定し（図2-2）、ライントランセクト法に基づく目視調査を実施した。調査に用いた「土佐海洋丸」の詳細は表2-2に示す。目視調査はHammond and Donovan（1993）らの手法に従い、調査コースに沿って一定の速度（10ノット）で航走し、鯨類の発見があった場合は探索を中断して接近し、発見群の確認後に、調査コースに戻って探索を再開する接近方式の調査を実施した。目視探索は、アッパーブリッジ（海面からの高さ3.5m）から双眼鏡を用いて常時5名で行った。発見時には、船から発見群までの角度と距離を目測で推定し、発見時の手がかり（噴気、水しぶき、体など）、発見位置、表面水温の記録を行った。発見群は、調査コース上で探索努力中の発見を一次発見、それ以外の発見を二次発見とし、接近確認時に鯨種と頭数を記録した。鯨種の判定は、笠松ら（1991）、加藤（1993）に基づき外部形態と遊泳時の行動によって、特に
ニタリクジラに関しては、識別の鍵となる上顎の稜線と副稜線（Omura, 1959）ないし背鰭を含む体幹部が十分に視認できたものとし、噴気1回のみの発見など判定にやや不確かさの残るものについてはニタリクジラらしい（Like Bryde's whale）として記録した。目視探索努力量として、船の航跡、行動（探索開始、中断、変進等）を記録するとともに、1時間毎に天候、海況（ビューフォート風力階級）、視界、表面水温を記録し、視界3マイル未満ないし風力5以上の場合は目視探索を中断した。調査は、年4回（春季、夏季、秋季、冬季）、1回当たり3〜4日間をかけて実施した。

2. タイプB1（航空調査：ライントランセクト型）

1996年9月10日に実施された下記タイプC1調査時に、高知県消防防災航空隊の協力を得て、ヘリコプターを用いた上空からの目視探索を行った。使用したヘリコプターの詳細を表2-3に示す。調査はライントランセクト法に基づき、高知沖から足摺岬沖にかけての距岸約20海里の範囲に、事前に短冊状の調査コースを設定した（図2-3）。目視探索は、調査コースに沿い、一定の速度（90ノット）と飛行高度（1,000フィート）を保って飛行し、後部座席の左右舷窓から各1名ずつ裸眼で行った。また目視探索は経度線に平行な長辺のコース（調査レグ）のみで行い、レグ間の移動の際は探索員の休憩と交代を行った。鯨類の発見があった場合は、探索を中断して上空を旋回し、発見群の確認後、調査コースに戻って探索を再開した。発見時および現場到着時に時刻と位置を記録するとともに、発見時の手がかり、鯨種、頭数などの記録を行った。また目視探索努力量として、飛行航跡、行動（探索開始、中断、変進等）を記録するとともに、調査レグ毎に、天候、海況（ビューフォート風力階級）、グレア（日光の海面反射）の方向を記録した。

3. タイプB2（航空調査：自由探索型）

1997年6月26日に実施されたタイプC1調査時に、上記タイプB1と同じヘリコプターを用い上空からの目視探索を行った。本調査は、C1調査船の重複発見の確認、上空からの鯨体写真撮影を目的とし、事前に調査コースを定めず、任意の飛行速度と高度でC1調査海域
の上空を探索する形をとった。飛行中は変進位置等の航跡を記録し、調査船から発見情報が得られた際に現場に急行することとした。発見時には、発見位置、鯨種、頭数を記録するとともに上空を旋回して写真撮影を行った。

4. テイプ C1（一斉調査：ライトランセクト型）
本調査は、地元小型漁船(5～10 トン)を複数隻同時に用いて、より広範囲の分布の状況を一度に把握することを目的とした。土佐湾では、28～31 隻の小型船を用い、湾西部（足摺岬から高知市沖）と湾東部（室戸岬沖）に、約 15 海里的直線コースを 2 海里間隔で設定し、各コースに 1 隻ずつ小型漁船を割り振り、陸側から沖へ向けて一斉同時に探索する形をとった（図 2-3, A1-23, C1-5）。各小型船は、探索船として調査コース上を一定の速度(8 ノット)で航走し、鯨類の発見時に、位置、鯨種、頭数を記録しつつ、発見群に接近せずにコース上の探索を継続する通過方式の探索を行った。調査は全船同時刻（午前 9 時～10 時）に開始し、約 2 時間かけて既定のコースを航走し終えた時点で終了とした。目視探索は、各船に乗船した操船者 1 名と記録者 1 名計 2 名ずつによって裸眼ないし双眼鏡を用いて行われた。また湾西部と東部の間の海域では、土佐海洋丸による調査を併せて実施した。同船の調査はタイプ A の手法に則り事前に定めた調査コース（図 2-3, B1-7）に沿って行われた。さらに、調査全体の運行を指揮するため指揮船 1 隻（小型船）を設け、漁業無線、船舶電話等を用いて全船と情報のやりとりを行った。また探査船の発見した群れに接近して鯨種、頭数などの確認を行うため、確認船（小型船）を別途 1～4 隻配置した。指揮船と確認船については、調査コースを定めず、自船の航跡を記録しつつ任意に海域内を航走することとした。

野間池沖では、小型船 6 隻を探索船として用い、野間崎沖から下甑島にかけて、長さ約 24 海里的調査コースを 2 海里間隔で設定し（図 2-4）、土佐湾と同様の手法で調査を行った。また同海域では、確認船を兼ねた指揮船（小型船）を別途 1 隻設け、調査の運行を指揮するとともに、探索船の発見した群れに接近して鯨種、頭数などの確認を行った。
5. タイプ C2（一斉調査：ブロック型）

本調査は、タイプ C1 と同様に小型漁船複数隻を同時に用いたものであるが、広範囲の分布をより効率的に把握するとともに発見群をより確実に確認することを目的とした。土佐湾では湾西部を調査海域とし、足摺岬から高知市沖にかけて緯経度 5 分四方の調査ブロックを 23～24 個設定した（図 2-5, A1-23）。これらの調査ブロックに、小型船を 1 隻ずつ配置し、目視探索は、一定時間（通常 10 時〜13 時の 3 時間）、全船同時に各自のブロック内を任意の船速とコースで探索する形をとした。各船は 15 分毎に自船の位置を記録するとともに、ニタリクジラの発見があった場合は、位置、頭数等を記録した後、確認船が現場に到着するまでの間、見失わないよう発見群の追跡を行うこととした。また高知沖の海域では土佐海洋丸による調査を併せて実施した（図 2-5, B1-5）。さらに C1 調査と同様に、指揮船 1 隻と確認船 3〜4 隻を別途配置し、調査全体の運行指揮と発見群の確認を行った。

野間池沖では、下甑島の南方海域に、緯経度 5 分四方の調査ブロックを 5〜7 個設定し（図 2-6）、各ブロックに 1 隻ずつ、および別途、指揮船（兼確認船）1 隻を配置して、土佐湾と同様の手法で調査を行った。なお、同海域で用いた小型船は全て野間池港に所属している為、同港を出港して調査ブロックに到着するまでの間、および調査ブロックから港に帰港するまでの間においても探索を継続し、発見があった場合には、位置、頭数等を記録した。

6. タイプ Photo-ID（個体識別調査：自由探索型）

本調査も地元小型漁船を用いた調査であるが、調査の目的は、極力多くのニタリクジラを写真撮影し、個体識別に関する情報を得ることとした。このため、調査コースは設定せず、1 日当たり 2〜4 隻の小型船を用い、操業中の漁船、遊漁船、ウォッチング船等から、随時発見情報を得つつ各船任意のコースと船速で探索を行った。各船には 1〜3 名ずつ調査員を配置し、出港から帰港までの間（通常 6〜8 時間）、15 分毎に位置、海況（ビューフォート風力階級）、表面水温の記録を行った。鯨類発見時には、発見位置、鯨種、頭数、表面水温を記録するとともに、可能な限り接近して追尾を継続し、背鰭周辺を主対象に個体識別のための写真撮影を行った。
上記6タイプの調査のうち、より定量的な調査であるタイプAによって得られた結果を用い、土佐湾南西部沿岸におけるニタリクジラの季節分布、分布密度の把握、来遊頭数の推定等を行った。また、タイプB1, B2, C1, C2の結果については、より広域の分布の概観を把握するために用いた。Photo-IDの結果については主として第三章で扱った。

来遊頭数の推定

土佐海洋丸によるタイプA調査で得られた結果のうち、一次発見群数が多く、調査のカバレージがほぼ等しい1994年と1995年の春季調査データを用い、土佐湾南西部沿岸へのニタリクジラの来遊頭数の推定を行った。推定は通常のライントランセクト法に則り、以下の式（Burnham et al., 1980）を用いて行った。

\[N = n A f(0) s / (2L) \]

ここで、\(n \)は一次発見群数、\(A \)は調査海域の面積、\(f(0) \)は確率密度関数、\(f(x) \)から求めた調査コースライン上（\(x=0 \）の分布密度、\(s \)は平均群れサイズ、\(L \)は調査距離である。調査海域の面積\(A \)は、調査コースの左右3海里幅でカバーされる海域の面積とした。なお、調査時に設定したコースの形状は短冊上であるが、このような形状は、分布密度に海底地形などに沿って地理的な勾配があった場合、推定値にバイアスを生じることが知られている（Burnham et al., 1980）。そのため、南北方向の海岸線に沿う陸側と沖側のレグについては解析から除き、この間の発見若二次発見として扱った。\(f(x) \)は、発見時の角度と距離から推定した発見横距離の頻度分布にハザードレイト曲線（Hays and Buckland, 1983）を当てはめて定めた。コースライン上の発見確率\(g(0) \)は1と仮定した。推定頭数\(N \)の変動係数（CV）については、次式を用いて算出した。

\[\text{CV} (N)^2 = \text{CV} (n)^2 + \text{CV} (f(0))^2 + \text{CV} (s)^2 \]
ここで CV \((n) \) は、緯経度 10 分区画ごとの一次発見数と調査距離のばらつきより求めた。
CV \((f(0)) \) は、 \(f(0) \) 推定値の変動係数、CV \((s) \) は群れサイズのばらつきである。これらの計算は、プログラム DISTANCE ver. 2.1 (Laale et al., 1994) を用いて行った。

結果

土佐湾南部の季節分布

土佐海洋丸のタイプ A 調査によって得られた調査航跡とニタリクジラの発見位置の分布を図 2-7 に、また同調査の探索距離と発見群頭数を表 2-4 に示す。発見分布の季節変化を見るため、ここでは、年 4 回、計 12 回にわたる調査の結果を、季節毎に、5, 6 月 (春季)、8, 9 月 (秋季)、11 月 (冬季)、1, 2 月 (冬季) に分けて示した。調査 1 回当たりの探索距離は、88.2 海里から 143 海里であり、探索海域は、湾南西部の沿岸、高知市沖から足摺岬沖にかけての距岸約 15 海里の範囲を概ねカバーした。これらの調査を通して、ニタリクジラは延べ 52 群 77 頭が発見された。このうち 6 群 6 頭は、調査現場でニタリクジラらしいとして記録されたが、残りの 46 群 71 頭については、上顎の副稜線ないし体幹部の視認に基づき、明らかにニタリクジラであることが確認された。また、'ニタリクジラらしい'と記録されたもののについても、十分に接近観察はできなかったが、噴気の形状と大きさから大型のヒゲクジラ類であったことに間違いはなく、発見時の状況および水温から見て、類似する他の大型ヒゲクジラ類（イワシクジラないしナガスクジラ）であった可能性は非常に低く、これらもほぼニタリクジラとみなして良いものと考えられた。

発見群頭数は、「ニタリクジラらしい」と記録されたものも含め、一次発見と二次発見を合わせて 5, 6 月 (春季) で延べ 23 群 32 頭、8, 9 月 (夏季) で 7 群 8 頭、11 月 (秋季) で 10 群 17 頭、1, 2 月 (冬季) で 12 群 20 頭であり、いずれの季節においてもニタリクジラが発見された。なお、11 月の調査では、1994 年と 1995 年に発見がないが、両年ともに調査期間中、別途、地元小型漁船の調査でニタリクジラが目撃されていた（高知県海洋局 （当時）篠原英一郎氏私信）。これらの結果は、土佐湾西部沿岸域に本種がほぼ周年にわたって分布することを示していると考えられる。
これらの発見群の発見位置の表面水温を表2-5に示す。表中には、高知県水産試験場の定線観測によって得られた調査海域の過去20年間(1974-1993年)の海域表面水温の月平均値と範囲を併せて示した。ニタリクジラ発見位置の表面水温は、15.1度から30.2度の範囲にあり、月別の発見位置平均水温は、5月21.7度、6月22.6度、8月28.5度、9月29.5度、11月22.2度、1月18.4度、2月16.4度であった。一般にニタリクジラは、およそ表面水温20度以上の海域に分布する暖海性の種であることが知られている(Omura and Nemoto, 1955)、過去の商業捕鯨時代における北洋母船式操業の捕獲データからは、本種の捕獲位置の最低水温は16.3度と報告されている(Ohsumi, 1977)。本海域の発見位置の平均水温は、いずれの月もこれを上回っており、また調査海域の平均表面水温ともほぼ一致し、その月平均値も16.3度を下回ることはなかった。このことは、本海域の水温が最も低下する2月、3月においてもニタリクジラが分布し得ることを示しており、本海域における本種の周年分布を水温環境の面からも支持するものと思われる。

発見位置は、興津崎から大方にかけての距岸0.1海里内のごく岸よりの海域から、沖合約15海里付近にかけて分布した(図2-7)。これらの位置の水深は全て500m以浅であり、さらに発見群の92.3%(52群中48群)が、水深200m以浅の陸棚上で発見された。季節の経過に伴う分布の変化については明瞭でないが、秋季(11月)の発見は陸寄りのみであり、夏季(8,9月)と冬季(1,2月)には、興津崎沖に向かって沖合側に分布が広がり、最も発見の多かった春季(5,6月)は大方から興津崎にかけて水深200m以浅の海域に比較的均等にみられた。いずれにしても、どの季節においても、距岸3海里内の陸寄りの海域には発見がみられたことから、分布の主体は、距岸15海里以内、特に陸寄りの沿岸域にあるものと考えられた。

表2-4と図2-8に、分布密度の指標として、探索距離1海里当たりの一次発見頭数(密度指数)の季節変化を示す。密度指数は季節によって異なり、3年間を合わせた指数は、春季(5,6月)で0.057、夏季(8,9月)で0.024、秋季(11月)で0.015、冬季(1,2月)で0.041であり、春季に最も高く、秋季に最も低かった(表2-4)。このような季節による違いは、年によってパラつきはあるが、年ごとの経時的な変化を見ると(図2-8)、春から夏にかけて増加し、秋から冬に低下する周期的な密度増減が認められた。このことから、本種は本海
域に周年を通じて分布するものの、分布が限定された個体群として海域内に定着したものではなく、他の海域とも移動交流があり、特に春季に多く来遊して来るものと推察された。

土佐湾南部西部における来遊頭数の推定

ライントランセクト法に基づいてある程度の信頼性ある頭数の推定を行うためには、一次発見の数が少なくとも10群以上必要とされる。そこで、一次発見数が最も多く、来遊盛期であったと考えられる春(5,6月)について、1994年と1995年の調査データを用いて、本海域への来遊頭数の推定を行った。なお、1996年のデータについては調査海域の範囲が異なり、また調査ロジ上、前2年とは調査コースのデザインも異していた為、本分析には用いなかった。図2-9に頭数推定に用いたトラックライン、発見群の位置、および調査面積の範囲を、また図2-10と表2-6に、CV(n)の算出に用いた緯経度10分区画ごとの一次発見数と調査距離を示す。本分析では‘ニタリクジラらしい’と記録されたものもニタリクジラとして扱った。また、f(0)を推定するために必要な発見頻度分布については、春季のみでは発見数が少なく信頼性のある頻度分布が得られなかったため、全季節の一次発見数を用いた。

いずれの季節も、同じ調査船を用い、探索人員、探索場所(アッパーブリッジ)、探索中止の天候条件（視界3マイル未満ないし風力5以上）なども同じ条件で実施しているため、この点に関しての問題は少ないものと考えられる。図2-11に、発見時の鯨までの直達距離(a)と発見角度と調査コースがなす発見角度(b)より算出したコースラインからの横距離(x:a sin(b))の発見頻度分布と、これに当てはめたハザードレイトモデル曲線を示す。頻度分布に対する曲線の当てはまりは良好（カイ二乗検定、p>0.5）、f(0)=1.3676(CV=0.45)、有効探索幅は0.73121海里と推定された。

表2-7に頭数推定に用いた一次発見群の群れサイズを示す。群れサイズは1頭から5頭の範囲にあり、19群中17群（89%）は2頭以下の群れであった。平均群れサイズは頭数推定の結果に大きく影響する要因のひとつであるが、ライントランセクト調査では、一般に、大きな群れほど発見しやすいと予想され、そのような場合には、発見群の単純な平均値を平均群れサイズとして用いると過大推定のバイアスが生じる可能性のあることが知
されている（宮下, 1990）。このため、Buckland et al. (1993)の手法に従い、横距離と群れサイズの間で直線回帰を行ったところ、傾きにゼロと有意な差はみとめられず（p>0.05）、本分析においては、そのようなバイアスはないものと考えられた。そこで春季の単純平均群れサイズ 1.5 (CV=0.15) を用いて推定を行った結果、春季における本海域への来遊頭数は、53 頭 (CV=0.58)、95%信頼区間は 18-160 頭と推定された（表 2-8）。

土佐湾の広域分布

1996年9月以降に実施されたタイプC1、C2調査は、地元小型漁船（ウォッチング船）を複数隻同時に用いたものであるが、目視探索は各船を操船する漁業者主体に行われたものであり探索方法にもバラつきがあるため、土佐海洋丸によるタイプA1調査に比較し、定量的なものとは言えない。しかし、土佐湾西側の足摺岬沖から東側の室戸岬沖にかけて、より広い範囲を複数の船で一度に目視探索した結果として、広域の分布状況の概観を把握するためには有効と思われる。そこで次に、これらの結果をまとめ、発見分布について分析を行った。なお、ヘリコプターを用いた航空調査（タイプB1、B2）も、タイプC1調査に合わせて同時に1回ずつ実施されたが、同調査による単独発見は、タイプB1、B2いずれの調査においても1群1頭のみであった。このため、これらの結果もC1調査の結果に併せて解析した。

表2-9に、これからの調査によって得られたニタリクジラの発見群頭数を、また図2-12に、タイプC1調査によって得られた探索航跡と発見位置について月ごとにまとめたものを示す。

6月の調査は、湾西側から東側にかけて、1997年6月26日にタイプB2とタイプC1(32隻)の同時調査、同27日にタイプC1調査(32隻)、1998年6月18日と同20日にタイプC1調査(33隻)が実施された。計4回(4日間)の調査による総発見数は、「ニタリクジラらしい」と記録されたものを含め、一次発見12群32頭、二次発見4群4頭、計16群36頭であった。ここでの二次発見は、各船が調査コース配置につく前ないし、調査終了後の帰港途中に発見されたものであり、調査中（コース探索中）の発見との重複が疑われるものである。

調査1回(1日)当たりの平均一次発見数は3群8頭であった。
9月の調査は、1996年9月10日にタイプB1とタイプC1（25隻）の同時調査が湾の西側のみで実施された。その後、湾西側から東側にかけて、1997年9月29日と同30日にタイプC1調査（29隻）、1999年9月27日にタイプC1調査（33隻）が実施された。計4回（4日間）の発見総数は、一次発見8群14頭、二次発見9群14頭、計17群28頭であり、調査1回（1日）当たりの平均一次発見数は、2群3.5頭であった。

調査1回当たりの平均一次発見数は、土佐海洋丸によるタイプA調査の結果と同様に、9月（夏季）より6月（春季）の方が多く、また発見位置の分布も、湾の南西部が主体であった。湾の東側の海域については、高知市の東側133度30分付近の海域にニタリクジラらしいが1群1頭発見されたのみであり、室戸崎沖ではいずれの調査でも発見がなかった。

図2-13に、タイプC2調査によって得られた探索航跡と発見位置について月ごとにまとめたものを示す。タイプC2調査は、湾西側の海域で2月（冬季）と9月（夏季）に行われた。

2月の調査は、1999年2月18日と20日に足摺岬から高知沖にかけて調査ブロックを24個設置し、指揮船1隻、確認船3隻、土佐海洋丸1隻を含む計29隻で実施された。この調査では、一次発見（調査ブロック内探索中の発見）はなかったが、調査終了後の帰港途中に、二次発見として3群4頭が、陸寄りの海域で発見された。

9月の調査は、1999年9月28日と同29日に、同じく23個の調査ブロックを設置し、28隻で实施され、一次発見8群12頭、二次発見1群1頭、計9群13頭が発見された。調査1回（1日）当たりの平均一次発見数は4群6頭であり、同調査の前日（9月27日）に実施されたタイプC1調査の一次発見数（3群7頭）とほぼ同数であった。発見位置は、興津崎沖に比較的集中してみられ、高知市の南方15海里付近にも1群1頭の発見がみられた。

これらの調査結果は、冬季も含めていずれの季節においてもニタリクジラが発見されたこと、また1日当たりの発見数は春季が最も多かったという点においても、土佐海洋丸によるタイプA調査の結果と矛盾せず、湾内における本種の周年分布と、分布密度の季節的な変動を支持するものと考えられる。分布位置については、湾の中から東側にかけての距岸15海里内、水深500m以浅の沿岸域にも2例発見があり、必ずしも湾の西側のみに分布が限定されたものではないことが明らかとなった。しかし、発見数は湾東側に比較し、
西側の方が明らかに多く、土佐湾内における本種の分布は、やはり足摺岬沖から高知市沖にかけての湾南西部側の沿岸に主体があるものと考えられた。

鹿児島県南西部の季節分布
鹿児島県南西部野間池沖では、1998年6月24日と同25日に、地元小型漁船7隻を用いたタイプC1調査が実施され、上顎の副稜線の視認に基づき、本海域にみられる大型ヒゲクジラ類も明らかにニタリクジラであることが確認された。その後、同海域では、タイプC2調査とPhoto-ID調査が実施されたが、タイプC1調査は初年度の6月調査のみで、C2調査の実施数も少ない。そこで、本海域についてはPhoto-ID調査の結果も含めて、1998年から2001年の間に実施された全ての調査結果を併せ、月別の発見分布について検討した。

表2-10に、これらの調査によって得られたニタリクジラの発見群頭数を、また図2-14と2-15に、月ごとの探索航跡と発見位置の分布を示す。

6月の調査は、前述のように1998年6月24日と同25日に、野間崎沖から下甑島にかけて長さ約24海里、幅約10海里の範囲でタイプC1調査が実施され、2001年6月24日には下甑島の南方に調査ブロック4個を設定したタイプC2調査が行われた。また同調査の翌日25日から28日にかけて4日間、1日当たり2~3隻の小型漁船を用いたPhoto-ID調査が実施された。これらの調査により、C1調査で、一次と二次を併せて2群2頭、C2調査ではニタリクジラらしいであったが、同じく2群2頭が発見された。Photo-ID調査では、より広い範囲を探索して回ったが、ニタリクジラの発見は得られなかった(表2-10)。発見位置は、下甑島東岸側の沿岸部、野間崎の西岸側の沿岸部、および両者のほぼ中間地点に散在した(図2-14)。

8月の調査は、2001年8月10日に調査ブロック7個を設定したタイプC2調査が行われ、翌11日から15日にかけて4日間、1日当たり2隻の小型漁船を用いたPhoto-ID調査が実施された。ニタリクジラは、C2調査で一次と二次を併せて6群7頭(一次発見4群5頭)、その後のPhoto-ID調査で8群13頭(1日平均2群3.3頭)が発見された(表2-10)。発見位置は、野間崎沖約5海里付近から下甑島東岸側の沿岸部にかけての海域に分布した(図2-14)。
9月の調査は、下甑島の南方に延べ12個(1回の調査当たり7個)の調査ブロックを設定し、1999年9月19日と同20日および2000年9月20日の計3回、C2調査が実施された。また、2000年9月21日から28日にかけて5日間、1日当たり2隻の小型漁船を用いたPhoto-ID調査が実施された。ニタリクジラは、C2調査で、延べ17群42頭(調査1日当たりの平均一次発見数5.7群14頭)、Photo-ID調査で11群28頭(1日平均2.2群5.6頭)が発見され(表2-10)、下甑島の南方から野間崎の西方10～25海里にかけての海域に多くの発見がみられた(図2-15)。

11月から12月にかけては、1999年11月13日から20日にかけて4日間、1日当たり2隻の小型漁船を用いたPhoto-ID調査が実施され、1998年12月9日と同10日には調査ブロック5個を設定したタイプC2調査が行われた。特に11月のPhoto-ID調査では、宇治群島、黒島から硫黄島にかけてのより広い海域の探索も行われたが、これらの調査ではニタリクジラは発見されなかった(図2-15)。

野間池沖で実施した調査は、季節によって調査努力量が異なり、またいずれも定量的な調査ではないため、分布密度についての指標を求めて比較することはできない。しかし、明らかに春季(6月)および冬季(11,12月)に比較し、夏季(8,9月)は発見数が多く、本海域へのニタリクジラの来遊の盛期は夏季にあるものと考えてよいものと思われる。発見位置は、全て水深200mから500mにかけての海域に位置し、6月から9月にかけて、下甑島と野間崎の間、野間崎の西方約20海里の海域に徐々に集中していく傾向が伺われた。調査範囲が限られており、より広範囲な海域からの情報はないものの、このように本種の発見が頻繁に見られるといった情報は九州南西部貿売沿岸に面した他の地域や諸島からは得られていない。このことから、少なくとも日本の沿岸に沿った海域のなかでは、同海域が、土佐湾南部と同様に本種の主要な分布域のひとつとなっている可能性が示唆された。

考察
土佐湾と鹿児島県南西部においてホエールウォッチングの対象となっているヒゲクジラ類は、上顎副稜線の目視観察に基づき、いずれもニタリクジラであることが確認された。
土佐湾における本種の分布は、足摺岬沖から高知市沖にかけての湾の南西部側、距岸15海里内、水深500m 以浅の沿岸域が主体であり、同海域に周年を通じて分布すること、またその分布密度は季節によって増減し、特に春季に多く来遊して来ることが推察された。一般に、ナガスクジラ科鯨類の多くは、冬季に暖かい低緯度の繁殖海域に、夏季には寒冷な高緯度の探餌場に移動する南北方向の季節回遊を行うことが知られている。第一章で明らかにしたとおり、本種についても、北太平洋沖合域に広く分布する西部北太平洋系群については、冬季から夏季にかけて、低緯度の熱帯亜熱帯域から北緯40°付近まで移動する季節回遊がみとめられている。また別途、遠洋水産研究所によって実施された冬季における広域目視調査の結果からは、沖合域の冬季分布の北限は表面水温20度の等水温線にほぼ一致する北緯28度付近にあることが報告されている（Miyashita, et al., 1996）。土佐湾は、これよりも緯度の高い北緯33度に位置しており、このような冬季北限以北の海域において、周年を通じた分布がみられたことから、同湾のニタリクジラは、西部北太平洋系群のものとは回遊様式が異なるものと考えられる。土佐湾は、黒潮から分流した暖水の影響を受け、表2-5に示したように、冬季においても海域の平均表面水温が16度を下回ることは少ない。このような暖かい環境条件がニタリクジラの周年分布を可能にしている要因の一つとして考えられた。

一方、夏季における分布については、北太平洋のより広域の情報について、別途、遠洋水産研究所が1983年から1993年の8,9月に実施した延べ40航海の広域目視調査の結果から得られている（Shimada and Miyashita, 1994）。これによると、本種の発見は、北緯10度から北緯40度、東経130度から西経155度にかけての広い範囲に見られるが、日本の沿岸部については、十分な探索努力量があるにもかかわらず、土佐湾と鹿児島県沖に2例の発見があるのみであり、黒潮の主流域には発見がなく、沖合域と明らかに分布が連続していない（図2-16）。このことから、土佐湾にみられた距岸15海里内を主体としたニタリクジラの分布は、黒潮をはさんで沖合のものと分離しており、ごく沿岸の同海域に限られたものであると考えられる。

しかし、湾内の分布密度は周年を通じて一定ではなく、春から夏にかけて増加し、秋か
冬にかけて低下する周期的な増減が認められた。来遊盛期における個体数は春季のデータに基づき 53 頭（95%信頼区間：18-160 頭）と推定された。推定値に関しては、調査コース上の見落としがないもの（G(0)=1）と仮定して得たものであるため過小推定の可能性があり、またデータ数が少ないため推定精度も低い。しかし、95%信頼区間の上限においても 160 頭であり、このような少ない個体数で、個体群が独立に維持されているとも考えにくい。従って、土佐湾にみられるニタリクジラは、同湾に限定的に定住した個体群ではなく、他の海域とも移動交流があるものと推察される。

東シナ海に面した鹿児島県南西部の野間池沖では、夏季を主体に、下甑島の東岸から野間崎の西方約 20 海里、水深 200m から 500m にかけての沿岸部に本種が来遊してくることが明らかとなった。東シナ海においては、過去の商業捕鯨時代（1950〜1970年代）には、九州西方の五島列島から甑島列島の西側にかけての沖合海域を捕鯨漁場とし 7 月から 10 月にかけて年間 2-47 頭が捕獲されたが（Ousumi, 1993）、月別の捕獲を見ると 9 月が全捕獲数の約 7 割を占めており、同漁場においても夏季が分布の主体であったことが報告されている（Omura, 1956）。これらの海域から捕獲された個体については、北太平洋のものに比較し体長が 0.6-1.2m ほど小さく、ヒゲ板の形状も異なることから、東シナ海系群として、西部北太平洋系群とは異なる系群に分類されている（Omura, 1962, 1977; Kawamura and Satake, 1976; Ohsumi, 1980）。この系群の冬季の分布と季節回遊の実態については明らかでないが、Ohsumi（1993）は、1900 年代の冬季に台湾周辺でも本種が捕獲されていた可能性を示し、本系群についても北上南下の季節回遊のある可能性を示唆している。いずれにしても、野間池沖にみられるものは、この系群が夏季の来遊盛期に東シナ海の沖合から甑島列島の東方にまで伸張してきたものと考えてよいであろう。また、その発見位置の分布から、この系群は、土佐湾にみられたものと同様に、水深 500m 以浅のごく沿岸部にまで来遊し得るものと考えられる。

土佐湾は、太平洋に面しているが、沖合にみられる西部北太平洋系群とは明らかに分布が離れており季節回遊の様式も異なる。従って、同湾の個体が西部北太平洋系群と混合しているとは考えにくい。他の海域との間に移動交流があるとすれば、むしろ地理的に近い
東シナ海と交流していると考えた方が自然であろう。東シナ海は、台湾と石垣島の間から入った黒潮が、大陸棚の外縁に沿って北上し、トカラ海峡を抜けて、四国本州南岸の足摺岬、室戸岬、潮岬沖にかけて東進して流れており、このような海流と陸棚によって太平洋側沖合とは海洋構造的に隔てられている。栄養塩の少ない熱帯亜熱帯域から流入する黒潮本流は、それ自体は生物生産性が低く、また先に述べたように、黒潮の主流域には本種の発見がみられないことを鑑みると、このような海底地形と黒潮の流れは、系群を隔てる要因になり得るものと考えられる。黒潮の流路は年によって変動し、足摺岬や室戸岬沖に接岸したり離岸したりすることが知られているが、九州南西部から土佐湾にかけては、陸棚が続いており、野間池沖にみられたように、本系群がごく沿岸の浅海域にまで来遊するものであれば、このような流れと陸岸の間に挟まれた陸棚上の海域を移動して土佐湾まで来遊することも可能ではないかと推察される。

これらの点から、土佐湾にみられるニタリクジラは、西部北太平洋系群ではなく、東シナ海系群に属しており、これが日本の南西部沿岸において太平洋側にまで伸張してきたものであり、その一部が周年を通して湾内に分布しているものと推察された。
Table 2-1. Summary of the survey area, periods, type of the survey, searching efforts and the number of sightings of Bryde’s whales.

<table>
<thead>
<tr>
<th>Area</th>
<th>Period</th>
<th>Survey Type</th>
<th>RV</th>
<th>No. of vessels</th>
<th>Searching distance (n.miles)</th>
<th>Primary</th>
<th>Secondary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>24-27 May 1994</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>88.2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2-5 Sept. 1994</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>85.0</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8-11 Nov. 1994</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>106.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>17-20 Jan. 1995</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>93.4</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14-16 Jun. 1995</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>117.4</td>
<td>7</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>29 Aug.-1 Sept. 1995</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>112.3</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>21-23 Nov. 1995</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>113.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20-23 Feb. 1996</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>110.3</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7-11 May 1996</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>143.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>9-13 Sept. 1996</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>151.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>27 Nov.-1 Dec. 1996</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>190.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>22-26 Feb. 1997</td>
<td>A</td>
<td>TSK</td>
<td>1</td>
<td>119.0</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10 Sept. 1996</td>
<td>H</td>
<td>AIR</td>
<td>1</td>
<td>93.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10 Sept. 1996</td>
<td>C1</td>
<td>W</td>
<td>25</td>
<td>380.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>26 Jun. 1997</td>
<td>B2</td>
<td>AIR</td>
<td>1</td>
<td>119.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>26-27 Jun. 1997</td>
<td>C1</td>
<td>W</td>
<td>32</td>
<td>ca.1,030</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>29,30 Sept. 1997</td>
<td>C1</td>
<td>W, TSK</td>
<td>32</td>
<td>ca.1,030</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>16-20 Jun. 1998</td>
<td>C1</td>
<td>W, TSK</td>
<td>33</td>
<td>ca.1,030</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>18-20 Feb. 1999</td>
<td>C2</td>
<td>W, TSK</td>
<td>29</td>
<td>ca.1,030</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>27 Sept. 1999</td>
<td>C1</td>
<td>W</td>
<td>33</td>
<td>ca.1,030</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>28,29 Sept. 1999</td>
<td>C2</td>
<td>W, TSK</td>
<td>28</td>
<td>ca.1,030</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-16 Oct. 2000</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>10 days</td>
<td>9</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20-25 Jul. 2001</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>14</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15-20 Sept. 2001</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>17</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>20-25 Aug. 2002</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>16</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>23 Sept.-1 Oct. 2003</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>13-20 Nov. 2003</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>9</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>21-25 Aug. 2004</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>5 days</td>
<td>14</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>21-25 Jul. 2005</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>5 days</td>
<td>14</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>5-11 Aug. 2007</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>5 days</td>
<td>9</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>22-28 Jul. 2008</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>22-31 Aug. 2008</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>18</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>Off Nomake</td>
<td>24,25 Jun. 1998</td>
<td>C1</td>
<td>W</td>
<td>7</td>
<td>ca.290</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9,10 Dec. 1998</td>
<td>C2</td>
<td>W</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>19,20 Sept. 1999</td>
<td>C2</td>
<td>W</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>13-20, Nov. 1999</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>4 days</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20 Sept. 2000</td>
<td>C2</td>
<td>W</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>21-28 Sept. 2000</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>5 days</td>
<td>11</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>24 Jan. 2001</td>
<td>C2</td>
<td>W</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10 Aug. 2001</td>
<td>C2</td>
<td>W</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>11-15 Aug. 2001</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>4 days</td>
<td>8</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4-12 Aug. 2002</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>5 days</td>
<td>7</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>18-23 Aug. 2003</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>16</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4-9 Aug. 2004</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>6 days</td>
<td>18</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>9-13 Aug. 2005</td>
<td>Photo-ID</td>
<td>W</td>
<td>3</td>
<td>4 days</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

1 See text. 2 Research vessel; TSK: RV Tosa-Kaiyo maru; AIR: Helicopter; W: Whale watching boat. 3 Figures in parentheses indicate breakdown of the Like Bryde's whales.
Table 2-2. Specifications of the R/V *Tosa-Kaiyo Maru* (TSK) used in the Type A surveys.

<table>
<thead>
<tr>
<th>Items</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of vessel</td>
<td>Tosa-Kaiyo Maru</td>
</tr>
<tr>
<td>Port of registry</td>
<td>Suzuki, Kochi, Japan (KPFL, Kochi Prefecture)</td>
</tr>
<tr>
<td>Dimention</td>
<td>Length 23.42m x Breadth 5.18m x Depth 2.04m</td>
</tr>
<tr>
<td>Gross Tonnage</td>
<td>48.00 tons</td>
</tr>
<tr>
<td>Engine and power</td>
<td>Diesel, 750PS</td>
</tr>
<tr>
<td>Speed (cruising, max.)</td>
<td>10 knot, 14.12knot</td>
</tr>
<tr>
<td>Cruising range</td>
<td>1,100 n.miles</td>
</tr>
<tr>
<td>No. of crew</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2-3. Specifications of the Helicopter used in aerial surveys (Type B1 and B2 surveys).

<table>
<thead>
<tr>
<th>Items</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of helicopter</td>
<td>Ryoma</td>
</tr>
<tr>
<td>Type</td>
<td>Sikorsky S-76B</td>
</tr>
<tr>
<td>Port of registry</td>
<td>Kochi Airport, Japan (Kochi Prefecture)</td>
</tr>
<tr>
<td>Dimention</td>
<td>Length 16.00m, Rotator diameter 13.41m</td>
</tr>
<tr>
<td>Engine</td>
<td>Jet engine, PT6B-36B x 2</td>
</tr>
<tr>
<td>Speed (cruising, max.)</td>
<td>287km/h, 269km/h</td>
</tr>
<tr>
<td>Cruising range</td>
<td>750km</td>
</tr>
<tr>
<td>No. of crew</td>
<td>2</td>
</tr>
<tr>
<td>No. of max. passenger</td>
<td>13</td>
</tr>
</tbody>
</table>
Table 2-4. Seasonal and annual change of the number of sightings of Bryde’s whales from the sighting surveys by R/V Tosa-Kaiyo maru (Type A survey) in the Tosa Bay (complied from Table 2-1).

<table>
<thead>
<tr>
<th>Season</th>
<th>Year</th>
<th>Searching distance (n.miles)</th>
<th>Number of sightings 1</th>
<th>Density index 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-June</td>
<td>1994</td>
<td>88.2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>117.4</td>
<td>7 (1)</td>
<td>11 (1)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>143.0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>348.6</td>
<td>13 (1)</td>
<td>20 (1)</td>
</tr>
<tr>
<td>August-September</td>
<td>1994</td>
<td>85.0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>112.3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>50.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>247.5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>November</td>
<td>1994</td>
<td>106.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>113.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>119.0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>339.2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>January-February</td>
<td>1995</td>
<td>93.4</td>
<td>2 (1)</td>
<td>3 (1)</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>110.3</td>
<td>3 (1)</td>
<td>8 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110.9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>314.6</td>
<td>7 (2)</td>
<td>13 (2)</td>
</tr>
</tbody>
</table>

1Includes both Bryde’s whales and the ‘Like’ Bryde’s whales. Figures in parentheses indicate breakdown of the ‘Like’ Bryde’s whales. 2Number of animals primary sighted per n.mile of the transect length.

Table 2-5. Sea surface temperatures (SST) at which Bryde’s whales were seen in the type A surveys by R/V Tosa-Kaiyo maru with information on SST in last 20 years (1974-1993) off southern Kochi based on the data from oceanographic surveys by the Kochi Prefectural Fisheries Laboratory.

<table>
<thead>
<tr>
<th>Month</th>
<th>n</th>
<th>Mean (°C)</th>
<th>Range (°C)</th>
<th>Mean (°C)</th>
<th>Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td></td>
<td>-</td>
<td>-</td>
<td>18.7</td>
<td>17.8-20.2</td>
</tr>
<tr>
<td>May</td>
<td>12</td>
<td>21.7</td>
<td>19.8-23.2</td>
<td>20.7</td>
<td>20.0-21.6</td>
</tr>
<tr>
<td>June</td>
<td>11</td>
<td>22.6</td>
<td>22.4-22.9</td>
<td>22.8</td>
<td>22.3-23.6</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>-</td>
<td>-</td>
<td>25.3</td>
<td>24.8-25.8</td>
</tr>
<tr>
<td>August</td>
<td>1</td>
<td>28.5</td>
<td>28.5-28.5</td>
<td>27.7</td>
<td>27.2-28.0</td>
</tr>
<tr>
<td>September</td>
<td>6</td>
<td>29.5</td>
<td>27.9-30.2</td>
<td>27.0</td>
<td>26.6-28.0</td>
</tr>
<tr>
<td>October</td>
<td></td>
<td>-</td>
<td>-</td>
<td>24.9</td>
<td>24.5-25.7</td>
</tr>
<tr>
<td>November</td>
<td>10</td>
<td>22.2</td>
<td>21.9-22.3</td>
<td>22.7</td>
<td>22.1-23.4</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td>-</td>
<td>-</td>
<td>20.3</td>
<td>19.8-21.7</td>
</tr>
<tr>
<td>January</td>
<td>2</td>
<td>18.4</td>
<td>18.4-18.4</td>
<td>18.1</td>
<td>17.4-19.3</td>
</tr>
<tr>
<td>February</td>
<td>10</td>
<td>16.4</td>
<td>15.1-17.5</td>
<td>16.9</td>
<td>16.0-18.4</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td>-</td>
<td>-</td>
<td>16.9</td>
<td>15.8-17.7</td>
</tr>
</tbody>
</table>
Table 2-6. Transect length and the number of primary sightings of Bryde’s whales by 10 minutes square latitude-longitude used in the abundance estimation. Area no.: Geographical area was shown in Fig.2-10. T: Transect length (n.miles); S: Number of schools primary sighted; A: Number of animals primary sighted; *: Includes one ‘Like’ Bryde’s whale.

<table>
<thead>
<tr>
<th>Area no.</th>
<th>10 minutes square</th>
<th>24-27 May 1994</th>
<th>14-16 Jun. 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>33°10'N-133°00'N-33°00'N-133°10'N</td>
<td>3.2 1 1</td>
<td>2.4 - -</td>
</tr>
<tr>
<td>C2</td>
<td>33°10'N-133°10'N-33°00'N-133°20'N</td>
<td>17.2 - -</td>
<td>13.5 1 1</td>
</tr>
<tr>
<td>D2</td>
<td>33°10'N-133°20'N-33°00'N-133°30'N</td>
<td>13.2 - -</td>
<td>9.6 - -</td>
</tr>
<tr>
<td>E2</td>
<td>33°10'N-133°30'N-33°00'N-133°40'N</td>
<td>0.4 - -</td>
<td>5.6 - -</td>
</tr>
<tr>
<td>B3</td>
<td>33°00'N-133°00'N-32°50'N-133°10'N</td>
<td>14.6 - -</td>
<td>11.4 4* 8*</td>
</tr>
<tr>
<td>C3</td>
<td>33°00'N-133°10'N-32°50'N-133°20'N</td>
<td>14.5 1 1</td>
<td>11.3 2 2</td>
</tr>
<tr>
<td>D3</td>
<td>33°00'N-133°20'N-32°50'N-133°30'N</td>
<td>1.8 - -</td>
<td>11.5 - -</td>
</tr>
<tr>
<td>A4</td>
<td>32°50'N-132°50'N-32°40'N-133°00'N</td>
<td>1.3 - -</td>
<td>6.5 - -</td>
</tr>
<tr>
<td>B4</td>
<td>32°50'N-133°00'N-32°40'N-133°10'N</td>
<td>12.3 1 1</td>
<td>11.1 - -</td>
</tr>
<tr>
<td>C4</td>
<td>32°50'N-133°10'N-32°40'N-133°20'N</td>
<td>8.7 - -</td>
<td>13.4 - -</td>
</tr>
<tr>
<td>D4</td>
<td>32°50'N-133°20'N-32°40'N-133°30'N</td>
<td>- - -</td>
<td>4.2 - -</td>
</tr>
<tr>
<td>B5</td>
<td>32°40'N-133°00'N-32°30'N-133°10'N</td>
<td>- - -</td>
<td>6.6 - -</td>
</tr>
<tr>
<td>C5</td>
<td>32°40'N-133°10'N-32°30'N-133°20'N</td>
<td>1.0 - -</td>
<td>8.9 - -</td>
</tr>
<tr>
<td>D5</td>
<td>32°40'N-133°20'N-32°30'N-133°30'N</td>
<td>- - -</td>
<td>1.4 - -</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>88.2 3 4</td>
<td>117.4 7 11</td>
</tr>
</tbody>
</table>
Table 2-7. School size distribution and expected mean school size of Bryde's whales primary sighted by R/V Tosa-Kaiyo maru (Type A survey) in 1994 and 1995.

<table>
<thead>
<tr>
<th>School size</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6(^1)</td>
<td>3</td>
<td>-</td>
<td>2(^2)</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

Mean size: 1.5 (CV: 0.15), 1.25 (CV: 0.20), 2.2 (CV: 3.3)

\(^1\)Includes one 'Like' Bryde's whale.

\(^2\)Includes two 'Like' Bryde's whales.

Table 2-8. Estimated abundance of Bryde's whales off Kochi on the data from the spring surveys by R/V Tosa-Kaiyo maru (Type A survey) in 1994 and 1995.

<table>
<thead>
<tr>
<th>Area(^1)</th>
<th>Transect length</th>
<th>No. of primary sightings</th>
<th>No. of animals sighted</th>
<th>Abundance</th>
<th>CV</th>
<th>95% CI (Lower, Upper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,072.1</td>
<td>205.6</td>
<td>10</td>
<td>15</td>
<td>53</td>
<td>0.58</td>
<td>(18, 160)</td>
</tr>
</tbody>
</table>

\(^1\)See Fig.2-9
Table 2-9. Seasonal and annual change of the number of sightings of Bryde's whales in the type B1, B2, C1, and C2 surveys in the Tosa Bay from 1996 to 1999 (complied from Table 2-1).

<table>
<thead>
<tr>
<th>Month</th>
<th>Year (Date)</th>
<th>Survey type</th>
<th>Survey Area</th>
<th>Number of sightings<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
<td>Total</td>
</tr>
<tr>
<td>June</td>
<td>1997 (26,27)</td>
<td>C1+B2</td>
<td>West-East</td>
<td>5 (1)</td>
</tr>
<tr>
<td></td>
<td>1998 (18,20)</td>
<td>C1</td>
<td>West-East</td>
<td>7 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>12 (1)</td>
</tr>
<tr>
<td>September</td>
<td>1996 (10)</td>
<td>C1+B1</td>
<td>West side</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1997 (29,30)</td>
<td>C1</td>
<td>West-East</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1999 (27)</td>
<td>C1</td>
<td>West-East</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1999 (28,29)</td>
<td>C2</td>
<td>West side</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>February</td>
<td>1999 (18,20)</td>
<td>C2</td>
<td>West side</td>
<td>-</td>
</tr>
</tbody>
</table>

¹See text. ²West-East: both western and eastern side of the Tosa Bay were surveyed; West side: only western part of the Bay were surveyed. ³Includes both Bryde's whales and the 'Like' Bryde's whales. Figures in parentheses indicate breakdown of the 'Like' Bryde's whales.

Table 2-10. Seasonal and annual change of the number of sightings of Bryde's whales in the type C1, C2, and the photo-ID surveys in the coastal waters off Nomaike, southwest coast of Kyushu from 1998 to 2001 (complied from Table 2-1).

<table>
<thead>
<tr>
<th>Month</th>
<th>Year (Date)</th>
<th>Survey type</th>
<th>Number of sightings<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>June</td>
<td>1998 (24,25)</td>
<td>C1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2001 (24)</td>
<td>C2</td>
<td>1 (1)</td>
</tr>
<tr>
<td></td>
<td>2001 (25-28)</td>
<td>Photo-ID</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>2 (1)</td>
</tr>
<tr>
<td>August</td>
<td>2001 (10)</td>
<td>C2</td>
<td>4 (1)</td>
</tr>
<tr>
<td></td>
<td>2001 (11-15)</td>
<td>Photo-ID</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>12 (1)</td>
</tr>
<tr>
<td>September</td>
<td>1999 (19,20)</td>
<td>C2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2000 (20)</td>
<td>C2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2000 (21,28)</td>
<td>Photo-ID</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>28 (2)</td>
</tr>
<tr>
<td>November</td>
<td>1999 (13-20)</td>
<td>Photo-ID</td>
<td>-</td>
</tr>
<tr>
<td>December</td>
<td>1998 (9,10)</td>
<td>C2</td>
<td>-</td>
</tr>
</tbody>
</table>

¹See text. ²Includes both Bryde's whales and the 'Like' Bryde's whales. Figures in parentheses indicate breakdown of the 'Like' Bryde's whales.
Fig2-1. The study areas and whale watching grounds (shaded areas) for coastal Bryde’s whales off the southwest coast of Japan.

Fig2-2. Example of the predetermined track lines for sighting surveys by R/V Tosa-Kaiyo maru (Type A survey) in the Tosa Bay carried out during the period form May 1994 to February 1997. Figure indicates way point of the track line.
Fig 2-3. Example of the predetermined track lines for Aerial surveys by Ryoma (Type B1 survey; thin solid line), and shipboard sighting surveys (Type C1 surveys; dotted lines) in the Tosa Bay. A1-23: track lines for whale watching boats in Ashizuri-Kochi area. B1-7: track lines for R/V Tosa-kaiyo maru. C1-5: track lines for whale watching boats in Muroto area.

Fig 2-4. Example of the predetermined track lines for shipboard sighting surveys (Type C1 surveys; dotted lines) in the coastal waters off Nomaike, southwest coast of Kyushu in June 1998. A1-6: track lines for whale watching boats.
Fig2-5. Example of the research blocks allocated to whale watching boats in the Type C2 surveys in the Tosa Bay. A1-23: research blocks. B1-5: predetermined track lines for R/V Tosa-kaiyo maru.

Fig2-6. Example of the research blocks allocated to whale watching boats in the Type C2 surveys in the coastal waters off Nomaike, southwest coast of Kyushu, carried out during the period from December 1998 to August 2001. A1-7: research blocks.
Fig 2-7. Seasonal distribution of Bryde’s whales sighted by R/V Tosa-Kaiyo maru (Type A survey) from May 1994 to February 1997. Closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted; dotted line: cruise tracks on-effort for searching.
Fig2-8. Seasonal and annual change in density index (number of animals primary sighted per n. mile of the searching distance) of Bryde’s whales in Tosa Bay based on the Type A surveys by R/V Tosa-Kaiyo maru in May 1994 to February 1997.
Fig 2-9. Cruise tracks and sighting positions of Bryde’s whales in the spring surveys in 1994 and 1995. Closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted. The solid line indicates transect legs on-effort and dotted area indicates survey area used in the abundance estimation. The dotted line represents other optional tracks.
Fig 2-10. Geographical area and no. of the 10 minutes square latitude-longitude used in the estimation of the CV(n).

Fig 2-11. Perpendicular distance distribution and fitness of the hazard rate model.
Fig2-12. Cruise tracks and sighting positions of Bryde’s whales made by the type B1, B2, and C1 surveys in June (1997 and 1998) and September (1996, 1997 and 1999) in Tosa Bay. Solid line: cruise tracks of Helicopter (type B1 and B2); doted line: cruise tracks of vessels (type C1); closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted.
Fig2-13. Cruise tracks and sighting positions of Bryde’s whales made by the type C2 surveys in February 1999 and September 1999 in Tosa Bay. Solid line: research blocks; dotted line: cruise tracks of vessels; closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted.
Fig 2-14. Cruise tracks and sighting positions of Bryde's whales made by the type C1, C2, and photo-ID surveys in June (1998 and 2001) and August (2001) in the coastal waters off Nomaike, southwest coast of Kyushu. Solid line: research brocks; dotted line: cruise tracks of vessels; closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted.
Fig2-15. Cruise tracks and sighting positions of Bryde’s whales made by the type C2 and photo-ID surveys in September (1999 and 2000), November (1999) and December (1998) in the coastal waters off Nomaike, southwest coast of Kyushu. Solid line: research brocks; doted line: cruise tracks of vessels; closed circle: position of school primary sighted; open circle: position of school secondary sighted; closed square: position of the ‘like’ Bryde’s whale primary sighted; open square: position of ‘like’ Bryde’s whale secondary sighted.
Fig2-16. Cruise tracks (upper) and positions of Bryde’s whale sightings (lower) made by the dedicated sighting surveys conducted by the National Research Institute of Far Seas Fisheries in August to September, 1983-1993. After Fig.1 and 2 in Shimada and Miyashita, 1994.
第三章 写真個体識別法に基づく沿岸域ニタリクジラの出現動態

序論

ニタリクジラを対象にホェールウォッチャングが行われている土佐湾においても、この点について早い段階から着目され、地元船主会の方々が中心となり、1994年の時点で背鰭の傷などに基づいて既に14個体のニタリクジラが識別されていた(土佐湾ホェールウォッチャング推進協議会, 1995)。その後、1994年から1996年にかけて実施された高知県と遠洋水産研究所の共同プロジェクト調査においても個体識別情報の収集が行われる(高知県, 1996b)、また地元在住の徳広幸雄氏(当時：大方町水産商工課)、中西和夫氏(高知市水道局)らの精力的な努力により、ウォッチャング船に便乗してのボランティアベースでの写真撮影収集
も継続して行われ、2000年4月までに43頭が識別された（中西ら、2000）。しかし、これらには、短期間で消失し普遍性に乏しいと思われる形質をもとに一時的に識別されたものも含まれており、識別記録としては暫定的なものであった。個体識別調査は、その後2000年以降も遠洋水産研究所による地元小型漁船を用いた調査が毎年実施されるとともに、鹿児島県南部の野間池沖においても同様の調査が実施され、個体識別の為の写真情報が蓄積されてきた。

本章では、土佐湾と野間池沖で、このように長い年月の間に蓄積されてきた情報を整理し、本種に対する写真個体識別の有効性について検討するとともに、識別個体の再発見情報をまとめ、日本の南西部沿岸における個体の出現動態を把握することを目的とした。

材料と方法

1989–2001年の既存識別データ（土佐湾）

土佐湾では、ホエールウォッチングが開始された1989年より2001年まで、前述の徳広幸雄氏が中心となり個体の識別情報が収集された。本研究では、同氏より、識別の根拠となった代表的な写真と、年別月別の出現（撮影）記録の提供を受けた。この記録は、主として通常のウォッチング時に同氏や中西和夫氏、その他多くの一般客や便乗者らによって撮影された写真に基づいて識別作成されたものであり、識別した個体ごとに、撮影された年月および撮影者が記録されている。また、この記録には1994～1996年に実施された遠洋水産研究所と高知県の共同プロジェクトによる調査（高知県、1996b）、および1996年～1999年に実施された遠洋水産研究所による小型船を用いた一斉調査（タイプC1、C2調査：第二章参照）によって撮影された写真についての情報も含まれている。

個体識別調査（Photo-ID調査：1999-2008年）

遠洋水産研究所による個体識別を主目的とした調査（タイプPhoto-ID調査：第二章参照）は、土佐湾では、2000年10月に予備調査が実施された後、翌2001年から2008年にかけて夏季を主体に延べ15回実施された。また鹿児島県南部野間池沖においても同様の調査
が1999年から2005年にかけて延べ8回実施された（第二章、表2-1）。調査は、個体の特徴にかかわらず極力多くのニトリクジラを撮影し、識別形質に関する情報を得ることを目的とし、調査コースを設定せず、1日当たり2〜4隻の小型船を用いて、操業中の漁船、遊漁船、ウォッチング船等から、随時発見情報を得つつ各船任意のコースと船速で探索を行った。各船には1〜3名ずつ調査員を配置し、出港から帰港までの間（通常6〜8時間）、15分毎に位置、海況（ビューフォート風力階級）、表面水温の記録を行った。鯨類発見時には、発見位置、鯨種、頭数、表面水温、鯨類の行動を記録するとともに、可能な限り接近して追尾を継続し、背鰭周辺を主対象に写真撮影を行った。撮影機材は、主として35mm光学カメラ Nikon F4, F90 と300mm望遠レンズ、70-300mmズームレンズを用い、カラーネガフィルム Fuji100-36EXを使用した。また2006年からは補助的にデジタルカメラ Nikon D200も併用した。撮影は、個体の形態的な特徴の有無にかかわらず、発見された個体全てを撮影するように努めた。

ホエールウォッチング船からの提供データ

上記のPhoto-ID調査の実施期間外においても情報を得るため、土佐湾では2004年から遠洋水産研究所より大方遊漁船主会（遠山香織氏、埜下安弘氏）に依頼し、通常のホエールウォッチング中に散発的に撮影された写真についても収集と識別を行った。また、野間池沖においても同様に、1998年以降、鹿児島在住の大畑和代氏（当時：鹿児島大学、笠沙恵比寿学芸員）に依頼し、通常のホエールウォッチング中に撮影された写真について収集識別を行った。本研究では、これらによって得られた情報も用いた。

写真の評価とカタログ化

写真による識別の可否には、自然標識として用いた形質の特徴に加え、撮影された写真の質（構図、焦点、明るさ、波などの障害物の映り込み等）も大きく影響し、特に識別個体の再発見率などについて検討する際には、後者の点についても考慮することが重要である（Hammond, 1986）。そこで、Photo-ID調査で撮影された個体については、Hammond(1986),
Rugh, et al. (1998)らの手法を応用し、以下の基準で、写真の質と識別形質の特徴について判定した。

写真の質

+++: 正横から見た全体像が十分な大きさで映っている、ないし正横から見た背鰭の拡大写真がある。いずれも焦点が合っており逆光でもない。

++: 正横から見た全体像が中程度の大きさで映っている。焦点が合っており逆光でもない。

+: 上記第1項と同程度の大きさであるが、焦点がブレている、ないし逆光。

-: 上記第2項と同程度の大きさであるが、焦点がブレている、ないし逆光。

識別形質の特徴

+++: 背鰭の独特な形状の欠刻、体表の大きなスクリュー傷、体一部の欠損など、明らかに恒久的と思われる特徴。

++: 多数ないし特殊な位置にあるダルマザメの歯跡傷の配置、ないし、単純な背鰭の欠刻。

+: 体表1本のみの線状の傷、ないし明瞭な白斑。

-: 少数のダルマザメの歯跡傷、珪藻の付着具合、淡い白斑など。ないし、個体を区別できる特徴なし。

撮影写真は、125mm x 90mmのサイズの印画紙に焼付け、撮影個体ごとに、かつ撮影された方向（体側左側、右側、右斜め後方、左斜め後方など）ごとに整理してファイルした。
識別写真の照合
撮影個体の比較照合は、主として印画紙に焼き付けた写真を用い、肉眼、拡大ルーペ、実体顕微鏡などを用いて行った。また、一部、背鰭の形状と傷の配置を比較する際に、ネガを画像ファイルに取り込み、画像処理ソフト(Photoshop ver.6.0)を用いて、画像を半透明化し、拡大縮小し重ね合わせての比較も行った。同一個体の判定は、原則として、背鰭や体表の傷など識別の鍵となる形質が２点以上合致するものとした。これらの照合作業は、1989-2001年の既存識別データについては徳広氏、Photo-ID調査およびホエルウォッチング船の提供データについては筆者が主に行った。同一個体と判定されたものについては、いずれも少なくとも２名以上で写真の確認を行った。

結果
調査海域と発見分布
土佐湾で2000年から2008年にかけて実施したPhoto-ID調査の探索航跡とニタリクジラの発見位置分布を、年別月別に図3-1から図3-3に、また年月を合わせた全ての航跡と発見位置を図3-4に示す。これらの調査は、すべて大方(現:黒潮町)の入野港ないし上川口港を基地とした日帰りの調査であり、調査コースを定めず、漁船、ウォッチング船等からの発見情報を得つつ任意に探索する形で行われた。このため探索範囲は、年によってバラツキはあるものの、概ね大方沖を中心とした足摺岬から宇佐沖にかけての海域をカバーした。発見分布は、第二章で扱った定量的な目視調査の結果と同様に、距岸約15海里内、水深500m以浅の沿岸域が主体であり、特に水深200m以浅の範囲において、岸から沖合にかけて広く分布した。

野間池沖については、2002年から2005年に実施したPhoto-ID調査の探索航跡と発見位置の分布を図3-5に、また1998年以降に行った全ての調査の航跡と発見位置を図3-6に示す。同海域では、野間池港を基地として、探索海域は、野間岬と対岸の下甑島に挟まれる海域が主体であった。このため発見も同海域に多く、野間岬の西方約20海里、水深200mから500mにかけての海域に分布した。

65
土佐湾における2001年以前の既存識別データならびに土佐湾と野間池沖のホエールウォッチング船からの提供写真は、通常のウォッチング活動中に収集されたものであり、発見時の正確な位置（緯度経度の値）が不明なものも含まれている。しかし、これらはいずれもPhoto-ID調査と同じ港（入野港、上川口港、野間池港）を基地とし、半日の日帰り操業で得られたものであることから、これらの情報についても、少なくとも、図3-4、図3-6に示したPhoto-ID調査の探索範囲を大きく越えることはなく、ほぼ同等の海域内から得たものとみなして良いと考えられた。

識別形質の有効性

1）背鰭後縁の欠刻の数、形状、配置
2）体表の明瞭な傷（船のスクリューによって被ったと思われる平行傷など）
3）多数のダルマザメによる噛跡の配置
4）背鰭の形状（全体形状、先端の尖り具合など）
5）背鰭の傾き（背鰭全体が体側右側ないし左側に傾く）
6）体表の僅かな傷（浅く小さな掻き傷、淡い白斑など）
7）1個〜数個のダルマザメによる噛跡
上記の形質のうち、1)から3)の形質は、比較的長期の識別に耐える有効な識別形質と考えられる（識別形質の特徴、++ないし+++：図3-7、3-8）。一方、4)は、写真の撮影角度によって見え方が異なるため曖昧であり、5)は、一時的なものである可能性が高く、6)と7)は、特徴の消失や新たな追加によって不明瞭となる可能性が高い。このため、4)から7)については不十分な形質と考えられる（識別形質の特徴、+ないし-）。

土佐湾では、識別された53個体中、上記1)から3)の有効な形質で識別されたものは35個体（66%）であった。残り18個体は、4)から7)の不十分と考えられる形質で識別されたものであり、これらは全て既存識別データに基づくものであった（表3-3）。

野間池沖では、識別された26個体中、19個体（73%）が有効な形質で識別されたが、残り7個体（Photo-ID調査3個体、ホエールウォッチング船の提供データ4個体）は不十分と考えられる形質で識別されたものであった（表3-3）。

不十分と考えられる形質で識別された個体の再発見間隔（年）は、土佐湾で1～4年（平均1.89年）、野間池沖で1～2年（平均1.14年）であり、両海域合わせて25個体中15個体は、初回発見時の1年のみにしか見られなかった。このことからも、形質4)から7)は、長期の識別には不十分と考えられる。このため、以降の解析には、これらを除き、有効と考えられる形質1)から3)によって識別された個体のデータのみを用いることとした。

識別形質の経時変化

本研究の対象期間中（1989-2008年）に、新たに有効な識別形質が加わった事例が、土佐湾で2例認められた（図3-9）。1例は、2001年7月から2004年8月の間のいずれかの時期に、背鰭後縁の基部にダルマザメによると思われる欠刻が新たに加わり（個体ID番号：TB-22）、もう1例は、2006年7月から2007年8月の間に、背鰭後縁の中央部付近に、比較的新しい切れ込み状の欠刻が加わった（個体ID番号：TB-47）。これらは、本研究で用いた識別形質があくまで後天的なものであり、個体の識別の可否が時とともに変化し得ることを意味する。しかし、少なくとも本研究の対象期間内において、有効な形質を用いて一度識別された個体は、このように新たな形質が加わっても、個体の同定が可能であった。
一方、逆に背鰭の欠刻など有効とみなした形質（形質 1～3）が、治癒などにより徐々に消失し確認できなくなるといった事例は対象期間内においては認められなかった（図 3-8）。

個体の観察時にみられる外見的特長には、上記 1)から 7)の形質以外に、体表面に付着したケイ藻類の分布によって生じる褐色の斑模様があげられる。この模様は比較的遠方からも視認でき、数日のごく短期間においては識別に利用することが可能である。しかし、どの程度安定した形質であるかは不明であった。そこで、同一年内に約 1 ヶ月の間をあけて再発見ができた個体 2 例について、ケイ藻類の付着状況の比較を行った（図 3-10）。その結果、ケイ藻類の付着域は、いずれの事例においても 7 月から 8 月にかけて減少し、それによって形作られる班模様の形状も明らかに変化した。このことから、付着ケイ藻類は、夏季に、季節の進行に伴って剥離し、長期の追跡を目的とした識別形質としては使用できないことが明らかとなった。

写真撮影率と個体の識別率

Photo-ID 調査では、個体の外見的特徴の有無に係わらず、発見した個体全てを撮影の対象とした。しかし、接近困難、見失い等により、良い写真の得られなかったケースも多く、また撮影に成功した個体も有効な識別形質が認められないことも多かった。表 3-4 に、調査ごとの発見頭数とそれに対する撮影成功頭数および識別頭数を示す。撮影率（発見したもののうち、質++以上の写真が得られたものの割合）は、土佐湾で 0.31～0.85（平均 0.63）、野間池沖で 0.00～0.89（平均 0.59）であった。個体の識別率（質++以上の写真が得られたもののうち、有効な識別形質がみられたものの割合）は、土佐湾で 0.00～0.86（平均 0.45）、野間池沖で 0.25～0.67（平均 0.44）であった。調査ごとにバラつきはあるものの、海域間で平均の値に大きな差はなく、これらの数値から、概ね発見したもののうち約 6 割が撮影でき、そのうち約 4 割が識別可能な個体であるものと考えられた。

識別個体数

有効な形質によって識別された個体の数と再発見数および累積識別頭数を表 3-5 と図 3-11
に示す。土佐湾では1989年から2008年にかけて、年間1〜19頭、合計177頭が識別され、このうち142頭が既に識別された個体の再発見であった。野間池沖では1998年から2005年にかけて、年間2〜9頭、合計41頭が識別され、このうち22頭が再発見であった。

新規に識別される個体の累積頭数は、両海域ともに年々増加し、近年においても新規の個体が認められた（図3-11）。このことから、1)まだ識別可能な個体が全て識別発見されていない、2)両海域ともに個体群が閉じておらず外部からの移入がある、3)欠刻や傷などが新たに生じ識別可能となる個体が増えている、のいずれかの可能性があることが示唆された。

識別個体の発見間隔

識別個体ごとに、最初に発見された年から最後に確認された年までの経過年数をみると、土佐湾では最大16年（平均6.51年）、野間池沖で最大8年（平均2.36年）であった（表3-6）。土佐湾では、同一個体が最大で10年連続して発見され、野間池沖では4年連続して発見された。また調査期間中（土佐湾：20年間、野間池沖8年間）に、同一個体が確認された回数（年）は、土佐湾で最大11年（平均5.03年）、野間池沖で最大4年（平均2.16年）であった。

各海域における滞在期間

図3-12に、土佐湾における識別個体の月ごとの出現状況を示す。土佐湾では、3月から11月にかけて識別個体が見られ、なかでも7月から10月にかけての発見が多かった。同一年内の連続した月で発見されるケースも多く、2ヵ月間連続して発見されたものは4例、3ヵ月間連続して発見されたものは14例認められた。さらに、4ヵ月間連続して発見されたもの4例（5月〜8月：2例、7月〜10月：1例、8月〜11月：1例）、5ヵ月間連続して発見されたもの1例（識別個体：TB-35：7月〜11月）、6ヵ月間連続して発見されたもの1例（識別個体TB-22：5月〜10月）が認められた。これらの点から、土佐湾に来遊した個体は、しばらくの間、同地で滞留し、滞在期間は、少なくとも最大で
6カ月間におよぶものと考えられた。

図3-13に、野間池沖における識別個体の月ごとの出現状況を示す。野間池沖では、ほとんどものが8月、9月に発見され、また2ヵ月間連続して発見されたものは2例のみであった。土佐湾に比較し、発見された期間が短く、また同一年内の連続した月で発見されるケースも少なかったが、これは、調査の時期がこれらの月に偏っていたこと、および調査の努力量そのもののが少ない、といった人為的要因によるものと考えられた。

各海域における識別個体の年間再発見率

表3-7に、土佐湾と野間池沖、各々の海域内における識別個体の年間再発見率を示す。年間再発見率は、ある年に識別された個体の中で、翌年再発見された個体の割合として求めた。土佐湾では、年間に識別された個体の比較的多い1993年以降、再発見率は0.29から1.00の間で推移し、期間全体の平均は0.61であった。野間池沖では、0.17から0.75の範囲で推移し、平均は0.40であった。年間のばらつきは大きいものの、これらの値から、土佐湾では、前年に識別された個体の約6割、野間池沖においても約4割が、翌年に再発見されるものと考えられる。土佐湾では20年間中、翌年に再発見がなかったのは最初の2年間のみであった。野間池沖では、調査を行った8年間、毎年、翌年に再発見があり、再発見のない年はなかった。

海域間の再発見と混合率

土佐湾と野間池沖の海域間において、識別個体の比較照合を行った結果、以下の3個体が、同一年内に、異なる年に、海域間で再発見された（図3-14）。

・個体A（土佐湾識別個体TB-17/ 野間池沖識別個体KNR-22）
背鰭後方基部の欠刻の位置ならびに形状から同一個体と判定した。

・個体B（土佐湾識別個体TB-19/ 野間池沖識別個体KNR-26）
背鰭後方の部分的な欠損に伴う特徴的な背鰭の形状により同一個体と判定した。

・個体 C（土佐湾識別個体 TB-53 / 野間池沖識別個体 KNR-16）

背鰭後縁の欠刻と、背鰭後方の左体側上にあるダルマザメ咬み跡傷３点の配置により、同一個体と判定した。

有効な形質で識別された個体の総数は、土佐湾で35個体、野間池沖で19個体であったが、このうち両海域で発見された個体は上記の3個体のみであった。海域間の個体の交流の程度を推測する目安として、森(1995)にならい、以下の式を用いて、交流率 M の推定を行った。

\[
M = \frac{m}{n1+n2-m} \times 100
\]

ここで、n1 は海域1（土佐湾）における識別個体数、n2 は海域2（野間池沖）における識別個体数、m は両海域で識別された個体数である。上式を用いて算出した土佐湾と野間池沖の個体の交流率は5.88%であった。
親仔連れの出現

土佐湾と野間池沖の2海域では、親仔連れも観察された。親仔連れとして観察された識別個体の出現履歴を、表3-8に示す。ここでは、明らかに2頭が近接し同調して遊泳しており、かつ、見かけ上の体長が2頭で明らかに異なり、片方がもう一方の個体の体長の約3分の2以下とみなされるものを親子連れとした。

土佐湾では、1989年から2008年に個体識別された個体のうち、親仔連れ、すなわち、仔鯨を連れた雌と判断された個体は12個体であった。野間池沖では、1998年から2005年に個体識別された個体のうち、同様に雌と判断されたものは2個体であった。

出産間隔と出産率

土佐湾では、複数の識別個体について、年を越えて繰り返し仔連れで観察される事例が得られた。そこで、これらの記録に基づいて、土佐湾に来遊するニタリクジラの出産間隔と出産率について検討を行った。

識別個体が仔連れで観察された年の間隔は、1年が5回と最も多く、2年が3回、4年が2回、5年が1回、6年が2回であった。仔連れで観察されることは、その年に出産があったことを意味すると仮定し、これらの値を平均すると、平均出産間隔は2.77年と算出された。ただし、この間隔には、識別個体が発見されず出現履歴のなかった年も含まれており、その年に関しては出産の有無が判断できないため、算出された出産間隔は過大に推定されていると考えられる。

一方、出産率については、識別個体も非識別個体も、発見される確率が同じであれば、識別された成熟雌個体に占める仔連れの割合は、全体の成熟雌個体に占める出産個体の割合（出産率）と同じであり、これは、性成熟に達している雌の識別個体の総観察回数（観察年）に占める仔連れの観察回数の割合として推定できる（Bigg, 1982）。そこで、表3-8に示したデータのうち、各個体について最初に仔連れで発見された年以降を性成熟に達しているものとみなすと（それ以前の性成熟状態は不明）、性成熟個体の観察回数はのべ51
回、このうち、仔連れで観察された回数は24回であることから、出産率は0.47と推定された。理論的には、出産率の逆数が出産間隔であり、この場合、平均出産間隔は、1/0.47=2.13年と推定される。ただし、識別個体が発見されず出産の有無が判断できなかった年もあるため、仮にそれらの年に実際に出産が行われていなかったならば、本手法では、出産率を過大に、出産間隔を過小に推定することも生じ得る。
これらの点から、本種の出産間隔は、最低1年、平均出産間隔は2.13～2.77年と推察された。

摂餌行動の出現

・突進型摂餌（Fig. 3-16）
本行動は、土佐湾、野間池沖の両海域にて、しばし、大きな鳥山やイルカ類の群れを伴って観察された。ミズナギドリ等が頻繁に、垂直に海面に飛び込み、小魚によるナブラ（水面上のさざ波）が見られるような状況下で、1個体ないし、時には複数個体が、水面下から突進して、しばしば水にしぶきを上げて跳ね上がる行動が観察された。突進して水面上に跳ね上がる際は、しばしば身体を上に横倒しになったが、時には、右体側を上に向けたり、垂直に立ったり、あるいは腹を上に向けたりすることもあった。また、跳ね上がる際、
口を開いていたり、喉部を広げていることも多く、時折、カタクチイワシと思われる仔魚が口角周辺に舞っているのも観察された。

・バブルネット型摂餌（Fig.3-17）

本行動も、土佐湾、野間池沖の両海域にて観察された。前述の突進型の摂餌行動に比べると、本行動は、鳥山等のない比較的穏やかな海面状況下、水面に、直径おおよそ10〜15mほどの気泡の輪が形成され、一拍おいて、輪の外側に、個体が普通に浮上する、という形で観察された。このような気泡の輪を形成する摂餌法は、ザトウクジラでは、一般にバブルネットフィーディングと呼ばれ、特にアラスカのグレーシャー湾での観察事例が有名である（Jurasz and Jurasz, 1979）。ザトウクジラでは、1頭、時には複数頭の個体が、噴気孔から気泡を連続的に出しながら、餌の群れの下方から螺旋状にぐるぐる回りながら浮上し、その気泡によって円筒形のカーテンを形成し、円筒の中心に餌生物を集めるものと考えられている。その際の気泡は、水面下では、時に30mに達する輪を形成し、その中央部付近に、大きく口を開けて浮上し、餌生物をひと呑みにする行動が観察されている。土佐湾と野間池沖で観察されたニタリクジラのバブルネット型の行動は、いずれも単独個体で行われており、気泡の輪を形成した後の浮上は、突進したり口を開けたりすることもなく、輪の外側に普通に浮上することがほとんどであった。このことから、本種は、気泡で凝集された餌を、水面ではなく、恐らく水中でひと呑みした後に、浮上するのではないか、またこのような行動は、突進型の摂餌が見られるケースとは異なり、比較的、餌が少ないときに単独で行われるのではないかと推察された。

これらの行動の観察頻度を表3-9に示す。突進型の摂餌行動は、調査を行った2001年から2008年にかけて、土佐湾では夏季に毎年観察されており、野間池沖でも同様に、2001年から2005年にかけての夏季に毎年観察された。突進型の摂餌行動の出現率（Photo-ID調査でニタリクジラを発見した日に占める突進型の摂餌が見られた日数の割合）は、土佐湾で8.3%から100%（平均39.1%）、野間池沖で33.3%から80%（平均60.9%）であった。パブル
ネット型の摂餌行動は、土佐湾では2003年を除き毎年観察されており、出現率は平均18.8%であった。野間池沖では、2001年と2005年に1日ずつ観察され、出現率は平均8.7%であった。両海域またいずれの年においても、突進型の摂餌行動の方が、バブルネット型の摂餌行動よりも出現率が高く、本種の両海域における摂餌行動は突進型が主体であると考えられた。また、突進型ないしバブルネット型、いずれかの摂餌行動が観察された日を摂餌行動が観察された日として算出した出現率は、高知沖で平均52.2%、野間池で平均65.2%であり、両海域ともに5割を越える高い出現率であった。

考察

Photo-ID調査の結果から、本種は沿岸域において発見したもののうち約6割を写真撮影でき、そのうち約4割が識別可能であること、個体を識別する際に鍵となり、かつ長期の識別に耐え得る有効な形質として、背鰭ニタリクジラの欠刻、体表の明瞭な傷、多数のダルマザメによる瞳跡の配置が挙げられ、これらの形質に基づき、個体によっては10年以上の再発見履歴を蓄積できることが明らかとなった。これらの点から、写真個体識別法は、沿岸域において、個体レベルでの移動、回遊、出現履歴などの生態を把握する上で、特に有効な形質を有する個体に関して、十分に有益な手法であると考えられた。

写真個体識別法は、一般に、識別形質を自然標識として捉え標識再捕法を適用して個体数を推定する試みが多くなされている。しかし、本研究で用いた形質は、あくまで後天的なものであり、発見した個体を全て識別することはできないこと、個体の識別の可否が時とともに変化し得ること、さらに、新規に識別される個体の累積頭数が土佐湾と野間池沖、いずれの海域においても増加し続けており、各海域で個体群が閉じておらず外部からの移入のある可能性、あるいは欠刻や傷などが新たに生じ識別可能となる個体が増えている可能性のあることも示唆された。これらの点から、現段階では、標識再捕法を利用して信頼性のある個体数推定を行うことはできないものと考えられる。

前章において、目視による発見分布の解析から、土佐湾にみられるニタリクジラは、西部北太平洋系群ではなく、東シナ海系群に属しており、これが日本の南西部沿岸において
太平洋側まで伸張してきたもの推察された。本章において識別個体の照合を行った結果、土佐湾と、東シナ海に面した野間池沖の間で、同一個体の再発見が3例得られた。これは、2海域間で個体の交流があることを示す直接的な証拠であり、前章で得た推察を強く支持するものと考えられる。2海域間の交流率は、5.88%と推定された。森(1995)は、同様の手法を北太平洋のザトウクジラに用い、繁殖海域である小笠原周辺海域と沖縄近海との間の交流率を2.4%、また小笠原とハワイ諸島との間の交流率を0.3%と推定している。これらの数値に比較すると、識別個体数（サンプル数）は少ないものの、土佐湾と野間池沖の間のニタリクジラの交流率の数値は高く、系群という観点からは、十分に個体の交流があるものと考えられた。

海域ごとに見ると、土佐湾では、前年に識別された個体の約6割、野間池沖においても約4割が、翌年に再発見されるものと考えられた。土佐湾では20年間中、翌年に再発見がなかったのは最初の2年間のみであり、野間池沖では、調査を行った8年間、毎年、翌年に再発見があり、再発見のない年はなかった。これらの点から、両海域のニタリクジラは、ともに各々の場所との結びつき(site fidelity)が高く、同じ場所に回遊してくれる個体が多いものと推察された。また土佐湾では、同一個体が10年連続して夏季に発見され、年内でも最長6ヶ月間にわたり連続して発見された例もあることから、条件が良ければ長期に渡って湾内に再来遊ないし滞在し得るものと示唆された。両海域は、ともに摂餌行動が頻繁に観察されており、本種にとって重要な摂餌海域になっているものと考えられる。また、親仔連れも観察されることから、これらの海域は、仔の養育の場としても重要な役割を果たしているものと考えられる。このような場所との結びつきの高さは、餌が豊富にある時に海域を訪れた個体が経験を経て再度同じ場所を訪れる形で、また親仔連れとして回遊してきた場合には、離乳した仔のその後の回遊経路をも位置づける形で、形成されてきたのではないかと推察された。

*Animals identified by insufficient keys for long term. For details of the keys, see Table 3-3.

<table>
<thead>
<tr>
<th>ID No.</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNR-01</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-02*</td>
<td>B*</td>
<td>B*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-03</td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-04</td>
<td></td>
<td>A,B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-05*</td>
<td>B*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-06*</td>
<td></td>
<td>B*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-07</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-08</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-09*</td>
<td>B*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-10</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-11</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-12</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-13</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-14</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-15</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-16</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-17*</td>
<td></td>
<td>A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-18*</td>
<td></td>
<td>A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-19*</td>
<td></td>
<td>A*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNR-20</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-21</td>
<td></td>
<td>A,B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A,B</td>
</tr>
<tr>
<td>KNR-22</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-23</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-24</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-25</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>KNR-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

*Animals identified by insufficient keys for long term. For details of the keys, see Table 3-3.
Table 3.3. Number of photo–identified Bryde’s whales with their identification keys in Tosa Bay and off Nomaike in 1989 to 2008.

<table>
<thead>
<tr>
<th>Area</th>
<th>Data source</th>
<th>No. of identified animals (a)</th>
<th>Identified by effective keys (%)</th>
<th>Identified by insufficient keys (b) (%)</th>
<th>Ratio (b) / (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>Past ID records, 1989-2001</td>
<td>43</td>
<td>14 (32.6) 74 (16.3) 4 (9.3) 25</td>
<td>4 (9.3) 2 (4.7) 4 (9.3) 8 (18.6) 18</td>
<td>0.581</td>
</tr>
<tr>
<td></td>
<td>Photo-ID surveys, 2000-2008</td>
<td>9</td>
<td>4 (44.4) 2 (22.2) 3 (33.3) 9</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Data from WW boats, 2004-2008</td>
<td>1</td>
<td>1 (100.0) - - - 1</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>53</td>
<td>19 (35.8) 9 (17.0) 7 (13.2) 35</td>
<td>4 (7.5) 2 (3.8) 4 (7.5) 8 (15.1) 18</td>
<td>0.660</td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>Photo-ID surveys, 1999-2005</td>
<td>15</td>
<td>10 (66.7) - 2 (13.3) 12</td>
<td>3 (20.0) - - - 3</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>Data from WW boats, 1998-2005</td>
<td>11</td>
<td>6 (54.5) 1 (9.1) - 7</td>
<td>2 (18.2) - 1 (9.1) 1 (9.1) 4</td>
<td>0.636</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26</td>
<td>16 (61.5) 1 (3.8) 2 (7.7) 19</td>
<td>5 (19.2) 0 1 (3.8) 1 (3.8) 7</td>
<td>0.731</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>79</td>
<td>35 (44.3) 10 (12.7) 9 (11.4) 54</td>
<td>9 (11.4) 2 (2.5) 5 (6.3) 9 (11.4) 25</td>
<td>0.684</td>
</tr>
</tbody>
</table>

1: Thought to be insufficient for long term identification.
2: Remarkable wounds on body surface presumably by the propeller strikes.
3: Oval scarring on body surface by cookie-cutter sharks
4: Includes two animals which have both the remarkable wounds on body and the nicks on dorsal fin.
Table 3-4. Shooting rate and identification rate of Bryde’s whales sighted during the photo-ID surveys in Tosa Bay and off Nomaike.

<table>
<thead>
<tr>
<th>Area</th>
<th>Survey period</th>
<th>No. of sightings*</th>
<th>Shooting rate (b/a)</th>
<th>No. of animals photographed (c)</th>
<th>Identification rate (d/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>20-25 Jul. 2001</td>
<td>24, 15</td>
<td>0.625</td>
<td>10, 7</td>
<td>0.700</td>
</tr>
<tr>
<td></td>
<td>15-20 Sept. 2001</td>
<td>33, 20</td>
<td>0.606</td>
<td>15, 11</td>
<td>0.733</td>
</tr>
<tr>
<td></td>
<td>20-25 Aug. 2002</td>
<td>28, 19</td>
<td>0.679</td>
<td>12, 5</td>
<td>0.417</td>
</tr>
<tr>
<td></td>
<td>23 Sept.-1 Oct. 2003</td>
<td>6, 4</td>
<td>0.667</td>
<td>4, 2</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>7-17 Nov. 2003</td>
<td>14, 5</td>
<td>0.357</td>
<td>5, 0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>18-23 Jul. 2004</td>
<td>60, 47</td>
<td>0.783</td>
<td>19, 6</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>20-25 Aug. 2004</td>
<td>24, 14</td>
<td>0.583</td>
<td>12, 6</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>15-21 Jul. 2005</td>
<td>33, 17</td>
<td>0.515</td>
<td>12, 5</td>
<td>0.417</td>
</tr>
<tr>
<td></td>
<td>18-20 Aug. 2005</td>
<td>13, 9</td>
<td>0.692</td>
<td>8, 0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>22-27 Jul. 2006</td>
<td>18, 14</td>
<td>0.778</td>
<td>10, 6</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>20-25 Aug. 2006</td>
<td>17, 14</td>
<td>0.824</td>
<td>11, 5</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>17-21 Jul. 2007</td>
<td>16, 5</td>
<td>0.313</td>
<td>5, 3</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>5-11 Aug. 2007</td>
<td>11, 7</td>
<td>0.636</td>
<td>7, 6</td>
<td>0.857</td>
</tr>
<tr>
<td></td>
<td>22-28 Jul. 2008</td>
<td>10, 5</td>
<td>0.500</td>
<td>4, 1</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>22-31 Aug. 2008</td>
<td>26, 22</td>
<td>0.846</td>
<td>15, 6</td>
<td>0.400</td>
</tr>
<tr>
<td>Mean</td>
<td>0.627</td>
<td></td>
<td></td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>24 Jun. 2001</td>
<td>2, 0</td>
<td>0.000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>25-28 Jun. 2001</td>
<td>0, -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10 Aug. 2001</td>
<td>7, 3</td>
<td>0.429</td>
<td>3, 2</td>
<td>0.667</td>
</tr>
<tr>
<td></td>
<td>11-15 Aug. 2001</td>
<td>13, 8</td>
<td>0.615</td>
<td>8, 5</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>4-12 Aug. 2002</td>
<td>17, 13</td>
<td>0.765</td>
<td>9, 4</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>18-23 Aug. 2003</td>
<td>23, 13</td>
<td>0.565</td>
<td>11, 3</td>
<td>0.273</td>
</tr>
<tr>
<td></td>
<td>4-9 Aug. 2004</td>
<td>26, 23</td>
<td>0.885</td>
<td>16, 6</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>9-13 Aug. 2005</td>
<td>32, 26</td>
<td>0.813</td>
<td>12, 3</td>
<td>0.250</td>
</tr>
<tr>
<td>Mean</td>
<td>0.582</td>
<td></td>
<td></td>
<td>0.439</td>
<td></td>
</tr>
</tbody>
</table>

*Includes duplicated sightings of same individuals.
Table 3.5. Number of Bryde's whales* photo-identified in Tosa Bay and off Nomaike.

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>Newly identified</th>
<th>Re-sighted</th>
<th>Total</th>
<th>Cumulative number of identified animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>1989</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>6</td>
<td>13</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>3</td>
<td>13</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35</td>
<td>142</td>
<td>177</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>Newly identified</th>
<th>Re-sighted</th>
<th>Total</th>
<th>Cumulative number of identified animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off Nomaike</td>
<td>1998</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>22</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

*Includes only animals identified by the effective keys.
Table 3-6. Sighting intervals of Bryde’s whales* photo-identified in Tosa Bay and off Nomaike.

<table>
<thead>
<tr>
<th></th>
<th>Tosa Bay</th>
<th>Off Nomaike</th>
</tr>
</thead>
<tbody>
<tr>
<td>(20 years)</td>
<td>(8 years)</td>
<td></td>
</tr>
<tr>
<td>No. of identified whales*</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>Interval between first identified year and last re-sighting year</td>
<td>Max. 16 years</td>
<td>8 years</td>
</tr>
<tr>
<td></td>
<td>Min. 1 years</td>
<td>1 years</td>
</tr>
<tr>
<td></td>
<td>Mean 6.51 years</td>
<td>2.36 years</td>
</tr>
<tr>
<td>Successive years of re-sightings</td>
<td>Max. 10 years</td>
<td>4 years</td>
</tr>
<tr>
<td></td>
<td>Min. 1 years</td>
<td>1 years</td>
</tr>
<tr>
<td></td>
<td>Mean 3.54 years</td>
<td>1.74 years</td>
</tr>
<tr>
<td>No. of years, same animals sighted</td>
<td>Max. 11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Min. 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mean 5.03</td>
<td>2.16</td>
</tr>
</tbody>
</table>

*Includes only animals identified by the effective keys.
Table 3-7. Inter-annual re-sighting rate of Bryde's whales* in Tosa Bay and off Nomaike

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>Identified in the year</th>
<th>Re-sighted in the next year</th>
<th>Inter-annual re-sighting rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>1989</td>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>2</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>9</td>
<td>7</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>9</td>
<td>5</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>8</td>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>19</td>
<td>13</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>16</td>
<td>8</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>9</td>
<td>9</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>19</td>
<td>15</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>15</td>
<td>14</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>17</td>
<td>5</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>5</td>
<td>2</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>2</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>13</td>
<td>4</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>7</td>
<td>4</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>9</td>
<td>3</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>8</td>
<td>4</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>1998</td>
<td>2</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>9</td>
<td>3</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7</td>
<td>2</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>6</td>
<td>3</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>4</td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>6</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
</tbody>
</table>

*Includes only animals identified by the effective keys.
Table 3-8. Occurrence of female Bryde's whales based on the caw-calf pairs information in Tosa Bay and off Nomaike. C: a calf present; S: female was sighted but a calf was not observed.

<table>
<thead>
<tr>
<th>Area</th>
<th>ID No.</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa Bay</td>
<td>TB-01</td>
<td>C</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>S</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>C</td>
<td>C</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>C</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>C</td>
<td>C</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>C</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>C</td>
<td>C</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-47</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TB-48</td>
<td>-</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>KNR-13</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KNR-23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-9. Occurrence of the feeding behaviors of Bryde’s whales observed during the photo-ID surveys in summer season (July to September) in Tosa Bay and off Nomaike.

<table>
<thead>
<tr>
<th>Area</th>
<th>Year</th>
<th>No. of days surveyed</th>
<th>No. of days Bryde’s sighted (a)</th>
<th>No. of days feeding behavior observed</th>
<th>Observation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tosa Bay</td>
<td>2001</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>11</td>
<td>11</td>
<td>2</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>0.778</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>0.111</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>12</td>
<td>10</td>
<td>3</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>75</td>
<td>69</td>
<td>27</td>
<td>0.391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Off Nomaike</th>
<th>Year</th>
<th>No. of days surveyed</th>
<th>No. of days Bryde’s sighted (a)</th>
<th>No. of days feeding behavior observed</th>
<th>Observation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2001</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0.333</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>0.667</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>27</td>
<td>23</td>
<td>14</td>
<td>0.609</td>
</tr>
</tbody>
</table>
Fig.3-1. Cruise tracks and sighting positions of Bryde’s whales made by the photo-ID surveys in the Tosa Bay in July, 2001-2008.
Fig. 3-2. Cruise tracks and sighting positions of Bryde’s whales made by the photo-ID surveys in the Tosa Bay in August, 2002-2008.
Fig.3-3. Cruise tracks and sighting positions of Bryde’s whales made by the photo-ID surveys in the Tosa Bay in September to November, 2000-2003.
Fig. 3-4. All cruise tracks (upper) and sighting positions of Bryde’s whales (lower) made by the photo-ID surveys conducted in the Tosa bay in 2000 to 2008.
Fig. 3-5. Cruise tracks and sighting positions of Bryde’s whales made by the photo-ID surveys in the coastal waters off Nomaike, southwest coast of Kyushu, in August, 2002-2005.
Fig. 3-6. All cruise tracks (upper) and sighting positions of Bryde's whales (lower) in the coastal waters off Nomaike, southwest coast of Kyushu, from all sighting surveys conducted in 1998 to 2005.
Fig.3-7. Examples of effective keys used in photo-identification of Bryde’s whales.

A: nick on dorsal fin (Individual ID No.:TB-35), B: remarkable body scars presumably by the propeller strikes (TB-44), C: positions of many oval scarring on body surface by cookie-cutter sharks (TB-45).
Fig.3-9. Instance of the newly added identification key (nicks on dorsal fin) of Bryde’s whales in Tosa Bay during the periods from 1989 to 2008.
Fig. 3-10. Examples of the change in diatom on the body surface of Bryde’s whales within the same year in Tosa Bay.
Fig.3-11. Cumulative number of photo-identified Bryde’s whales in Tosa Bay and off Nomaike, 1989-2008. Closed circles: Tosa Bay; Open circles: off Nomaike. Animals identified by insufficient keys were excluded.
Fig. 3-12. Seasonal occurrence of photo-identified Bryde’s whales in Tosa Bay. The horizontal line in each column indicates the month when the whale was taken by photographs. The parallel lines mean the same months in the different years, and the successive straight lines means the successive month within the year. *: Animals identified by insufficient keys for long term.
Fig. 3-13. Seasonal occurrence of photo-identified Bryde’s whales off Nomaike. The horizontal line in each column indicates the month when the whale was taken by photographs. The parallel lines mean the same months in the different years, and the successive straight lines means the successive month within the year. *: Animals identified by insufficient keys for long term.
Fig. 3-14. Photographs of the re-sightings of three Bryde’s whales between Tosa Bay (left side) and off Nomaike (right side). Individuals ID: AA’: TB-17/KNR-22, BB’: TB-19/KNR-26, CC’: TB-53/KNR-16.
Fig. 3-15. Sighting date and movements of Bryde’s whales re-sighted between Tosa Bay and off Nomaike. Closed circles: sighted in Tosa Bay; Open circles: sighted off Nomaike.
Fig. 3-16. Lunge feeding behavior of Bryde’s whale observed during the photo-ID survey in July 2004 in Tosa Bay.
Fig.3-17. Bubble net made by Bryde's whale observed during the photo-ID survey in July 2005 in Tosa Bay.
第四章 沿岸域ニタリクジラへの衛星標識法の開発と移動追跡

序論

衛星標識法(Satellite tracking)は、人工衛星と電波発信機を用いて個体の移動をダイレクトに知る方法として有効である。我が国では、昭和58年に、捕獲されたハンドウイルカの背鰭周辺にハーネス型の発信機を固定して放流し、アルゴス衛星を用いて移動を追跡した例が最初であった（田中，1986）。その後、工学技術の発展に伴い電波発信機の小型化が進み、装着法の開発と相まって、諸外国では、シロナガスクジラなどのナガスクジラ科を含む鯨類を対象に、電波発信機の装着と移動追跡に関する研究が多くなされてきた（Heide-Jorgensen, et al., 2001; Mate, et al., 2007）。本手法を沿岸域のニタリクジラに応用できれば、土佐湾と野間池沖、2海域間の関係のみならず、東シナ海や西部北太平洋との関係、また季節を通した回遊経路とその範囲なども明らかにできる可能性がある。しかし、ニタリクジラを含むナガスクジラ科の鯨類は、遊泳速度が速く体も大きいため、イルカ類のように捕縛して処置を施すことはできない。また遊泳時の水流による抵抗も大きいため、いかに長期にわたって外れないように発信機を付けるかという点で、装着方法自体に大きな課題が残されていた。このため、当時、国内では、ナガスクジラ科鯨類に対する電波発信機装着の成功例はなかった。

遊泳中の鯨への発信機装着には、突棒を用いる方法、クロスボウ、銃器等を用いる方法などがあるが、いずれも十分に鯨に接近する必要がある。土佐湾と野間池沖では、ホエールウォッチングや個体識別調査を通じて、小型船によりニタリクジラに接近できる機会が多い。そこで、本章では、これらの海域に来遊する沿岸域のニタリクジラを対象に、電波発信機の装着法を開発し、個体移動の追跡を試みることを目的とした。

なお、発信機装着の実施にあたっては、本種をホエールウォッチングの主対象とする地元船主会、漁業協同組合、漁業者達と事前に協議を重ね、十分に理解を得てから行った。また、機器の開発と装着調査は、2003年から2005年にかけて、遠洋水産研究所の交付金プロジェクト研究事業「大型海洋動物の衛星追跡とその技術開発」のもとで、2006年以降は、
材料と方法

予備調査（突棒による装着の試み）

予備調査として、土佐湾で実施したPhoto-ID調査（2003年9月23日から10月1日にかけて、および同年11月7日から17日にかけて）の中で、突棒を用いて、以下に示す2タイプの標識について、ニタリクジラへの装着を試みた。

タイプ1（図4-1）
従来、捕獲されたイルカ類の背鰭への装着に用いられていた筒型アルゴス発信機と筐体を流用し、これに銛2本を付けて標識としたものを準備した（総重量370g）。銛先はチタン製で円錐形状のものとし、かえし部分は、十字形状のチタン板（厚さ約1mm）を銛先と銛軸の間にセットし、長軸方向に折り曲げたものを使用した。装着は、長さ4.15mの竿（カーボン製、3mもの2本を中継ぎし約1.8m切除、重量約1.9kg）を用い、船首から突棒式に投下して装着することとした。銛と標識は、竿に専用の受け口を設けて着脱可能な形状でセットし、銛先に殺菌外傷療法剤（イソジンゲル）を塗布した。また、鯨への装着に失敗した際に標識を回収できるように、12号のナイロンテグスを標識の筐体に空けた孔に通して船上で保持し命綱とした。装着失敗時にはテグスを引き寄せることによって標識を回収し、装着成功時には、保持したテグスの一方を切断ないし放棄することによって、テグスのみを回収する（テグスは孔を通って標識から抜ける）ことを想定した。

タイプ2（図4-2）
テロニクス社製の横置き平型タイプのアルゴス発信機（ST20型A-210）にポリウレタン製プレートを装着し、プレートを介して銛2本を付けたものを標識として準備した。銛先と、かえし部分は、片刃を研いでチョッキリ形状（ステンレス製）とした。装着は、タイプ1と同様に、長さ4.15mの竿を用い、船首から突棒式に投下して装着することとした。銛と
標識は、竿に専用の受け口を設けて着脱可能な形でセットし、銛先にイソジンゲルを塗布した。また、タイプ1と同様に12号のナイロンテグスを命綱として用いた。

予備調査の期間中は、天候海況が安定せず、ニタリクジラの発見も少なかったために、突棒が使用できる程度に個体に接近できたのは、以下の3例のみであった。

9月26日（タイプ1標識）
12:29時、黒潮12号ブイ（須崎沖約20海里）付近でニタリクジラ1群1頭を発見。同個体はブイのごく間近（数mの範囲）で潜水浮上を繰り返していた。周囲に居たウォッチング船が去るのを待って13:00時に突棒をスタンバイ。海況は1〜2。以降、浮上するたびに接近を試みたが、鯨の浮きが悪く（水上から海面を透かして鯨体が見える浅い水深で遊泳を続けるような行動が見られない）、進行方向を予測できないため、追尾方法は、浮上時に斜め後方から全速で接近する形をとった。この個体は接近を開始してから5回目の浮上（13:39時）を最後に見失った。5回の浮上中、突棒の射程圏内に接近できたのは1回のみであった。しかしこの時、突棒が届く範囲の鯨体部分は水面直下にあり、突棒の先端が海面に触れた瞬間、鯨は潜水に移り、突棒を投げるまでに至らなかった。

10月1日（タイプ1標識）
13:05時、大方の南西約18海里の海域でニタリクジラ1群1頭を発見。体側の傷と背鰭の欠刻から、写真判定の結果、既識別個体TB-08と判定された。この個体は、4〜8秒間の長潜水の後、2〜5回、約1〜2秒間隔で浮上と短潜水を繰り返すという遊泳パターンであった。海況は3。しばらく写真撮影を行いつつ接近可能かどうか様子を見る。短潜水中に、水上から海面を透かして鯨体を視認できるようになったため、13:48時、突棒をスタンバイ。鯨への接近は、海面下の鯨体を見つつ微速で並走し、鯨が浮上し始めたところで船速を上げ、いきなりに近づく形をとった。接近を開始してから7回目の浮上時（途中1回の長潜水を含む）に、突棒の射程圏内に接近でき、突棒の投下を行った（14:03時）。突棒は、背鰭後方の
体側上部側面に命中したが銛先は刺さらず標識は竿からはずれて沈下した。命中直後の鯨の行動に反応はみられなかった。その後、2回の長潜水と4回の浮上を行い14:14時の浮上を最後に見失った。この個体は、長潜水中は深く潜行し、水上から海面下の鯨体が見えず、継続して接近追尾することは困難であった。回収した標識の銛先は、2本の銛の両方に先端が約1mmずつ同方向に折れ曲がっており、命中時の衝撃で曲がったものと推察された。

11月15日（タイプ２標識）
09:36時、井ノ岬の西方約12海里的海域でニタリクジラ1群3頭を発見。この群れは、発見時にはカツオ引きされました。両者釣獲を目的に、鯨を追いかけ、鯨の周辺で引き縄を曳いて回る漁法が、時折、行われている。各個体の遊泳速度は速く、潜水浮上のパターンも不規則で、遊泳方向を予測することも困難であった。海況は2～3でうねりがやや高かった。カツオ引き漁船は、鯨の浮上時に全速で現場に急行し水面上を駆け抜けたり、周囲を旋回する、といった行動を繰り返していた。このため、前回に行った方法（水面下の鯨体を見て微速で接近する）をとることができず、追尾は漁船と競争する形（浮上時、全速で現場に急行し一瞬のチャンスを狙う）で行わざるを得なかった。

この群れは、調査船2隻、漁船5隻、計7隻の船で追跡を続けたため、途中何度か見失っても再発見でき、最終的に約4時間半における追尾を行ることができた。しかし、上述のような状況であったため、この間に調査船が突出の射程圏内まで近づけたのは3回のみであった。3回の投下中、1回は投下的タイミングの見誤り、2回は標識に付けていた命綱（装着失敗時に回収するためのテグス）が絡まったり短かったりしたため、これに引かれ突棒がうまく飛ばず、いずれも発射しなかった。船速が速くうねりもやや高かったことから、船の足場が安定せず、突棒の取り扱いも困難であった。

以上の結果から、突棒では発信機の装着には至らなかったが、1）状況が良ければ小型船で
鯨に接近し、先端に標識を付けて突棒を命中させることは可能であること。

2) しかし、タイプ1標識で使用した円錐銛の銛先は瞬発的な力に弱く、鯨体へも刺さりにくいこと。

3) 命綱として用いたナイロンテグスの取り扱いが難しく、装着失敗時における標識の回収方法に改良が必要であること。

4) 突棒の射程圏内まで接近できることは稀であり、装着機会の向上には、より射程の長い機器を用いる必要があることなどが明らかとなった。

特に、2番目の点については、銛先の形状についてなんらかの改良が必要であるとともに、2本銛では命中時に力が分散するため、1本の銛で標識を装着できるような改良が必要であると考えられた。

また、3番目の点については、ナイロンテグスによる命綱方式は、これを大型船のように船首から垂らすと、船の高さが低いため水中に浸り、船速をあげると水の抵抗で強く後方に引っ張られるという問題が生じた。一方、船上に巻いておくと絡みやすく、いざという時に役立たなかった。さらに命綱の長さも、長すぎるとスクリューに絡む危険があり、短すぎると突棒が引っ張られ鯨に届かないといったトラブルが生じた。

以上の点から、ナイロンテグス等の命綱の使用は適切ではなく、切り離し装置のついた浮力体を利用するなどの根本的な改良が必要であると考えられた。

さらに4番目の点については、ある程度状況が良くないときでも装着できる可能性を高めるため、射程距離がより長く力も強い銃器の利用を検討した方が良いと考えられた。

試射実験（空気銛による装着試験）

突棒を用いた予備調査の結果を踏まえ、翌2004年に、空気銛を用いた新たな装着手法の開発を行った。まず、脂皮の厚い大型鯨類に対する銃器と標識銛の有効性を判断するため、漁業で捕獲されている鯨類を利用し、実際に鯨体に標識を打ち込んで、その有効性について検討することを目的とし、空気銛による装着試験を行った。

試射実験は、日本小型捕鯨協会および日本近海捕鯨の協力を得て、小型捕鯨業日本海ツチクジラ操業時に、捕鯨船第28大勝丸に便乗させて頂き、捕獲されたツチクジラ（一番銛命中後、舷側に引き寄せて捕殺するまでの間）および海面にダミー標識銛を打ち込み、標識銛の挙動をみるとともに、その後、鯨体解体時に、標識銛の貫通具合について観察を行う形で実施した。
標識の射出には、遠洋水産研究所がバイオプシーサンプリングに用いている空気銃（ミロク精機製作所；型番：M-40型標識銃；全長：850mm；口径：40mm；充填圧：110気圧、図4-3）を用いた。標識本体は、ワイルドライフ社製SPOT4の使用を想定し、形状と重量の全く等しいダミー発信機を製作した。これに3本爪の平頭型銃先を付し、後部には、銃口からの射出と不命中時の回収用に、銃の口径に合わせて製作した浮力楕体（フロート；材質エコフロート、比重0.2）を酢酸ビニル樹脂系接着剤で固定した（図4-4）。命中時にはフロートがはずれ、銃先と本体のみが鯨体に貫入し、後部アンテナより電波を発信させる、不命中時にはフロートとともに海面に浮遊し、タモ網等による回収を可能とさせることを想定した。

試射は捕獲されたツシマクジラ2個体（体長9.49m、9.73m）に対して、捕鯨砲一番銃命中後、銃綱で軸側まで引き寄せた状態で、止めの捕殺を行う前に実施した（射撃時の鯨体までの距離：約7〜10m）。射撃時、標識弾体の弾道はいずれも直線的であり、標識本体はアンテナ部5〜10cm程度を体表に出す形で、鯨体内に全て陥入した。フロートは、いずれのケースにおいても命中時に本体から弾き飛ばされて外れ、特に2例目では命中時の衝撃で2つに割れて飛散した。一方、鯨体に命中せず海面に当たった場合においてもフロートは外れ、標識本体は海没し回収することはできなかった。捕獲した鯨体は、10〜11ノットの船速で5〜6時間曳航した後、函館港に水揚げされ、陸上処理場で解体された。この間、標識銃は強い水流に晒されていたが、これによって脱落ないし装着部位が緩む、といったことはなかった。解体時の観察では、標識銃は脂皮内に斜めに埋没しており筋層までは達していなかった（図4-5）。しかし3本爪周辺には纖維状の組織が縦横無数に絡んでおり、体表側から標識銃を強く引っ張っても全く動かなかった。また命中部位の穴は収縮して狭まっており、傷口が大きく広がっていることもなかった。

これらの結果から、試射に用いた3本爪の平頭型銃先と銃器は、鯨体内に標識本体を陥入させるのに十分な威力を有すること、また装着後の脱落に対する力も比較的強いことが実証された。しかし、使用を予定していたアルゴス発信機SPOT4は本体後部に浮上スイッチがあるため、実際に機能させるたには、アンテナ部のみでなく本体後部も鯨体の外に
出さなければならない。このため、命中時に標識本体が完全に埋没しないような工夫が別途必要となった。また不命中時の回収方法についても、フロートと標識本体の結合部が樹脂系接着剤のみでは水面着弾時の衝撃に耐えられないことが明らかとなった。

ニタリクジラへの装着

空気銃を用いたニタリクジラへの発信機の装着は、2004年から2008年にかけての土佐湾におけるPhoto-ID調査時に行った。また2005年には、野間池沖のPhoto-ID調査においても行った。装着は、試射実験の結果に基づいて改良した標識弾体と銃器を用い、以下の方法で実施した。

使用銃器

試射実験に用いたものと同じ空気銃（ミロク精機製作所）を使用した。

標識本体（図4-6）

アルゴス発信機には、ワイルドライフ社製SPOT4（2006年からはSPOT5）を使用。これに、3本爪の平頭型銛先を付したものを標識とした。全重量184g（銛先66g、本体118g）。全長32.5cm（アンテナ部14.5cm、本体18cm）。また、試射実験の結果に基づき、命中時に標識本体が鯨体に完全に埋没するのを防ぐため、本体尾部にエポキシ樹脂系パテを盛り付けてストッパーとした（想定陥入部12cm、露出部4cm）。

フロートとの接合

不命中時に水面着弾の衝撃でフロートが外れるのを防ぐため、酢酸ビニル樹脂接着剤に加え、水溶性合成繊維（ソルブロンTypeSSニチビ社製）で編んだロープを用い、フロートと標識本体を固定した（同ロープについては事前に強度および水溶性についての実験を行い、水温24.3度の流水条件下、標識本体を懸垂させての実験を行、1時間30分で溶解切断される太さのものを用いた。洋上にて再度試射を行ったところ、水面着弾時にフロートが外
装着方法

装着対象個体は、Photo-ID調査中に発見されたニタリクジラのなかで、十分に接近追尾でき、かつホエールウォッチングの観鲸対象となっていないものののみとした。射撃は小型船の船首から筆者が行った。射撃時には、標識本体および銛先に殺菌外傷治療剤（イソジンゲル）を塗布した。

なお、衛星標識の実施にあたっては、地元漁業者との協議の上、年間の実施頭数を、海域ごとに年間2〜3頭までと上限を定めて実施した。

結果

2004年調査における装着

射撃時の状況

土佐湾において、2004年7月18日から7月23日に実施したPhoto-ID調査時に、ニタリクジラを発見し、このうち2個体に対して衛星標識の射撃を行った。各々の射撃時の状況は以下のとおりであった。

（1）7月18日（アルゴスID：49483）

12:00時、噴気によりニタリクジラ1頭を発見。海況3で白波あり風がやや強かった。12:02時、他の2隻の調査船も合流し3隻で追尾。発見個体は1分間隔で3回浮上後、10分間深潜水。12:15時再浮上し、1分～2分間隔（平均1.3分、n=3）で4回浮上した後、再び深潜水。白波多く水面下の鯨体は確認できなかったが銛をスタンバイ。12:30時、船首前方約10mの位置に体側右側を見て船を横切る形で再浮上し腰を上げたところで12:31時発砲。体側右側背鰭後方の腰部に命中。鯨は命中時、尾を上げて水面を1回叩き急潜水。その後見失った。標識から外れて浮遊していたフロートを回収。目視および携帯型アルゴス受信
器（テロニクス社製 TSUR-400）を用いて周辺を探索したが個体の再発見はできなかった。

（2）7月20日（アルゴス ID: 49482）
14:21時にニタリクジラ1頭を発見。海況3で白波あり。周辺には中程度の鳥山（小魚類の
摂餌を繰り返す海鳥の群れ）が形成されていた。14:24時から14:26時まで船の至近距離に
1分間隔で3回浮上。銃をスタンバイするが、背鰭後方体部が十分水面上に出ず、発砲チ
ャンスを伺いながら追尾を継続。14:26時から5分間潜行。この間、水面下の鯨体を確認し
ながら追尾することができた。14:31, 14:32, 14:36時に再浮上、14:38時、船首左側約6m
の距離に体側右側を見せ船と並走する形で浮上したところを発砲。体側右側背鰭前方基部
に命中。鯨は命中時、尾を上げて水面を1回叩き急潜水。すぐに見失った。フロートは命
中時3つに割れて飛散した。その後、他の2隻の調査船とともに周辺探索。16:16時、標識
鯨を目視により再発見。同個体の5回の浮上（平均浮上間隔1.25分）を確認したが、特に
目立った行動の変化は認められなかった（この時、携帯型アルゴス受信機に反応はなかっ
た）。

衛星の受信状況
7月18日に実施したもの（ID:49483）は、射撃後、一度も衛星による受信はなされなかっ
た。また目視によって標識個体を再発見することもできなかった。同標識については、
1)命中時、ほぼ正横方向から体部の背面よりやや下方に当たったためアンテナ部が水面上に出
ることが少なかった、あるいは 2)ストッパーが効かず標識全体が鯨体に陥入し浮上スイ
ッチが機能しなかった、3)命中時の衝撃で本体内部が破損した、といった可能性も考えられ
る。しかし、一度も目視で確認再発見できなかったことから、命中時にうまく刺さらず脱
落した可能性も高いと考えられた。

一方、7月20日に実施したもの（ID:49482）は、14:38時の装着後、19時間後の翌21日
10:08時からARGOS衛星データセンターにより送信電波の受信が確認され、以降、10回
の受信が確認された。送信電波は23日09:54時の受信を最後に途絶えた。受信回数は21
日に２回、２２日に６回、２３日に２回であり、うち位置が特定されたのは４回のみであった。受信した時間帯は９時から１６時までの間であり、特に９時、１１時、１３時台の受信が多かった。ARGOS 衛星データセンターから得られる位置データには、クラス３（150m 以下）、２（150～350m）、１（350～1,000m）、０（1,000m 以上）、Ａ（46km 以下）、Ｂ（73km 以下）の順で精度が示されている（Baba, et al., 1997）。位置が特定された４回の位置測定精度は、Ａクラスが２回、Ｂクラスが２回であった。

衛星による追跡結果と標識個体の再発見
アルゴス衛星により特定された標識個体の位置を図４-７に示す。本個体は、標識を装着した２０日の夕刻および、２２日、２３日に、調査船により目視によって再発見された。また写真識別の結果、標識される以前の７月１９日にも目撃されていたことが明らかとなった。これらの発見位置を図４-８に合わせて示す。衛星によって得られた位置の推定精度はいずれもＡないしＢクラスであり精度が高いとは言えないが、目視による再発見の状況と比較すると、衛星から得た位置と目視による発見位置は時空間的に概ねマッチしており、個体移動の把握という観点からは、十分に有効な値が得られたものと考えられた。また、これらの位置データから、本個体は、少なくともこの期間の間、同海域に滞留していたことが明らかとなった。Photo-ID 調査は７月２３日で一旦終了し、衛星による受信も同日で途絶えたため、その後の動きについては不明である。その後、８月２０日から２５日にかけて、再度土佐湾にて Photo-ID 調査を実施し、同個体を探索したが再発見ことはできなかった。

標識前後の髱の行動の変化
７月２０日の標識個体の浮上間隔は、標識実施前（２０日１４:２４～１４:３８時）は５分間の長い潜行をはさみ平均 1.60 分（n=5）であった。その後、同日１６:１６時の再発見時には平均 1.25 分（n=5）、また比較的長く潜水浮上の記録をとることのできた２３日の再発見時（13:52～14:22 時）は、平均 1.79 分（n=14）であり、標識実施の前後で潜水浮上の間隔が大きく異なる。
ことはなかった。また遊泳の仕方についても、標識装着が影響したと思われるような行動の変化は認められなかった。

装着後の標識の状況
7月20日に標識した個体については、目視により、遊泳時、標識のアンテナ部が十分水面に出ていることが確認された。また標識本体の陥入具合も20日から23日にかけて変わらず、十分に固定されているように思われた（図4-9）。しかし、標識の尾部からアンテナ部にかけて、装着失敗時の回収用に付したソルブロンロープと思われる紐状のもののが絡み付いているのが確認された。標識尾部には浮上スイッチがあり、この部分が空気中に触れないと標識本体は起動しない。目視で標識の浮上を確認しているにもかかわらず、衛星では受信できないケースが多々認められ、衛星による受信も1日に数回程度、日によって安定していなかった原因の一つとして、このような障害物が影響していた可能性が示唆された。装着に用いたアルゴス発信機SPOT4の浮上スイッチは、本体尾部が露出した導線で取り巻かれ、この部分と筐体部がなんらかの伝導体（通常は海水）を介して通電することにより起動スイッチがOFFになる形となっている。この部分について、簡単に障害物と接触して通電しませんよう、露出部分の一部を残して絶縁体で覆うなどの改良を施すことが必要と考えられた。また、ソルブロンロープについては、水を含むと溶解する際に粘度を増しアンテナ部などに絡みつきやすくなったものと思われる。この点に関しては、通常のロープを併用し、フロート部分および標識本体部分の一部のみにソルブロンロープを使用することによって解決が可能と思われた。

24日以降に受信が途絶えてしまった原因としては、1)鰭体から標識が脱落した、あるいは2)作動の不安定であった浮上スイッチないし内部機構が恒久的に機能を停止した、といった可能性が考えられた。特に前者の点に関しては、試射実験で見られたように、標識鰭が体表に対して斜めに入ると鰭先は筋膜まで到達せず、脱落の可能性が高まる。また体表からの露出部分が多いとそれだけ水の抵抗も大きい。これらについては、装着後の水の抵抗をなるべく減らすためにストッパーの位置をより後方にずらすことともに、鰭先部分を延長
する形での改良が必要と考えられた。

2005年調査における装着

標識銛の改良

2004年の調査結果を踏まえ、標識銛と標識弾体に、以下の改良を施し、ニタリクジラへの装着に臨んだ。

（1）銛先部分の延長とストッパー位置の修正

鯨体への陥入部分を長くし、銛先が筋膜まで到達するよう、銛先部分を1.5cm 延長するとともに、エポキシ樹脂系パテによるストッパーの位置を1cm 後方にずらし、装着後の陥入部の長さを15.5cm、本体尾部の露出部を3cmとした。また、これに応じてフロート内部の構造にも修正を加えた。

（2）浮上スイッチの改良

2004年調査で用いた標識の浮上スイッチは、本体尾部を露出した導線が取り囲む形をしており、この部分が障害物と接触して通電しやすい（起動スイッチがOFFになりやすい）構造となっていた。そこで、導線部を直径6mmのドーナツ状の金属板に変更し、障害物との接触の可能性を低減させた。また金属板と筐体の間の水切れを良くするため、防湿・保護コーティング剤（フロロサーフ FG-3020TH8.0フロロテクノロジー社製）を本体尾部に塗布した。

（3）フロート固定用ロープの改良

2004年調査で用いた水溶性合成繊維（ソルブロン）で編んだロープは、水を含んで溶解する際に粘度を増しアンテナ部や浮上スイッチなどに絡みつきやすくなったものと思われる。そこで、フロートとの接続にはナイロン製の通常ロープを併用し、ソルブロンの使用を一部のみに限定した。
射撃時の状況

土佐湾において、2005年7月15日から7月21日に実施したPhoto-ID調査時に、ニタリクジラを延べ31群33頭発見し、このうち3個体に対して衛星標識の装着を行った。また、同年は、野間池沖におけるPhoto-ID調査（8月9日から8月13日）においても衛星標識を実施し、同調査中に発見されたニタリクジラ32群33頭のうち2個体に対して装着を行った。各々の射撃時の状況は以下のとおりであった。

（1）土佐湾 7月16日（アルゴスID：57022）
14:30時、マイルカ属鯨類（ハセイルカ）50頭の群れの中にニタリクジラを発見した（発見個体A）。天候晴れ、海況2、水温26.8度。14:37時、別個体1頭が群れに合流（発見個体B）。周辺には小魚の摂餌を繰り返す海鳥の群れも見られ、ニタリクジラはイルカとともに餌を追っている様子であった。追尾も比較的容易であり、鯨は船首付近で横腹を見せたりした。

発見個体Aは1〜2分間隔で浮上潜水を繰り返す。14:35時、銃をスタンバイ。船首左側約5mの位置に浮上したところで14:40時発砲。右側の背鰭下部の体側面に命中。命中後、鯨は急潜行して船から離れた。発見から命中までの潜水浮上間隔は平均1.7分（n=6）であった。

その後、別個体（発見個体B）と入り混じり個体の識別が困難であったが、14:49時と14:50時に本個体の浮上を確認、命中部位にフロート固定用のロープの一部が出ているのを視認した（図4-10, A）。以降、鳥山は散りイルカの群れも離れ、同個体も見失った。

（2）土佐湾 7月16日（アルゴスID：57023）
上記発見群の追尾中、発見個体Aに標識を命中させた後も発見個体Bは船から離れなかったため、引き続き銃をスタンバイ。船首前方約5mの位置に浮上したところで14:56時発砲。右側の背鰭基底部後方付近に命中。命中後、鯨は急潜行して船から離れた。発見から命中までの潜水浮上間隔は平均1.5分（n=11）であった。その後、別個体（発見個体A）と入り混じり個体の識別が困難であったが、15:06時に本個体を確認、命中部位に折れたフロートの一部が残って付いているのを確認した（図4-10, B）。以降、本個体も見失う。
（3）土佐湾 7月20日（命中、装着失敗）

15:35時、ニタリクジラ1頭を発見。周辺にマイルカ属鯨類（ハセイルカ）100頭の群れもあり大きな鳥山が形成された。天候晴れ、海況2、水温27.7度。別個体1頭もこれに合流。頻繁に水しぶきをあげての摂餌行動が観察された。行動が落ち着くのを待つ15:56時銃をスタンバイ、標識装着のための追尾に入る。2頭並走する形で水面下を色になって進む。船首右側前方8mの位置に浮上したところで16:02時発砲。弾体は、鯨体左側腹部の少し手前で着水し、鯨は尾を一回水面に打ちつけ急潜行。標識は着着できずフロートを付けたまま洋上を漂流。これを回収したところ、銃先に約5mm四方の皮膚片がからついていた（皮膚片はDNA分析用標本としてエタノール保存）。鯨はその後もしばらく2頭で並走を続けたが、16:30時頃から散開し、さらに別個体2頭も加わって広い範囲で個体が入り乱れたため、個体を特定しての追跡はできなくなった。追尾開始から発砲までの潜水浮上間隔は平均2.0分(n=3)、発砲後も平均2.0分(n=3)であった。

（4）土佐湾 7月20日（アルゴスID: 57021）

14:54時、ニタリクジラ1頭を発見し、6回の浮上を確認（平均間隔1.4分、n=5）。本個体は尾鰭の左側が一部欠損していた。その後、一旦見失うが、上記の群れに合流してきたところを再発見。海鳥の群れやイルカとともに摂餌行動を繰り返した後、行動が落ち着き、上記個体と2頭並走する形で、水面下の鯨体が見える浅い深度で遊泳を続ける。上記個体への発砲と標識回収後、まだ2頭で並走を続けていたため、16:10時銃をスタンバイ。左舷前方6mの位置に浮上してきたところで16:20時発砲。背鰭前方、右側体側の中ほどの部位に命中。その後、16:25時と16:29時に浮上を確認したが、16:30時頃から別個体2頭も加わり4頭が広い範囲で入り乱れたため、個体を特定しての追跡はできなくなった。16:47時、再び船の近くに浮上し命中部位に標識本体尾部とアンテナを確認（図4-10、C）。調査時間切れのため追跡を終了し港向けとした。命中までの潜水浮上間隔は平均1.4分(n=20)、命中後は平均4.0分(n=2)であった。なお、写真照合の結果、本個体は土佐湾の既識別個体TB-23であることが確認された。
（5）野間池沖 8月10日（不命中3回）
天候晴れ。海況2。09:06時に発見した個体に対し、9:21時より銃をスタンバイし2回（09:26時、11:17時）、13:51時に発見した個体に対し、発見と同時に銃をスタンバイし1回（13:56時）、発砲したが、いずれも鯨体より手前に着水し命中しなかった。発砲時の鯨までの距離は7～10m程度であった。なお、不命中の弾体はいずれも回収に成功した。

（6）野間池沖 8月11日（アルゴスID：57026）
12:13時発見、天候晴れ、海況1、水温29.2度。発見後、鯨は3回短潜水（平均間隔1.3分、n=3）、7分間潜行、再び3回短潜水（平均間隔2.0分、n=3）を行った。12:18時銃をスタンバイ、左舷前方約7mの位置に浮上したところを12:29時発砲。背鰭前方、右側体側の中ほどに命中。命中後、急潜行して見失ったが12:39時に再発見。命中部位にフロートを付けたままの標識が付いているのを確認（図4-10、D）。しかし浮上1回のみの確認で見失い潜水浮上間隔は計測できなかった。この個体は背鰭に特徴的な欠刻があり、写真照合の結果、野間池沖の既識別個体KNR-03であることが確認された。

（7）野間池沖 8月13日（不命中3回）
天候晴れ。海況1のち3。09:45～48時に2個体を発見。2頭並走して浅い深度で遊泳しており、水面下の鯨体が見えるため、追尾は比較的容易であった。10:25時より銃をスタンバイし約2時間に渡って追跡、この間に3回（10:28時、11:18時、11:44時）発砲したが、いずれも鯨体より手前に着水し命中しなかった。発砲時の鯨までの距離は7～9m程度であった。不命中の弾体はいずれも回収に成功した。

（8）野間池沖 8月13日（アルゴスID：57025）
12:47時、発見。直ちに銃をスタンバイし追尾に入る。12:53時、船首前方約7mの位置に浮上してきたところを、後方から発砲。体側右側、背鰭の下側付近に命中。鯨は急潜行し
そのまま見失った。発見から発砲までの潜水浮上間隔は平均1.0分（n=6）であった。本個体は、その後、再発見できず、標識の着着具合を確認することはできなかった。

衛星の受信状況

（１） 受信回数

アルゴス衛星データセンターで確認された送信電波の受信回数を図4-11に示す。土佐湾で装着した3個体のうち衛星の電波受信が確認されたのは2個体であった。

一頭目（ID57022）は、装着後15日目に初めて電波の受信が確認され、以降34日目までの20日間に合計81回の受信が確認された（1日当たりの平均受信回数は4.3回）。しかし、この間に位置が特定できたのは30日目の1回のみであった。装着後、2週間にわたって電波が受信されなかったのは、命中時に標識本体が浮上スイッチのある尾部まで体内に陥入し浮上スイッチが作動しなかったためと思われる。その後、少しずつ体外に放出され15日目に初めて浮上スイッチが起動したものと推察される。

二頭目（ID57023）は一度も電波が受信されることがなかった。本個体は、フロートの一部が残って鯨に付いたままになっていたものである。この状態では浮上スイッチは起動せず、またかなりの流水抵抗を受けるものと予想される。本個体は、装着後4日に目視によって再発見され、標識がフロートごと脱落しているのが確認された（図4-12）。背鰭基部の命中部位には、同心円状の穴が開いており、装着時に外れずに残ったフロートが水の抵抗となって、早めに脱落したものと思われる。再発見時、本個体は、本海域で普通に見られるバブルネットによる摂餌行動を繰り返しておおり、標識着装で被った外傷に起因すると思われるような行動の変化は特に認められなかった。

三頭目（ID57021）は、装着直後から受信され、装着後5日目まで37回の受信が確認された。1日当たりの受信回数は日を追うごとに増し4日目には13回に達した。しかしながら一度も位置は特定できず、6日日以降、情報が途絶えた。鯨体への刺さりが浅かったために、この時点で標識は脱落したものと推察される。

野間池沖で装着した2個体については、いずれも衛星で電波を受信することができた。
このうち一頭目（ID57026）は、装着の翌日から受信され、位置も 1 回特定された。装着時に付いていたフロートは、それまでに外れたものと考えられる。しかし、1 日当たりの受信回数は少なく 5 日目には情報が途絶えた。この間の総受信回数はわずか 10 回であった。装着時の状況から、やはり鯨体への刺さりが浅く、早めに脱落したものと思われる。

二頭目（ID57025）は、装着後 12 日日に初めて電波の受信が確認された。命中後の状態は目視で確認できなかったが、土佐湾の一頭目の事例から類推すると、本個体も命中時には標識本体が深く鯨体に陥入していたものと推察される。本個体については、以降 40 日目までの 29 日間に合計 191 回の受信が確認され（1 日当たりの平均受信回数は 8.7 回）、18 回の位置特定に成功した。

（2）受信の時間帯
衛星による受信回数は、日によって変動が大きく、特に長期間の受信に成功した ID57025においても、途中 3 日間から 4 日間、全く情報の得られない期間が 2 回あった。また、受信時刻についてもバラつきが見られた。図 4-13 に、全個体の受信について受信時間帯別の頻度分布を示す。受信回数は、日本時間帯の午前 1 時から 6 時にかけて少なく、また午前 7 時以降は、4 時間毎に周期的に回数が少なくなった。このようなバラつきには、1）アルゴス衛星の軌道周期によるもの、ないし 2）鯨の行動の変化、などの要因が影響しているものと推察された。

（3）受信間隔
受信回数に比較し位置の特定できた回数は非常に少なかった。全個体の受信について受信間隔の頻度分布を図 4-14 に示す。位置を特定できた時の受信間隔は 9 分以内に限られていたが、ほとんどの受信は前回の受信から 30 分以上経過していた（最も多いのは 1 時間台）。

アルゴスの測位システム上、位置を特定するためには、上空を人工衛星が通過する間（約 12 分間）に 3 回以上の受信がなされる必要がある。アルゴス発信機の発信間隔は、技術上約 40 秒が最短であるのに対し、鯨体が海面上に現れる時間は 1 回の浮上につき 2～3 秒で
ある。このため電波は1回の浮上中に1回の発信チャンスしかない。よって短時間内に複数回発信できるか否かは、鯨の浮上の頻度と標識の装着部位にかかってくるものと思われる。ニタリクジラは通常1～2分間の短潜水を数回繰り返した後8～10分間の長潜水を行う。短潜水中の浮上は、海面に噴気孔と背鰭の先端をわずかに現わすのみの場合が多く、海面上に大きく体が出るのは、長潜水に入る直前の1回、腰を上げて潜るときだけである(図4-15)。標識はなるべく背面の体上部に装着した方が良いのは当然であるが、たとえ背鰭直下に装着できたとしても、このような腰上げの頻度が少ないと発信間隔も長くなる(必ず水面に出るのは噴気孔周辺だが、その周辺への装着には鯨への危険が伴う)。また、このような遊泳行動のパターンは、摂餌中や移動中の状況によっても異なり、当然個体差もある。標識装着後40日目まで電波が受信されたID57025に比較し、同34日目まで受信されたID57022の位置特定が極端に少ないこと、また長期間電波を受信したものも日によって受信回数に大きなバラつきのあることは、標識の装着部位の違いに加えて、このような個体の遊泳パターンの違いも大きく影響しているのではないかと考えられた。いずれにしても、電波の発信チャンスを少しでも増し、位置特定の機会を増やすためには、装着部位を、腰を上げて潜るときのみ浮上する背鰭基部ではなく、浮上頻度のより高い、背鰭より前方の背面上部にすることが重要であろうと推察された。

衛星による追跡結果

（1）位置情報の精度

位置が特定された20例の推定精度は、クラスAが5例（25%）、Bが15例（75%）であり、クラス0以上のものはなかった。これは、上述のように短時間での受信回数が少なかったことに起因するものと思われる。しかし、標識個体の目視による再発見と衛星による位置特定が同時期に得られた2004年の結果では、両者の位置はそれほど大きく離れておらず、推定精度A、Bでも、個体の大きな回遊移動を把握するという観点からは概ね妥当なものであると考えられた。
（２）地理的移動

図 4-16 に位置データの得られた個体の追跡結果を示す。

土佐湾で 7 月 16 日 14:40 時に標識された個体(ID57022)は、約 1 ヵ月後の 8 月 14 日 12:19 時に、装着位置より 9.7 マイル南方の海域で 1 回のみ位置が特定された。土佐湾では、足摺岬沖で標識ウサギを付けた鯨がいるとの目撃情報が 8 月上旬に地元漁業者から得られていたが、衛星から得られた情報と概ね符合した。残念ながら同目撃時の写真はなく、また、別途 8 月 18 日から 20 日にかけて実施した photo-ID 調査でも本個体を再発見することはできなかったが、少なくとも 7 月中旬から 8 月中旬にかけての 1 ヵ月間、本個体は土佐湾内に滞在していたものと考えられる。

一方、同じく土佐湾で 8 月 11 日 12:29 時に標識された個体(ID57026)は、翌日の 8 月 12 日 20:29 時に、装着位置より東北東 9.5 マイルの海域で 1 回のみ位置が特定された。野間岬と甑島の間の海域内であり、それほど大きく移動していなかったものと推察される。

一方、同じく野間池沖で 8 月 13 日 12:53 時に標識された個体(ID57025)は、装着後 15 日日の 8 月 27 日 8:34 時に初めて位置が特定された。位置は装着位置より西方 18.3 マイルの地点であったが、同日に中々大きく移動し五島列島沖まで達した。このうち、最も西側のポイント（31 度 45.36 分、127 度 27.66 分）については、経過時刻と移動距離との関係から信頼性に乏しいが、他のポイントについては、約 7 ノットの速度で十分に達する範囲にあり、本個体は、少なくとも甑島から五島列島にかけての東シナ海内を移動していたものと考えられる。その後、薩摩半島西岸まで南下し、再び甑島周辺海域に滞留、最後の情報が得られた 9 月 21 日には再び西方に向けて移動していた。

2006-2008 年調査における装着

標識銃および装着法の改良

2006 年調査時より、アルゴス発信機として用いていた SPOT4 を、新たにバージョンアップされた SPOT5 に変更した。形状、重量は SPOT4 と同一であるが、これにより、電波の最短発信間隔が約 40 秒から 28 秒に短縮された。また、電池寿命を最大 120 日間に延長さ
せるため、起動サイクルを24時間作動-24時間休止に設定した。標識銃の形状、ストッパーコー位置、フロートとの接合等は、2005年調査に使用したものと同じものを用いた。

装着部位については、2005年の調査結果を踏まえ、射撃時に、極力、背鰭より前方の背面上部を狙うこととした。

射撃時の状況

2006年は、土佐湾にて7月22日から27日かえて、および8月21日から25日かえてPhoto-ID調査を実施し、ニタリクジラを各々16群18頭、14群17頭発見し、うち3個体に対して衛星標識の射撃と装着を行った。2007年は、土佐湾にて8月5日から11日にかけて実施したPhoto-ID調査時に、9群11頭を発見し、うち2個体に対して射撃を行い、1個体への装着に成功した。2008年は、土佐湾にて8月22日から31日にかけて実施したPhoto-ID調査時に、18群26頭を発見し、うち1個体に対して射撃と装着を行った。各々の射撃時の状況は以下のとおりであった。

（1）2006年7月24日（アルゴスID：64634）

大方の東南東約10海里付近の海域で、1000時、鳥山の中に2頭発見（表面水温25.3度、海況2）。2頭は群れになっておらず接近したり離れたりしながら遊泳し1248時、片方の個体に摂餌行動が2回観察される。その後も追尾を続け、1336時、標識銃をスタンバイ。海況は白波が少し出始め3になっていた。鯨は時折、水面下に色を見せながら進み、1354時、左舷前方約5mの位置に浮上したところで発砲、噴気孔後方の体側右側上部に命中。フロートは一部が折れて飛散し、基部が鯨体に残った。鯨は1357時、腰折り潜行、その後、1408時、1459時に標識鯨を再発見。命中箇所に、赤いフロートの基部がまだ残っているのを確認した（図4・17A）。命中までの浮上間隔は平均1.7分（n=24：個体の同定が確実な1313時以降）、命中後は平均1.0分（n=7）であった。
（2）2006年7月24日（アルゴスID：64635）
上記標識鯨を探索中、1515時に別個体1頭を発見。おそらく上記発見群のうち標識を打たなかったもう1頭の方を再発見したものと思われる。鯨の動きは比較的落ち着いており、1534時に、標識銃をスタンバイ。海況2。その後3回ほど腰折り潜水が見られたが、1557時、左舷前方約5mの位置に浮上したところで発砲、前述の個体とほぼ同じ部位（噴孔後方の体側右側上部）に命中。この時フロートは一部が折れて飛散し、基部が鯨体に残った（図4-17B）。命中後、鯨は急速に潜行し、その後、再発見はできなかった。命中までの浮上間隔は平均1.4分（n=31）。

（3）2006年8月25日（アルゴスID：64636）
漁船から情報を得て、足摺岬沖にて、1050時、親仔連れ2頭を発見（表面水温29.3度、海況2）。親は既識別個体TB-08であった。親は浮上間隔が長く出が悪かったが、仔が比較的短い間隔で浮上したため見失わず追尾できた。ウォッチング船の観鯨が終わるのを待ち1151時、標識銃をスタンバイ。1205時、左舷前方約5mの位置に浮上したところを親に発砲、背鰭前方の体側右側やや下側に命中（図4-167C）。この時、フロートは全体が鯨体に残ったが、6分後の1211時フロートが外れ洋上に漂っているのを発見し回収した。鯨は命中後、仔とともに水しぶきをあげて急速に潜行し、その後足早くなったが、1214時から1246時まで追尾できた。接近は困難であったが遠方から鯨体に残った標識を確認できた（図4-17D）。命中までの浮上間隔は、親で平均1.1分（n=8：短潜水時）～14.0分（n=3：腰上げ潜水時）、仔で平均0.7分（n=14：短潜水時）～6.7分（n=6：腰上げ潜水時）、命中後は、親仔で行動が同調し平均0.6分（n=6：短潜水時）～7.1分（N=4：腰上げ潜水時）であった。

（4）2007年8月11日（不命中）
ウォッチング船からの情報を得て大方の東北東約10海里付近の海域で1007時発見（表面水温26.9度）。クジラのジャンプが見られたことであり調査船3隻とウォッチング船3隻で追尾。風力3でウネリもあり海況は不良であった。途中、何度か見失いかけたが、噴
気を高く上げる個体であったため再発見でき、なんとか追尾を継続。発見から約1時間半後、ウォッチング船の観鯨が終了し、1138時標識銃をスタンバイ。白波やウネリが高く、鯨も波しぶきを上げて泳ぎ、速度も速く接近は困難であったが、銃スタンバイから約1時間後、左舷前方に浮上したところに全速接近、水面下に色が見られ、前方約5mの位置に浮上してきたところ体前方を狙って後方からの1240時発砲。鯨は体軸を左に反って旋回しながら浮上し標識はそれを越えて海面に着弾、不命中。着弾とともに鯨は波しぶきを上げて潜行。その後約30分間、周囲を旋回探索したが再発見できず見失った。

（5）2007年8月11日（アルゴスID：64637）
上記の発見位置周辺で1540時に別個体1頭を発見（表面水温27.0度）。風力2で海況はやや回復。調査船の単独発見でウォッチングも午後から中止となっていたため2回浮上を確認するも16時に標識銃をスタンバイ。前回同様、接近は困難であったが、浮上位置に急行し水面下の色を確認、首前前方約5mの位置に浮上してきたところ体前方を狙い1621時発砲。標識は、体前方の背面右側に命中（図4-17E）。鯨は波しぶきを上げて潜行。その後、遠方で白波を立て浮上しながら遠ざかるのが2回確認されたが、夕刻であったこともあり追尾継続はせず港向けとした。命中までの浮上間隔は短潜水時で平均1.8分（n=5）、腰上げ潜水時で平均10.3分（n=3）。

（6）2008年8月31日（アルゴスID：64639）
興津埼の東方約10海里の海域で、大きな鳥山の中に1507時に発見（表面水温26.8度）。調査船の単独発見。風力3から4の弱で周辺海況悪く、また港への帰港途中で時間も遅くウォッチング観鯨がなかったため、現場着後ただちに1510時標識スタンバイ。しばらく見失ったが1518時再浮上を発見し現場に急行、水面下の色を確認し船首左前方約6mの位置に浮上してきたところ体前方を狙って発砲。標識は、背面正中やや右側の体前方部に命中（図4-17F）。同時に鯨は少し波しぶきを上げて潜行した。その後、15分ほど停船して様子を見たが、鳥山は散開してなくなり白波も多く再発見はできなかった。時間もなく探索を中止して港
向けとした。命中前後の浮上間隔は不明。

衛星の受信状況
上記の射撃により、2006 年に 3 個体、2007 年に 1 個体、2008 年に 1 個体の合計 5 個体に衛星標識を装着した。これらの受信結果を図 4-18 に示す。

2006 年に装着した 3 個体 (ID64634, 64635, 64636) の受信回数は 2 から 17 回であり、受信できた期間は最長でも装着後 7 日目まで（ID64635）、また位置の特定も 1 個体（ID64634）のみで、装着から 4 日目までの間に 3 回特定できたのみであった。受信した時間帯は、12 時から 15 時にかけての時間帯が最も多く全体の 56%（25 例中 14 例）を占めた。受信の間隔は 1 分以内に再受信したケースが 6 例あり、位置の特定もこの間になさられたが、次の受信までに 1 時間以上要した事例も 22 例中 10 例（45%）みられた。

2007 年に装着した 1 個体（ID64637）の総受信回数は 41 回で、装着当日から 15 日目まで受信された。このうち位置を特定できたのは 5 回、追跡期間は装着から 13 日目までであった。受信した時間帯は、午前 2 時から 24 時にかけて、特に 8 時台と 20 ～ 21 時台に多く、明け方から午前 7 時頃までは少なかった。

2008 年に装着した 1 個体（ID64639）の受信回数は 20 回で、装着翌日に 4 回位置が特定されたが、同日の夜（23 時 48 分）を最後に、受信は途絶えた。受信した時間帯は、午前 1 時から 23 時にかけて、特に 5 時台に多く、12 時から 17 時の間は受信がなかった。

これらの標識は、いずれも背鰭前方の背面上部に装着されたため、背鰭周辺を中心に装着した 2005 年以前に比べて、受信回数に対する位置の特定頻度は比較的高かったものと思われる。しかし、追跡期間は、最長で装着から 13 日目までに留まり、早期に受信が途絶えるケースも多かった。この要因のひとつとして、装着時の標識の状態が挙げられる。上記、5 個体のうち、ID64636 を除く 4 個体は、標識命中時、フロートの前方部分が鰭体に刺さって残り、フロート断面からアンテナが露出する形となった（フロートの後方部分は命中時の衝撃で折れて飛散した）。これは射撃距離が短く、標識弾体が想定よりも強い力で鰭体に陥入したためであるが、鉄部分のみが刺さった場合に比べると体表に開く傷口も大きく、
残ったフロートも水の抵抗を受けるため、早期にフロートごと標識が抜け落ちてしまった可能性も高いと推察された。

衛星による追跡結果

（1）位置情報の精度

アルゴス衛星により位置が特定できたのは、2006年に1個体、2007年に1個体、2008年に1個体であった。位置特定時の精度は、2006年は全てクラスA（誤差46km以下）であり、2007年はクラスAが2回、クラスB（誤差73km以下）が2回、クラス0（誤差1,000m以下）が1回であった。また2008年はクラスAが2回、クラスBが2回であった。

（2）地理的移動

図4-19に位置データの得られた個体の追跡結果を示す。
2006年の標識個体は、大方の東南東約10海里の海域で7月24日1354時に標識された後、約47時間後の26日1228時に、装着位置から約39.5海里北東に離れた湾奥部高知沖に位置が特定された。約2時間半後の1509時にもほぼ同位置に特定された後、翌27日0058時には、さらに約9海里北上し陸寄りに近づいた地点に移動した。これらの海域は、小型の調査船で行ける範囲の外であったため確認に向かうことはできなかったが、少なくともこの間、鯨は土佐湾内に留まっていたものと考えられた。

2007年の標識個体は、大方の東北東、井ノ岬近海で8月11日1540時に発見、1621時に標識された後、5日後の16日2140時に土佐湾の東側、安芸市沖の沿岸に位置が特定された。その後、19日1105時には土佐湾を出て紀伊水道の和歌山県側、田辺沖付近、さらに同日1639時には紀伊半島を越え三重県尾鷲沖の熊野灘に移動した。その後、再び四国沖に戻り23日の午前0時から2時にて土戸岬の南方近海で2回位置が特定された。土佐湾のニタリクジラの湾外への移動を確認したのは初めてのケースである。調査時の黒潮の流れは、足摺岬から室戸岬を経て潮崎に至るまでの間、接岸して陸寄りに流れており（海上保安庁海洋速報第156号）、衛星で得られた位置は、この流れの様に若干重なるものの、
黒潮の主流域をまたぐような動きはせず、黒潮の主流域と陸岸の間に挟まれた海域内を東西に移動していた。

2008年の標識個体は、興津埼沖で8月31日1507時に発見、1518時に標識された。翌日の受信位置は、それほど動いておらず、午前5時から午後23時にかけて、いずれも着位置から最大7海里の範囲内にあった。同海域（興津埼沖）は、8月のPhoto-ID調査期間を通じて鳥周りが良くニタリクジラの発見もほぼこの海域に集中していた。このことから、この海域は他海域に比較して餌場の条件が良かったものと考えられる。受信位置の精度はAクラス以下であったが、移動範囲は概ねこれらの状況と矛盾しておらず、本個体は標識装着後もこの海域をしばらく周回していたものと思われた。

標識鯨の目視による再発見

2004年から2008年にかけて土佐湾で衛星標識を実施した個体のうち、写真個體識別によって、目視により、年をまたいで異なる年に再発見されたものが3例、認められた。

一例目は、2005年に標識を装着した個体（TB-23：ID57021）であり、同個体は翌2006年と2007年のPhoto-ID調査時に再発見された（図4-20A）。再発見時、体表に標識は見られず、着部位にはダルマザメの噛痕に似た傷跡がみられたのみであった。また、鯨の行動は落ち着いており、接近も容易で、2006年調査時には、ウォッチング船とともに約70分間にわたって追尾を行うことができた。

二例目は、同じく2005年に標識した個体（TB-49：ID57022）で、2007年と2008年のPhoto-ID調査時に再発見された（図4-20B）。同個体も、再発見時、標識は既に脱落しており、着部位はダルマザメの噛痕に似た傷跡でみられたものであった。また、2008年調査時には、他個体と群れを形成した形で発見され、追尾は比較的容易であり、ウォッチング船による観鯨も十分に行える状況であった。

三例目は、2006年に、親仔連れで発見され、標識された個体（TB-08：ID64636）で、2008年のPhoto-ID調査時に、仔を伴わずに再発見された。再発見時、次第に海況が悪化したため、十分に接近確認できず着箇所の写真撮影はできなかったが、追尾中に標識は
視認されなかった。

以上の結果から、これらの標識個体は、標識装着を実施した後も土佐湾内に頻繁に回遊して来ていることが明らかとなった。また、標識脱落後の装着痕は、比較的短い期間で治癒し、大きな傷とはならず、標識の装着行為は、鯨の行動やウォッチング活動にそれほど影響を与えてなかっ

考察

装着法の開発

2004年から2008年にかけて実施した衛星標識について、全射撃結果を表4-1に、また装着した標識からの電波受信結果を表4-2に示す。

土佐湾では合計12回の射撃を行い、うち10回鯨体に命中し、9個体について標識の装着を確認することができた。装着に成功した時の追尾時間は、5分から23分の範囲（平均14.7分）にあり、射撃距離は、5mから6mの範囲（平均5.3m）であった。一方、野間池沖では、合計8回の射撃を行ったが、命中と装着に成功したのは2個体のみであった。装着成功時の追尾時間は6分から11分の範囲（平均8.5分）にあり、射撃距離は7mであった。野間池沖における装着成功率が低いのは、土佐湾に比較して、鯨への接近追尾が困難であったためと思われる。また長時間追尾しても命中に至ることは少なく、その時の鯨の状態にもより、確実に命中させるためには少なくとも5～7m程度まで接近することが必要であると考えられた。

アルゴス衛星による電波受信は、10個体（土佐湾8個体、野間池沖2個体）で確認され、うち7個体（土佐湾5個体、野間池沖2個体）について、少なくとも1回以上の位置特定がなされた。衛星によって位置が特定できたケースを標識成功とみなした場合の成功率は35％（全射撃20例中7例）であった。これらの装着個体のうち、土佐湾では最長30日間、野間池沖では最長40日間の追跡に成功した。

本研究で開発した装着方法の利点は、以下の3点である。
（1）遊泳中の個体にある程度離れた場所から装着が可能であること

（2）手持ちの銃を用いるため大掛かりな装備がいらず取扱いが容易なこと

（3）装着に失敗しても回収して再利用できるためコストを節約できること

これにより本手法の基礎は概ね完成したものと考えられる。また、本手法は、ニタリクジラ以外の大型ヒゲクジラ類にも応用可能なものである。

しかし、本手法は、受信回数に比較して位置特定の回数が少ないこと、また成果の得られる確率が低く手法としてまだ不安定であること、といった問題点が残された。特に、前者の点については、装着部位とニタリクジラの遊泳パターンの特性によるところも大きく、改善のためには、装着時に、より体上部を狙って命中させれば勿論のこと、技術的には難しいであろうが、1回の浮上（2〜3秒間）に複数回送受信できるような発信間隔の短い発信機と衛星の受信システムが開発されることが望まれる。

一方、鯨類の大きな回遊経路を把握するという観点からは、頻繁な位置特定よりも、追跡期間をより長く伸ばすことの方が重要であろう。この点に関しては、発信機の起動サイクルに数日間の休止期間を設けることによって、発信機自体の電池寿命を延長することは可能である。しかしながら、装着に成功した7例のうち4例は、装着から2日ないし4日後に電波の受信が途絶え、早期に脱落したもと考えられた。これらの主な原因は、射撃距離が短く命中時にフロートごと刺さってしまったことによると思われる。しかし、射撃距離が長くと逆に標識銃の陥入が不完全なものとなる。また、洋上では発砲のチャンスが限られており、追尾時に射撃距離を調節しつつ適度な命中強度となるように標識を打ち込むことは至難の技である。最も有望しい形は、浮上スイッチを標識体からアンテナ部に移行し、本体は鯨体内に完全に貫入しても構わないような発信機を新たに開発することでであろう（標識体を体表面の外に出す必要がないすれば、より至近距離からの射撃も問題がなくなり、装着後の流水抵抗も少なくなり脱落の危険性も低減する）。また、空気銃の充填圧力の調整、弾体のストッパー、銃先の形状などの改良も必要と思われる。

30〜40日間の受信に成功した2例については、いずれも装着後10日以上経過してから
受信が開始された。これは命中時、標識本体が浮上スイッチのある尾部まで深く体内に陥入していたものが徐々に体表に出てきたためと推察される。もしこのような放出が継続するものであれば、30〜40日後に受信が途絶えたのは、発信機の電池寿命に加えて、徐々に体表に出てきた標識が体外に抜け落ちてしまった可能性も想起される。この点に関しては、標識本体の素材（より親和性の高い素材など）や銛先の形状などについて、さらに検討が必要であろうと思われる。また、実際に、放出が続き抜け落ちてしまうのか否かに関しては、起動サイクルを調整し寿命を延ばした標識を用いて装着事例を増やしていくことにより解明できるのではないかと思われる。

標識個体の地理的移動

図4-21に、衛星によって位置が特定された7個体（土佐湾5個体、野間池沖2個体）の全移動経路を示す。図は、特定された位置を線で結んだものであり、必ずしも個体の正確な移動経路と一致するわけではない。また、追跡期間も短く、当初の目的のひとつである本種の夏季から冬季にかけての季節回遊を追うことはできなかった。しかし、得られた結果は、少なくとも、調査を実施し衛星から情報が得られた7月から9月にかけての個体の移動範囲の一部を示しているものと思われる。

土佐湾の南西部で標識された個体は、同海域に留まる個体が多かったものの、2例、土佐湾の南東部に移動した個体が見られ、そのうち1例は、紀伊半島の東岸側、尾鷲市沖の熊野灘まで移動し、再び室戸岬沖まで戻ってきた。第二章において、目視調査の結果から、本種の分布は土佐湾の南西側に偏っていることが示されたが、衛星標識の結果から、本種の分布は南西側に限定されたものではなく、南東側、さらには紀伊半島の東岸側まで移動し得ることが明らかとなった。一方、野間池沖で標識された個体は、やはり同海域で位置が特定されが多かったものの、8月中に五島列島周辺の東シナ海を周回していたことが明らかとなった。両海域に分布するニタリクジラが東シナ海系群に属するとするならば、野間池沖の個体の移動範囲は概ね同系群の分布に一致しており、土佐湾の個体の移動は、同系群が、本州太平洋側の紀伊半島沖まで移動し得ることを示すものと考えられる。
一方、土佐湾と野間池沖の2海域間を移動したものは見られず、野間池沖から大隅半島を越えて東方にむかって、あるいは土佐湾から足摺岬を越えて西方にむかっての移動は確認されなかった。しかし、第三章における個体識別の結果からは、土佐湾と野間池沖で、同一個体が再発見された事例が3例あり、うち1例は、8月に野間池沖で発見され、同年9月に土佐湾で再発見されている。このように、両海域間を個体が移動することは個体識別の結果から実証されており、衛星追跡においても、今後、追跡事例を増やすことによって、両海域を結ぶ動きが確認できるのではないかと推察された。

データ数は少ないものの、土佐湾および野間池沖で標識された個体が、黒潮流域を越えて、太平洋沖合域に移動する例は認められなかった。また、土佐湾から紀伊半島沖に移動した個体も、黒潮の主流域と陸棚の間に挟まれた沿岸海域を東西に移動していた。これらの点は、東シナ海系群が、黒潮の流れと陸棚などの海底地形によって、西部北太平洋系群と隔てられているとした第二章の推察を間接的に支持しているものと考えられる。

本研究で開発した衛星標識の装着法には、成功率の向上と追跡期間の延長という課題が残されているが、今後、さらに改良を重ねて実施していくことにより、本種の系群構造、回遊などの解明に貢献していくことが可能であろうと推察された。
Table 4-1. Results of the firing of the satellite tags for Bryde’s whales in Tosa bay and off Nomaike, during the period from 2004 to 2008.

<table>
<thead>
<tr>
<th>Area</th>
<th>Date</th>
<th>Time</th>
<th>Argos ID</th>
<th>School size</th>
<th>Sea state*</th>
<th>Time for chasing (minute)</th>
<th>Firing distance (m)</th>
<th>Verdicts</th>
<th>Transmitter attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa bay</td>
<td>18 Jul. 2004</td>
<td>12:31</td>
<td>49483</td>
<td>1</td>
<td>3</td>
<td>31</td>
<td>10</td>
<td>Hit</td>
<td>Lost</td>
</tr>
<tr>
<td></td>
<td>20 Jul. 2004</td>
<td>14:38</td>
<td>49482</td>
<td>1</td>
<td>3</td>
<td>17</td>
<td>6</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>16 Jul. 2005</td>
<td>14:40</td>
<td>57022</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>16 Jul. 2005</td>
<td>14:56</td>
<td>57023</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>20 Jul. 2005</td>
<td>16:02</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>Ricochet</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>20 Jul. 2005</td>
<td>16:20</td>
<td>57021</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>24 Jul. 2006</td>
<td>13:54</td>
<td>64634</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>24 Jul. 2006</td>
<td>15:57</td>
<td>64635</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>25 Aug. 2006</td>
<td>12:05</td>
<td>64636</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>11 Aug. 2007</td>
<td>12:40</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>62</td>
<td>5</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>11 Aug. 2007</td>
<td>16:21</td>
<td>64637</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>5</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>31 Aug. 2008</td>
<td>15:18</td>
<td>64639</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>10 Aug. 2005</td>
<td>9:26</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>10 Aug. 2005</td>
<td>11:17</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>56</td>
<td>7</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>10 Aug. 2005</td>
<td>13:56</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>11 Aug. 2005</td>
<td>12:29</td>
<td>57026</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>7</td>
<td>Hit</td>
<td>Fix</td>
</tr>
<tr>
<td></td>
<td>13 Aug. 2005</td>
<td>10:28</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>13 Aug. 2005</td>
<td>11:18</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>53</td>
<td>9</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>13 Aug. 2005</td>
<td>11:44</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>79</td>
<td>7</td>
<td>Miss</td>
<td>Retrive</td>
</tr>
<tr>
<td></td>
<td>13 Aug. 2005</td>
<td>12:53</td>
<td>57025</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>Hit</td>
<td>Fix</td>
</tr>
</tbody>
</table>

* Beaufort scale
Table 4-2. The electric wave receptions and tracking results of the satellite tagged Bryde’s whales in Tosa Bay and off Nomaike, during the period from 2004 to 2008.

<table>
<thead>
<tr>
<th>Area</th>
<th>Date</th>
<th>Argos ID</th>
<th>Photo-ID</th>
<th>Reception period (days)</th>
<th>Tracking period (days)</th>
<th>No. of receptions</th>
<th>No. of positions estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosa bay</td>
<td>18 Jul. 2004</td>
<td>49483</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20 Jul. 2004</td>
<td>49482</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16 Jul. 2005</td>
<td>57022</td>
<td>TB-49</td>
<td>34</td>
<td>30</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16 Jul. 2005</td>
<td>57023</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20 Jul. 2005</td>
<td>57021</td>
<td>TB-23</td>
<td>5</td>
<td>0</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24 Jul. 2006</td>
<td>64634</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24 Jul. 2006</td>
<td>64635</td>
<td>-</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25 Aug. 2006</td>
<td>64636</td>
<td>TB-08</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11 Aug. 2007</td>
<td>64637</td>
<td>-</td>
<td>15</td>
<td>13</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>31 Aug. 2008</td>
<td>64639</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Off Nomaike</td>
<td>11 Aug. 2005</td>
<td>57026</td>
<td>KNR-03</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>13 Aug. 2005</td>
<td>57025</td>
<td>-</td>
<td>40</td>
<td>40</td>
<td>191</td>
<td>18</td>
</tr>
</tbody>
</table>
Fig. 4-1. Type 1 satellite tagging system implemented in the preliminary survey for Bryde’s whales in Tosa bay in 2003. A: Argos transmitter; B: Tagging dart; C: Tagging dart attached on the hand harpoon.

Fig. 4-2. Type 2 satellite tagging system implemented in the preliminary survey for Bryde’s whales in Tosa bay in 2003. A: Argos transmitter; B: Tagging dart; C: Tagging dart attached on the hand harpoon.
Fig. 4-3. Air gun used for attachment of the satellite tags in 2004 to 2008.

Fig. 4-4. Darts used in the tagging experiment with an air gun in 2004. Upper photograph indicates dummy tag and a retrievable float. Lower photograph indicates tag with the float at firing.
Fig. 4-5. Results of the tagging experiment for carcass of Bird’s beaked whale in 2004. Left photograph indicates antenna of the dummy tag exposed on the body surface. Right photograph indicates dummy tag buried in the blubber tissue.

Fig. 4-6. The satellite tag used for Bryde’s whales in 2004 to 2008. Upper photograph indicates Argos transmitter with dart and stopper. Lower photograph indicates the tag with a retrievable float.
Fig. 4-7. Satellite based movements of Bryde’s whale tagged on 20 July 2004 in Tosa bay and tracked until 23 July 2004.
Fig. 4-8. Relationship between the sighting positions (open circles) and the satellite based positions (closed circles) of Bryde’s whale tagged on 20 July 2004. In Tosa bay. Closed lines indicate cruise tracks of the research vessel during the chasing for tagged whale. Dotted lines indicate the estimated moving route of the whale.
Fig. 4-9. Condition of satellite tag attached on a Bryde’s whale (Argos ID: 49482) in Tosa bay during the period from 20 to 23 July 2004.
Fig. 4-10. Condition of satellite tags attached on Bryde’s whales in Tosa bay and off Nomaike in 2005. A: Tosa bay on 16 July 2005 (Argos ID: 57022); B: Tosa bay on 16 July 2005 (Argos ID: 57023); C: Tosa bay on 20 July 2005 (Argos ID: 57021); D: Off Nomaike on 11 August 2005 (Argos ID: 57026).
Fig. 4-11. Number of electric wave receptions by the Argos satellite and days from the tags attachment on Bryde’s whales in Tosa bay and off Nomaike in 2005. Open bar: Location was obtained; Closed bar: Only reception.

Fig. 4-12. Elimination of the tag on a Bryde’s whale (Argos ID: 57023) in Tosa bay. Arrows indicate tagging site of the whale. Left photograph: The tag was attached; Right photograph: The tag was fallen out.
Fig. 4-13. Temporal frequency distribution of the number of electric wave receptions by the Argos satellite in 2005 tagging survey for Bryde’s whales in Tosa bay and off Nomaike.

Fig. 4-14. Frequency distribution of the time interval between the electric wave receptions in 2005 tagging survey for Bryde’s whales in Tosa bay and off Nomaike.
Fig. 4-15. Schematic diagram showing the swimming behavior of Bryde’s whales in Tosa bay and off Nomaike.
Fig. 4-16. Satellite based movements of Bryde’s whales tagged in 2005 in Tosa bay (Argos ID: 57022) and off Nomaike (Argos ID: 57025, 57026). Open circles: Positions at the tag attachment; closed circle: Positions estimated by the Argos satellite.
Fig. 4-18. Number of electric wave receptions by the Argos satellite and days from the tags attachment on Bryde’s whales in Tosa bay in 2006 to 2008. Open bar: Location was obtained; Closed bar: Only reception.
Fig. 4-19. Satellite based movements of Bryde’s whales tagged in 2006 (Argos ID: 63634), 2007 (Argos ID: 64637) and 2008 (Argos ID: 64639) in Tosa bay. Open circles: Positions at the tag attachment; closed circle: Positions estimated by the Argos satellite.
Fig. 4-20. Re-sightings of tagged Bryde’s whales in Tosa bay. White circles indicate the tagging site of the whales. A: Tagged on 20 July 2005, and re-sighted on 22 August 2006 (TB-23; Argos ID: 57021); B: Tagged on 16 July 2005, and re-sighted on 27 July 2008 (TB-49; Argos ID: 57022).
Fig. 4-21. Tracking results of the satellite tagged Bryde’s whales in Tosa bay (5 animals) and off Nomaike (2 animals) during the periods from 2004 to 2008.
第五章 総合考察

第一章における過去の標識再捕の分析から、ニタリクジラの西部北太平洋系群は、冬季に南緯1度から北緯28度付近、夏季に北緯7度から北緯43度付近にかけての広い範囲に分布し、夏季に北上し、冬季に南下する緩やかな季節回遊があるものと推察された。また、東シナ海や日本の南西部沿岸の海域からは標識の再捕がなく、これらの海域に分布するもののと、西部北太平洋系群との間に、個体の交流を示す直接的な証拠はないと明らかとなった。

一方、第二章では、目視調査の結果から、日本の南西部沿岸に位置する土佐湾と鹿児島県野間池沖においてホエールウォッチングの対象となっているヒゲクジラ類がニタリクジラであることが、また、土佐湾では、足摺岬から高知市沖にかけての指南西部、距岸15海里内、水深500m以浅の沿岸域が分布の主体であり、同海域に周年を通して分布すること、その分布密度は季節によって増減し、特に秋季に多く来遊して来ることが明らかとなった。さらに、野間池沖では夏季を主体に、下甑島の東岸から野間崎の西方約20海里、水深200mから500mにかけての沿岸部に来遊し、東シナ海系群のものが、夏季の来遊盛期に東シナ海の沖合から甑島列島の東方まで伸長してきたものと推察された。これに対して、土佐湾のものは、地理的には太平洋に面しているが、沖合にみられる西部北太平洋系群とは明らかに分布が離れており、季節回遊の様式も異なることから、野間池沖と同様に、東シナ海系群のものが、黒潮の流れによって沖合と隔てられ、陸棚上の沿岸部を土佐湾まで回遊してきたものであると推察された。西部北太平洋系群との分離は、広域目視調査の結果および第一章で明らかにしたように北太平洋沖合域からの標識再捕がないことからも支持される。また、第三章における個体識別調査の結果から、土佐湾と野間池沖の間に同一個体の再発見が認められ、両海域間で個体の交流があることを示す直接的な証拠が得られたこと、さらに第四章における衛星追跡の結果から、土佐湾と野間池沖で標識された個体が、黒潮域を越えて太平洋沖合に移動する例が認められなかったこととも、両海域の個体が同じ系群に属し、黒潮流を挟んで西部北太平洋系群と分離していることを支持する。
系群ないし個体群の異同を分析する際の有効な手法の一つに、ミトコンドリアDNAなどを利用した分子生物学的手法がある。Yoshida and Kato (1999)は、1996年に土佐湾で採取された剥離標本（遊泳個体から剥離し浮遊していた表皮標本）1検体と、1995年に紀伊半島西岸の和歌山港に漂着した死亡個体から得られた標本を用い、ミトコンドリアDNAのコントロール領域とチトクロムbの塩基配列について、東シナ海や西部北太平洋沖合、南アフリカ沖などで商業捕鯨時代に捕獲された標本との比較分析を行った。その結果、土佐湾で得られた剥離標本と和歌山漂着個体の標本のハプロタイプ組成は、西部北太平洋沖合標本のものより東シナ海標本に近く、また土佐湾と西部北太平洋沖合のあいだにみられた違いは、同沖合と南アフリカ沖のあいだの違いよりも大きいと報告している。これらの結果は、分子生物学的側面からも、土佐湾の個体が東シナ海系群に属し、西部北太平洋系群とは分離していることが支持されたことを示している。

一方、個体識別の結果からは、土佐湾と野間池沖のそれぞれの海域で同一個体の再発見が頻繁にあり、その再発見率は、海域間の交流率よりも高かった。このことから、両海域のニタリクジラは、ともに各々の場所との結びつきが高く、同じ場所に回遊してくる個体が多いものと推察された。これは系群という観点からは、個体の交流があるものの、個体レベルにおいては回遊経路にsite fidelityがあるためではないかと推察される。

これらの結果から推察される系群の分布範囲と想定される回遊経路を図5.1に示す。東シナ海系群の南西部日本沿岸における分布は、九州西部海域から、黒潮と陸岸に挟まれた陸棚上を通り土佐湾南西部まで至り、その北限は、時には紀伊半島東岸まで達するものと考えられる。また東シナ海を主体に分布するこれらのニタリクジラは、その一部が夏季に九州南西部の沿岸に来遊し、同地を経て土佐湾まで移動する個体も若干あるものの、別途、春先から夏季にかけて土佐湾に来遊し、同湾内に滞留する個体も頻繁にあるものと考えられた。

土佐湾と野間池沖では、個体の摂餌行動が頻繁に観察された。このことから、ニタリクジラの両海域への来遊は、餌生物の分布と密接な関係があるものと推察される。本種の食性については、1950年代に実施された捕獲物の胃内容物調査によって、九州西部沿岸に分
分布するものについては 7 月から 9 月にかけてマイワシ（Sadinops melanostica）、カタクチイワシ（Engraulis japonica）、アジ類（Trachurus）を、また和歌山県沖に分布するものにつ
いては 5 月から 7 月にかけてオキアミ類（Euphausii simils）、カタクチイワシを捕食し
ていた例が報告されている（Nemoto, 1959）。また西部北太平洋系群については、2000 年
から開始された北西太平洋鯨類捕獲調査（JARPN II）における胃内容物調査によって、5 月
から 6 月にかけてオキアミ類、7 月から 8 月にかけてカタクチイワシを捕食していることが
報告されている（Tamura and Fujise, 2002）。系群間による食性の違いは明らかでないが、
土佐湾および野間池沖で餌行動が観察された際には、イワシ類と思われる小魚の跳ねる
のがしばしば観察されており、東シナ海系群においても、このような小型の魚類を捕食して
いる可能性が高いと思われる。

また、土佐湾と野間池沖では親仔連れも発見され、特に土佐湾では、同一個体が年を越
えて繰り返し仔連れで観察される事例が複数あり、平均出産間隔は 2.13 ～ 2.77 年と推定さ
れた。本種の繁殖海域（交尾出産海域）については定かでないが、このことから、少なく
とも土佐湾は、仔の養育の場としても機能しているものと考えられる。個体レベルで再発
見が多いこと、すなわち同じ個体が繰り返し同じ海域に来遊して来る、ないし、長期にわ
たって滞在することの要因として、餌が豊富にある時に、親とともに海域内を訪れた個体
が、経験を経て、離乳後も同じ場所を訪れるという形で、個体の回遊経路が固定されてき
た可能性が示唆される。本研究では、このような同一個体の再発見が最長 10 年間におよぶ
ことも明らかとなった。

Best (1977) は、1960 年代に南アフリカ西岸のサルダナ湾で商業捕獲され、水揚げされた
個体のデータに基づき、ニタリクジラに沿岸型（Inshore form）と沖合型（Offshore form）
の 2 つの型があることを報告している。同氏の研究によれば、沿岸型は、距岸 20 海里内の
沿岸域にほぼ周年を通してみられ、沖合型は、50 海里以上の沖合に分布し赤道周辺から南
アフリカ西岸沖にかけて大きく季節移動すると報告されている。また両者のあいだには、
同年齢の成体どうしで比較しても沿岸型の方が、体長が 0.3 ～ 0.9m 小さいこと、沿岸型の体
表には熱帯亜熱帯域で付けられると思われるダルマザメの喰跡が少なく、逆に岩礁との接
触などに起因する筋状の傷が多くみられること、沿岸型のほうが細長いヒゲ板を有し、食性も沿岸型はアジやイワシなどの魚類中心であるのに対し沖合型はオキアミが主体であること、さらに卵巣標本から推定された排卵率も沿岸型の方が高く、繁殖期も沿岸型は季節性が不明瞭でないのに対し沖合型は秋季に限定されている、といった違いのあることが報告されている。これらの特性の違いは、以下の点で、東シナ海系群ないし土佐湾にみられるものと西部北太平洋系群のあいだに見られた違いと類似しているように思われる（表5-1）。

まず、分布回遊について、土佐湾のものは、距岸15海里内の沿岸域が分布の主体であり、同海域に周年を通して分布するのに対し、西部北太平洋系群は、南緯1度から北緯43度付近にかけての沖合域を夏季に北上し冬季に南下する緩やかな季節回遊がみられる。体長に関しては、目視調査では正確な計測はできないが、過去の捕獲物の解析から、東シナ海系群は西部北太平洋系群に比して0.6-1.2mほど小さいとの報告がある（Ohsumi, 1980）。またヒゲ板に関しても、東シナ海系群は西部北太平洋系群より細長いとの報告がある（Kawamura and Satake, 1976）。これらの特性の違いを考慮すると、東シナ海系群は、Best(1977)の提唱した沿岸型に、西部北太平洋系群は沖合型に相当するものと推察される。しかし、食性および体表面の傷については、本研究では、東シナ海と西部北太平洋の系群間の違いを明らかにすることはできなかった。また、Best（1977）では、排卵率を沿岸型で2.35、沖合型で0.42と報告しているが、土佐湾の出産率は0.47と推定された。排卵率よりも出産率の方が低い値をとることを勘案したとしても、この値は、Best(1977)が推定した沖合型の値に近いと考えてよいであろう。西部北太平洋系群では、捕獲個体の解析から、排卵中の雌個体が5月から8月にかけて出現し、年間排卵率は0.46と推定されている（Ohsumi, 1977）。このことから、繁殖力に関しては、東シナ海系群と西部北太平洋系群の差はそれほど不明瞭ではなく、いずれも南アフリカ沖の沖合型に近いものと推察される。一方、繁殖期については、東シナ海系群については明らかでないが、西部北太平洋系群では、胎児の体長頻度解析から、比較的長い繁殖期を有し、出産時期は10月から3月の6ヶ月間と推定されている（Ohsumi, 1977; 藤瀬ら, 2004）。これに対し、南アフリカ沖の沖合型は、胎児の体長解析から推定した受胎日が、南半球の秋季（3月から5月の3ヶ月間）
に多く、この間に比較的限定されている（これに対し沿岸型は周年を通じてみられる）、と報告されている（Best, 1977）。西部北太平洋系群には、夏季に北上し、冬季に南下する緩やかな季節回遊がみられること、また土佐湾においても周年分布するものの、分布密度が季節によって増減し、特に春季に来遊量が増すことから、それらの回遊が繁殖と結びついたものであるならば、繁殖期の長さも、南アフリカ沖の沿岸型（周年分布と周年繁殖）と沖合型（明瞭な季節回遊と限定された繁殖期）のあいだの中間的な長さに位置しうるのではないかと類推される。

このように、東シナ海と西部北太平洋とのあいたに見られた違いについては、Best (1977) の分類に一致するものもあるが、未解明の部分も残されており、まだ完全には一致しない部分も認められた。特に、繁殖力や繁殖期については、生息する各々の海域の環境条件や資源の状態などの影響も受けると思われるため、それらの海域の特性に応じて、差異が生じているのではないかと推察される。

ニタリクジラには、このほかにも、北太平洋の東側に位置するカリフォルニア湾において湾内にほぼ周年分布するものが知られており（Tershy et al., 1990）、オーストラリア西岸（Chittleborough, 1959）、フィリピン近海、香港沖からも小型のニタリクジラが報告されている（Perrin et al., 1996; Dizon et al., 1998）。生態的な特性については明らかでないが、これらの報告から、このような沿岸域においても、沖合と回遊様式や形態の異なるニタリクジラが存在するものと示唆される。しかし、これらの海域は地理的に離れており、土佐湾を含め、このような沿岸の海域間で、個体の交流があるとは考えにくい。

ニタリクジラは、全般に他のナガスクジラ科鯨類に比較して回遊範囲が狭く、温暖な海域にとどまり、高緯度域の南氷洋や北氷洋にいたる大回遊をしない。また繁殖も温暖な海域にとどまって行っているものと思われる。言い換えれば、本種は、他のナガスクジラ科鯨類のように、栄養海域と繁殖海域を大きく地理的に隔てることをしていない。このことから、本種は、他のナガスクジラ科鯨類があまりとどまらない温帯熱帯という限られた海域のなかで、局所的に存在する餌資源を有効に活用して繁殖する戦略を選択しているものと考えられる。このような場合、他のナガスクジラ科鯨類のような大回遊を通じての個体
の交流頻度は低下する。また、地域ごとに海域の特性に応じた適応も進むであろう。その結果として、他のナガスクジラ科類よりも遺伝的分化が進みやすく、土佐湾や西アフリカ沿岸にみられたような沿岸性の個体群が多くみられるのではないかと推察される。土佐湾および野間池沖でみられた個体レベルにおける回遊経路のsite fidelityも、このような個体群の分化に寄与しているものと思われる。

ニタリクジラ全体の分類体系について、Wada, et al.(2003)は、mtDNAと頭骨形態の分析に基づき、Balaenoptera edeniとB. brydeiの2種に分類する提唱を行った。前者は後者より体長が小さく、この点のみに基づけば、本研究で扱った東シナ海系群ないし土佐湾にみられるものはB. edeniに属するものと思われる。しかしながら、Wada, et al.(2003)では、世界各洋にみられる両者の分布の実態や、外部形態、生態的特徴などの違いについては明らかにしていない。また、別途、土佐湾の個体のmtDNAを分析したYoshida and Kato(1999)の研究では、土佐湾の個体と東シナ海との間に差はなく、一方、土佐湾と西部北太平洋沖合とのあいだにみられた違いは、東シナ海系群は、南アフリカ沖よりも分化が進んでいる可能性も示唆される。しかし、同研究に用いられた土佐湾のDNA標本は1検体のみ（和歌山漂着を含めて2検体）である。東シナ海系群ないし土佐湾にみられるものについての分類的な位置づけに関しては、今後、さらにDNA標本、外部形態や生態的特徴などに関する情報を集積し分析していく必要があるであろう。

資源の持続的利用の観点からは、日本の南西部沿岸にみられるニタリクジラは、東シナ海系群として、西部北太平洋系群とは独立に扱う必要がある。西部北太平洋系群については、2000年から第二期北西太平洋鯨類捕獲調査計画のもとに年間50頭の捕獲が行われている(GOJ, 2000: 2002)。同系統群については、1996年に行われた国際捕鯨委員会(IWC)科学委員会の包括的資源評価作業により、1996年当時の資源水準が初期資源量(1911年)の60~80%であることが推定されている(IWC, 1997)。また、資源管理海区として、東経130度から180度、北緯10度から43度と、東経180度から西経155度、北緯25度から43度の2つのサブエリアからなる海区が設定され、資源量は20,501頭(CV=0.34)と推定さ
れた（Shimada, et al., 2008• Kitakato et al., 2008）。これらの管理海区からは、土佐湾は別系群として除かれており、商業捕獲の再開に向けて1WCにおける改訂管理方式（RMP）の適用試験作業が進行中である。推定資源量に対する現行の捕獲頭数の割合は0.24%であり、資源に対する影響はほとんどないものと思われる。しかし、本研究において、衛星追跡の結果から、別系群である東シナ海系群が土佐湾を越えて紀伊半島東岸沖まで分布し得ることが明らかとなった。このことから、現行の捕獲調査あるいは将来の商業捕鯨における捕獲海域の設定において、特に本州沿岸域の捕獲を行う際には、この点を十分に留意する必要があるものと思われる。

一方、東シナ海系群については、系群全体の資源量が不明であり、情報量の少なさから、1WCでは1986年以降、保護資源（捕獲枠ゼロ）に指定され今日に至っている（IWC, 1986）。本研究では、系群全体の資源量を把握することはできなかったが、持続的利用の観点からは、資源量の情報に加えて、資源の動向に関する情報も重要であろう。そこで、土佐湾における来遊動向について、以下の分析を行った。

図5-2に、土佐湾で実施したPhoto-1D調査の結果に基づき、2000年から2008年にかけての調査船1日1隻当たりの発見頭数の推移を示す。同値は、0.59頭から2.55頭の間で推移し、年とともに増加ないし減少する傾向は見られなかった。同調査は、操業中の漁船、遊漁船、ウォッチング船等から随時情報を得つつ任意のコースと船速で探索を行う形であった為、定量的なものではなく、また1日1隻当たりの発見数は、1頭の追尾に費やした時間や、その時々の海気象の影響も受けるため、厳密には分布密度の指標として不十分である。しかし、少なくとも、資源の増加ないし減少を示唆する結果は得られなかったと言って良いであろう。一般に、資源動向の把握には、様々な前提条件があるものの標識再捕法による分析も有効な手法の一つとされる。そこで、識別個体の出現履歴が長期にわたって蓄積されている土佐湾について、開放個体群を前提とした多回放流再捕モデルであるJolly-Seber法を適用し、各種パラメタの試算を暫定的に試みた（表5-2、図5-3）。本法の適用にあたっては、モデルの仮定を満たしているか否か、また識別個体の標識としての有用性や再発見確率などに不均一性がないか、などに十分な検討が必要とされる（Hammond,
特に、後者の点に関して、土佐湾のニタリクジラでは、欠刻や傷などが新たに生じ識別可能となる個体が増えている可能性も示唆されること、またサンプルサイズも少ないことから、信頼性のある結果を得るには、さらなる検討と分析が必要であり、結果の解釈には注意が必要であるが、暫定的に試算した来遊頭数（N_{t}）は、3.1 頭から 76 頭の範囲にあり、データの得られた 11 年間（1992～2007 年）の平均は 27.3 頭であっ、これに土佐湾における識別率 0.45 を乗じると、60.7 頭となり、ライントランセクト法による推定値 53 頭（$CV=0.58$）と近い値が得られた。この間の年間加入量（B）は、-6.91 から 69.67 の範囲にあった（表 5-2）。経年変化についてみると、1998 年と、2000 年から 2004 年にかけては、新規識別個体がない為、パラメタの推定ができず、また 1996 年の加入量と 1997 年の来遊頭数の値が、他年に比較し突出しているといったバラつきはあるものの、加入量、来遊頭数ともに、年とともに増加ないし減少する傾向は見られなかった。これらの結果に、調査船 1 日 1 隻当たりの発見数の推移も合わせて勘案すると、土佐湾への本種の来遊は、少なくとも 1992 年以降、比較的安定しており、顕著な増加ないし減少は伺えないのであると推察される。

しかし、それ以前、商業捕鯨年代において捕獲が初期資源に与えた影響は不明である。

土佐湾への本系群の来遊頭数は、ライントランセクト法による推定、標識再捕法による試算のいずれも 100 頭未満であり、大きな数字ではない。同系群は、土佐湾と野間池沖においてホエールウォッチングによって利用されているが、ウォッチング活動が資源に与える影響についても慎重に検討していく必要があるであろう。特に、土佐湾は、観覧海域としてのみならず仔の養育の場としても重要であることが示唆された。観覧中的個体や親仔連れへの執拗な接近追尾などは、その後の同海域への個体の来遊に影響を与える可能性もある。我が国には、ホエールウォッチング行為を直接規制する法律はないが、ガイドラインとして、鯨への接近方法や接近距離を定めた、当該地域の関係者団体による自主規制ルールがある（Kishiro, et al., 2003）。土佐湾では、1998 年より、土佐湾ホエールウォッチング推進協議会自主ルールとして、ヒゲクジラ類には 300m 手前から減速する、対象個体の進行方向を押さえるような操船をしない、現在進行している行動を妨げるような操船をしない、といったルールが定められている。資源の持続的利用の観点からは、これらのル
ールが今後も遵守されていくことが望まれる。

本研究において、沿岸域のニタリクジラの個体レベルでの移動、回遊、出現履歴などの生態を把握する上で、写真個体識別法は有益な手法であることが明らかとなった。また、本研究において、課題は残されたものの、衛星標識の装着法についての基盤を確立した。東シナ海系群の資源動向については、不明な点も多く残されているが、今後もこれらの調査を継続して行い、知見を集積していくことが重要であろうと思われる。また、バイオプシーサンプリングによるDNA標本の採取、漂着、混獲死亡個体の調査など、新たな手法を導入することにより、さらに研究を展開させることも可能であろう。さらには、本系群の主分布域と思われる東シナ海全域を対象とした広域目視調査の実施も、本資源の動向を把握し、持続的に利用していくために必要不可欠と思われる。
Table 5-1. Comparison of characteristics between stocks or forms of Bryde’s whales in the southwest coast off Japan and west coast of South Africa.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Southwest coast off Japan</th>
<th>Western North Pacific stock</th>
<th>Inshore form</th>
<th>Offshore form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East China Sea stock</td>
<td>Western stock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td><15 miles off the coast(^1)</td>
<td>offshore of the Kuroshio Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration</td>
<td>partly resident(^2)</td>
<td>seasonally migrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body length</td>
<td>0.6-1.2m smaller(^3)</td>
<td>larger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baleen shape</td>
<td>narrow(^4)</td>
<td>broad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>Sardines, anchovies,</td>
<td>Euphausids, anchovies(^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mackerels, Euphausids(^5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External appearance</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breeding season</td>
<td>-</td>
<td>Longer, Autumn (Oct.) to spring (Mar.)*(^6)</td>
<td>Unrestricted</td>
<td>Principally ammun (Mar. to May)</td>
</tr>
<tr>
<td>Ovulation rate</td>
<td>-</td>
<td>0.46*(^5)</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>Birth rate</td>
<td>0.47*(^1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\): Tosa bay in this study
\(^2\): East China Sea stock by Ohsumi, 1980.
\(^3\): East China Sea stock by Kawamura and Satake, 1976
\(^4\): East China Sea stock by Nenoto, 1959
\(^5\): Western North Pacific stock by Tamura and Fujise, 2002
\(^6\): Western North Pacific stock by Ohsumi, 1977
Table 5-2. Results of the Jolly-Seber method applied to the photo-ID data (the occurrence data of the animals identified by the sufficient keys, see Table 3-1) of Bryde’s whales in Tosa Bay, 1991-2008.

<table>
<thead>
<tr>
<th>Year (i)</th>
<th>n_i</th>
<th>m_i</th>
<th>a_i</th>
<th>S_i</th>
<th>a_{i-1}</th>
<th>m_{i-1}</th>
<th>M_{i-1}</th>
<th>N_{i-1}</th>
<th>ϕ_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1992</td>
<td>2</td>
<td>1</td>
<td>0.5000</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1.6</td>
<td>3.1</td>
<td>2.3445</td>
<td>15.51</td>
</tr>
<tr>
<td>1993</td>
<td>9</td>
<td>2</td>
<td>0.2222</td>
<td>7</td>
<td>12</td>
<td>51</td>
<td>3.6</td>
<td>16.4</td>
<td>2.2487</td>
<td>18.59</td>
</tr>
<tr>
<td>1994</td>
<td>9</td>
<td>7</td>
<td>0.7778</td>
<td>2</td>
<td>56</td>
<td>9</td>
<td>19.4</td>
<td>25.0</td>
<td>2.0492</td>
<td>30.68</td>
</tr>
<tr>
<td>1995</td>
<td>8</td>
<td>6</td>
<td>0.7500</td>
<td>2</td>
<td>59</td>
<td>5</td>
<td>29.6</td>
<td>39.5</td>
<td>0.9505</td>
<td>0.36</td>
</tr>
<tr>
<td>1996</td>
<td>19</td>
<td>13</td>
<td>0.6842</td>
<td>6</td>
<td>51</td>
<td>27</td>
<td>24.3</td>
<td>35.6</td>
<td>3.5025</td>
<td>69.67</td>
</tr>
<tr>
<td>1997</td>
<td>16</td>
<td>13</td>
<td>0.8125</td>
<td>3</td>
<td>65</td>
<td>4</td>
<td>61.8</td>
<td>76.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1998</td>
<td>9</td>
<td>9</td>
<td>1.0000</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1999</td>
<td>19</td>
<td>16</td>
<td>0.8421</td>
<td>3</td>
<td>44</td>
<td>16</td>
<td>24.3</td>
<td>28.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>15</td>
<td>15</td>
<td>1.0000</td>
<td>0</td>
<td>45</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>17</td>
<td>17</td>
<td>1.0000</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2002</td>
<td>5</td>
<td>5</td>
<td>1.0000</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2003</td>
<td>2</td>
<td>2</td>
<td>1.0000</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>13</td>
<td>8</td>
<td>0.6154</td>
<td>5</td>
<td>13</td>
<td>7</td>
<td>17.3</td>
<td>28.1</td>
<td>0.9100</td>
<td>-6.91</td>
</tr>
<tr>
<td>2005</td>
<td>7</td>
<td>6</td>
<td>0.8571</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>13.0</td>
<td>15.2</td>
<td>1.8250</td>
<td>11.07</td>
</tr>
<tr>
<td>2006</td>
<td>9</td>
<td>7</td>
<td>0.7778</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>13.0</td>
<td>16.7</td>
<td>1.5000</td>
<td>9.52</td>
</tr>
<tr>
<td>2007</td>
<td>8</td>
<td>6</td>
<td>0.7500</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>12.0</td>
<td>16.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>8</td>
<td>8</td>
<td>1.0000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

n_i: No. of identified whales in year i; m_i: No. of re-sighted whales in year i; a_i: re-sighting rate in year i; S_i: Newly identified whales in year i; a_{i-1}: No. of total re-sightings identified before year i; m_{i-1}: No. of total re-sightings identified in year i; M_{i-1}: $S_i + m_{i-1}$; N_{i-1}: Estimated abundance (M_i/a_i); ϕ_i: Survival rate (($M_i/(M_{i-1} - m_i + S_i)$); B_i: Recruitment ($N_i/(N_{i-1} - n_i - S_i)/\phi_i$).
Fig. 5-1. Distribution of stocks and migratory routes of Bryde’s whales in the coastal waters off southwest Japan, deduced from the results of sighting, photo-identification, and satellite tracking surveys.
Fig. 5-2. Yearly change in the number of Bryde’s whales sighted per one vessel day searched, during the 2000-2008 photo-ID surveys in Tosa Bay.

Fig. 5-3. Yearly change in abundance and recruitment of Bryde’s whales estimated by the Jolly-Seber methods applied to the photo-ID data of Bryde’s whales in Tosa Bay, 1991-2008 (see Table 5-2).
要約

1) 本研究は、我が国の周辺海域に出現するニタリクジラについて、資源生態学的な観点から系群構造を把握するとともに、特に南西部日本沿岸にみられるニタリクジラに着目し、その分布回遊、来遊頭数など、生態学的な挙動を明らかにすることを目的とした。

2) 研究手法として、西部北太平洋におけるニタリクジラの標識再捕データ、南西部日本沿岸（土佐湾と野間池沖）で行われた目視調査データ、ならびに同海域で実施した写真個体識別データの分析を行うとともに、衛星標識の装着法を開発し、人工衛星による移動追跡を行った。

3) 标識再捕データの分析から、ニタリクジラの西部北太平洋系群は、冬季に南緯1度から北緯28度付近、夏季に北緯7度から北緯43度付近にかけての広い範囲に分布し、夏季に北上し、冬季に南下する緩やかな季節回遊があることが推察された。また、東シナ海や日本の南西部沿岸の海域からは標識の再捕がなく、これらの海域に分布するものと、西部北太平洋系群との間に、個体の交流を示す直接的な証拠がないことを明らかにした。

4) 目視調査の結果から、日本の南西部沿岸に位置する土佐湾と鹿児島県野間池沖においてホエールウォッチングの対象となっているヒゲクジラ類がニタリクジラであることを確かめた。

5) 土佐湾では、足摺岬から高知市沖にかけての湾南西部、距岸15海里内、水深500m以浅の沿岸域が分布の主体であり、同海域に周年を通じて分布すること、その分布密度は季節によって増減し、特に春季に多く来遊して来ることを明らかにした。また、
ライントランセクト法に基づき、春季における来遊量を53頭（CV=0.58）と推定した。

6）鹿児島県南西部の野間池沖では夏季を主体に、下甑島の東岸から野間崎の西方約20海里、水深200mから500mにかけての沿岸域に来遊することを明らかにし、東シナ海系群のものが、夏季の来遊盛期に東シナ海の沖合から甑島列島の東方まで伸長してきたものと推察した。

7）土佐湾のものは、地理的に太平洋に面しているが、沖合にみられる西部北太平洋系群とは明らかに分布が離れており、季節回遊の様式も異なることから、野間池沖と同様に、東シナ海系群のものが、黒潮の流れによって沖合と隔てられ、陸棚上の沿岸部を土佐湾まで回遊してきたものであると推察した。

8）写真個体識別調査の結果から、発見したもののうち約6割を写真撮影でき、そのうち4割を識別可能であること、個体を識別する際に鍵となり、かつ長期の識別に耐えうる形質として、背鰭後縁の欠刻、体表の明瞭な傷、多数のダルマザメによる区画の配置が挙げられ、これらの形質に基づき、個体によって10年以上の再発見履歴を蓄積できることを明らかにした。このことから、写真個体識別法は、ニタリクジラの個体レベルでの移動、回遊、出現履歴などの生態を把握する上で有益な手法であることが示された。

9）土佐湾で53個体（うち有効な形質を持つもの35個体）、野間池沖で26個体（うち有効な形質を持つもの19個体）を個体識別し、20年間（1989-2008年）にわたる出現履歴を記録した。

10）新規に識別される個体の累積頭数は、土佐湾と野間池沖の両海域ともに年々増加し、近年においても新規の個体が認められることを示した。
11）土佐湾と野間池沖の各々の海域内における識別個体の年間再発見率は、土佐湾で0.61、野間池沖で0.40であること、また同一個体が土佐湾では最大10年連続して発見され、野間池沖では4年連続して発見されたことを示した。このことから、個体レベルにおいて回遊経路にsite fidelityがあるものと推察された。

12）土佐湾と野間池沖のあいだで、同一個体の再発見が3個体認められ、海域間の交チャを示す直接的証拠を得た。識別個体数に基づく海域間の混合率は5.88％と推定された。

13）土佐湾において、親仔連れの発見に基づき、出産率を0.47、平均出産間隔を2.13年〜2.77年と推定した。

14）土佐湾と野間池沖において、突進型とバブルネット型の摂餌行動がみられることを明らかにした。これらの摂餌行動の出現率は土佐湾で52.2％、野間池沖で65.2％であった。

15）ニタリクジラを対象に、アルゴス発信機と空気銃を用い、装着失敗時には回収可能な衛星標識の装着技術を開発した。

16）土佐湾で9個体、野間池沖で2個体に衛星標識を装着し、アルゴス衛星によって、そのうち10個体（土佐湾8個体、野間池沖2個体）から電波を受信した。位置が特定されたのは7個体であり、土佐湾では最長30日間、野間池沖では最長40日間の追跡に成功した。

17）土佐湾の南西部で標識した個体は、同海域に留まるものが多くかったものの、2例、土佐湾の南東部に移動し、うち1例は、8月中に紀伊半島の東岸側、尾鷲市沖の熊野灘
まで移動し室戸岬沖まで戻ってきたことを確認した。

18） 野間池沖で標識した個体は、同海域で位置が特定されることが多いものの、8
月中に五島列島周辺の東シナ海を周回していたことが確認された。

19） 標識再捕、目視調査、個体識別調査、ならびに衛星追跡調査の結果から、東シナ
海系群の南西部日本沿岸における分布は、九州西方海域から、黒潮と陸棚に挟まれた
陸棚上を通り土佐湾南西部まで至り、その北限は、時には紀伊半島東岸まで達するも
のと考えられた。また東シナ海を主体に分布するこれらのニタリクジラは、その一部
が夏季に九州南西部の沿岸に来遊し、同地を経て土佐湾まで移動する個体も若干ある
ものの、別途、春先から夏季にかけて土佐湾に来遊し、同湾内に滞留する個体も頻繁
にあるものと考えられた。

20） 親仔連れが繰り返し発見され、摂餌行動も頻繁にみられる土佐湾は、仔の養育の
場として機能しており、餌が豊富にある時に、親とともに海域内を訪れた個体が、経
験を経て、離乳後も同じ場所を訪れという形で、同海域への回遊経路が固定されて
きた可能性が示唆された。

21） 東シナ海系群ないし土佐湾にみられるものは、南アフリカ沖で Best(1977)が提唱
した2つの地方型のうち沿岸型に、西部北太平洋系群は沖合型に相当するものと推察
された。ニタリクジラには、この他にも、カリフォルニア湾、オーストラリア西岸、
フィリピン近海、香港沖で、沖合と回遊様式や形態の異なるものが報告されており、
本種は、他のナガスクジラ科鯨類があまり留まらない温帯熱帯という限られた海域の
なかで、局所的に存在する飼資源を有効に活用して繁栄する戦略を選択し、地域ごと
に海域の特性に応じて適応した結果として、遺伝的分化が進み、土佐湾や南アフリカ
沿岸にみられたよう沿岸性の個体群が多くみられるのではないかと推察された。
22） 資源の持続的利用の観点から、日本の南西部沿岸にみられるニタリクジラは、東シナ海系群として、西部北太平洋系群とは独立に扱う必要があると結論された。西部北太平洋系群については、現行の鯨類捕獲調査あるいは将来の商業捕鯨による捕獲海域の設定において、特に本州沿岸域の捕獲を行う際に、東シナ海系群が土佐湾を越えで紀伊半島東岸沖まで分布し得ることに十分に留意する必要があると思われた。また、東シナ海系群については、ホエールウォッチングによる利用の際に、自主規制ルールの遵守が望まれること、また同系群の資源動向の把握については、今後も調査を継続するとともに、主分布域である東シナ海全域を対象とした広域目視調査の実施も必要であると考えられた。
謝辞

本研究を実施するにあたり、研究を始めるきっかけを与えて下さり、終始、御指導と御助言ならびに暖かい激励を賜った東京海洋大学海洋科学部教授 加藤秀弘博士に心より厚く御礼を申し上げます。

東京海洋大学海洋科学部教授 桜本和美博士、同学部准教授 北門利英博士、同大学水圏フィールド教育研究センター准教授 須之部友基博士には、本稿を校閲していただき、有益な御助言および御指導をいただきました。これらの先生方に深く感謝いたします。

本研究をまとめるに際し、貴重な個体識別写真およびデータの提供をして頂いた高知県幡多郡黒潮町の徳広幸雄氏、高知市の中西和夫氏、鹿児島市の岡野（旧姓:大畑）和代氏に、深く感謝いたします。

土佐湾での調査実施にあたって、1994年から1996年までの目視調査には、旧大方町遊漁業船主会事務局の森岡孝治氏、元高知県海洋局の篠原英一郎氏、新村耕太氏、元高知県水産試験場の中島敏男氏、石井功氏、1997年からの調査には、大方遊船主会/砂浜美術館事務局の埜下安弘氏、遠山香織氏、宍戸希実氏に多くの便宜を賜るとともに実際に調査にも参加して頂いた。厚く御礼申し上げます。また、土佐湾調査では、野路滋氏、山崎由香氏、鈴子幸代氏、井田美奈子氏、藤田祐理子氏をはじめとする多くの補助調査員の方々、昌丸船長の浜崎守利氏、千代丸船長の細本健代氏をはじめとする多くの地元漁業者、ホエールウォッチング船の方々、土佐海洋丸乗組員の方々など、ここに列記できないほど多くの方々に御協力と御支援を頂いた。ここに深く感謝いたします。

鹿児島県野間池沖の調査では、野間池漁業協同組合の川畑昭弘氏、鹿児島県水産振興課の井手美幸氏、鹿児島大学水産学部の四宮明彦博士、前述の岡野和代氏に多くの便宜を賜るとともに実際に調査にも参加して頂いた。厚く御礼申し上げます。このほか、野間池沖調査では、南部由美子氏、小林一隆氏、広瀬もえり氏をはじめとする多くの補助調査員の方々、かごしま水族館の山田守彦氏、久保信隆氏、また栄進丸船長の上村道則氏、吉丸船長の中村吉信氏をはじめとする多くの地元漁業者、ホエールウォッチング船の方々、など、
やはりここには列記できないほど多くの方々に御協力と御支援を頂いた。厚く御礼を申し上げます。

また、本研究を進めるにあたり、御理解と有益な御助言、励ましを頂いた国際水産資源研究所（旧遠洋水産研究所）外洋資源部長の宮下覚夫氏に御礼申し上げます。また、業務多忙のなか、筆者が本調査と研究を実施することに御理解を頂いた国際水産資源研究所鯨類資源グループ長の岩崎俊秀博士、同グループの吉田英可博士、岡村寛博士、南川真吾博士、金治佑氏に御礼申し上げます。特に、岩崎俊秀博士と南川真吾博士には、衛星標識装置の開発において有益な御助言と御協力をいただいた。深く感謝いたします。

また手間のかかる作業にもかかわらず調査資材の準備、写真の整理、データ入力などに助力頂いた、旧遠洋水産研究所鯨類生態研究室の池谷ますよ氏、重律子氏、国際水産資源研究所鯨類資源グループの菊池真美氏、柳川久仁子氏、樋村佳子氏に御礼申し上げます。

最後に、日々の生活や心身面で支えていただき、土佐湾調査では調査員としても協力していただいた妻、木白牧と、愛娘、蒼空に深く感謝いたします。
引用文献

Hammond, P.S. 1986. Estimating the size of naturally marked whale populations using

Tokyo. 77pp.

田中彰. 1986. IV. イルカ類標識調査技術の開発 2. 人工衛星利用バイオテレメトリー. D. 放流結果. pp.127-149. 田村保, 大隅清治, 荒井修亮編. 水産庁漁業公害(有害生物駆除)対策調査検討委員会. 漁業公害(有害生物駆除)対策調査委託事業調査報告書 (昭

土佐湾ニタリクジラ個体識別カタログ

1989年-2008年
（TB-01〜TB-53）
＜個体の特徴＞
雌個体。背鰭後縁の中央より下が緩やかにえぐれている。背鰭より後方の背部後方に斜めの切れ込み傷がある。
TB-02*<個体の特徴>

TB-01の仔。背鰭が左側に傾く。*長期の識別には普遍性に欠ける。
個体の特徴

背鰭上部、3分の1が欠落している。
個体の特徴

背鰭の後縁、下から3分の1のところに欠刻を有する。
＜個体の特徴＞
頭部後方の背面右側に、2本の線状の傷を有する。
＜個体の特徴＞
背鰭の後端が後方に細く伸びる。*長期の識別には普遍性に欠ける。
TB－07

＜個体の特徴＞
雌個体。背鰭後縁の付け根にV字形の欠刻を有する。
TB－08

＜個体の特徴＞
雌個体。背鰭後縁の付け根にU字形の小さな欠刻を有する。頭部後方の体側左側に、スクリューによると思われる数条の傷を有する。
TB-09*

＜個体の特徴＞
背鰭後端の中央に小さな欠刻があり、その下部後縁が垂直に立っている。*長期の識別には普通性に欠ける。
＜個体の特徴＞
雌個体。背鰭後縁の下から3分の1のところに小さな欠刻を有する。体側背面の右側に、スクリューによるとと思われる多数の数状傷を有する。
個体の特徴
背鰭後縁の下から3分の1のところに四角い欠刻を有する。
＜個体の特徴＞
背鰭の先端がシャープに立っている。*長期の識別には普遍性に欠ける。
個体の特徴

背鰭後方のキールにえぐれがある。*長期の識別には普通性に欠ける。
＜個体の特徴＞
背鰭基部の右体側と、背鰭前方の右体側に細長い傷、背鰭後方の左体側に数条の線状縁を有する。
＜個体の特徴＞
背鰭の右後方に淡い1条の傷を有する。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
雌個体。背鰭後縁、下から3分の2のところにU字状の欠刻を有する。
＜個体の特徴＞
背鰭の後縁基部が緩やかにえぐれている。野間池沖の識別個体KNR-22と同一個体。
TB-18

＜個体の特徴＞
雌個体。体側にある多数のダルマザメの噛跡の配置と、右尾部にある斜めの線状傷による。
<個体の特徴>
背鰭後縁の付け根が前縁と平行に深くえぐられている。野間池沖の識別個体KNR-26と同一個体。
＜個体の特徴＞
背鰭下やや前方の左体側に小さな窪みを有する。*長期の識別には普遍性に欠ける。
TB－21

＜個体の特徴＞

体側にある多数のダルマザメの噬跡の配置による。
＜個体の特徴＞

背鰭前方の左体側に細長い線状傷を有する。
＜個体の特徴＞
体側にある多数のダルマザメの啃跡の配置による。また後傾していない小ぶりな背鰭を有する。尾鰭の左側を欠損し、右側の先端近くに欠刻を有する。
TB－24

＜個体の特徴＞
雌個体。頭部後方の体側左側に2条の線状傷を有する。
TB-25*

＜個体の特徴＞
背鰭の後ろ右体側にダルマザメの噛跡を有する。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
体側にダルマザメの噛跡を有する。*長期の識別には普通性に欠ける。
＜個体の特徴＞
体側にある複数のダルマザメ喰跡の配置による。
個体の特徴
背鰭の下、体側右側にダルマザメの喰跡を有する。*長期の識別には普遍性に欠ける。
TB-29 *

＜個体の特徴＞
背鰭基部の右側体側に体と平行な窪みがある。*長期の識別には普遍性に欠ける。
TB-30*

＜個体の特徴＞
背鰭の前縁基部にダルマザメの噛跡を有する。*長期の識別には普遍性に欠ける。
<個体の特徴>
体側にダルマザメの喰跡を有する。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
体側にダルマザメの噛跡を有する。*長期の識別には普遍性に欠ける。
TB－33*

＜個体の特徴＞
背鰭が右側体側にダルマザメの噛跡を有する。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
背鰭後縁に複雑な切れ込みを有する。
＜個体の特徴＞
雌個体。背鰭後縁の基部にV字状の欠刻を有する。
TB－36

＜個体の特徴＞
キールに大きなこぶを有する。
＜個体の特徴＞
雌個体。背鰭後縁の2分の1から下が欠けている。
個体の特徴

背鰭後縁の基部にM字状の欠刻を有する。
＜個体の特徴＞
背鰭後縁に特徴的な欠刻を有する。
TB-40*

＜個体の特徴＞
背鰭後縁の基部に小さなしわがある。*長期の識別には普遍性に欠ける。

220
TB-41*

＜個体の特徴＞
背鰭位置の体側にしわがある。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
雌個体。背鰭の前縁上部が直線的。*長期の識別には普遍性に欠ける。
＜個体の特徴＞

頭部後方の背面に小さなこぶを有する。
T B - 4 4

個体の特徴

体前方、上部右側に平行に走る複数の大きなスクリュー傷を有する。T B - 1 0 にも似た傷があるが、本個体には背鰭に欠刻がない。
＜個体の特徴＞

体側にある多数のダルマザメ噛跡の配置による。背鰭の形状もやや特異的（台形状）。

TB-45

![Image of a whale with distinctive features]

![Image of a whale swimming in the water]
＜個体の特徴＞
背鰭後縁に複雑な切れ込みを有する。体側に多数のダルマザメ噛跡を有する。
TB－47

＜個体の特徴＞
雌個体。鎌形でなく直線的な三角形状の背鰭で、背鰭後縁に切れ込みを有する。
雌個体。背鰭後縁の中央にある大きな切れ込みと、体側の左前方にある比較的大きなダルマザメ痕が特徴。
体側右側の背鰭直下および同前方と後方に位置するダルマザメ噛跡、および体側左側の背鰭後方から腰部にかけてのダルマザメ噛跡の配置による。本個体は2005年7月に衛星標識を装着された。右体側の背鰭下後方に位置する傷痕（矢印）は、標識脱落によるものと考えられる。
＜個体の特徴＞
背鰭の右側前方基部に平行して並んだ２点の小さな窪みと、体側右側の胴部に２点あるダルマザメ嚙跡の配置による。背鰭の形も後縁が垂直に立ちやや特異的。
TB-51

＜個体の特徴＞
右体側にある傷（白斑を伴う）と、その上方にある淡いダルマザメ痕の相対的な位置関係による。
＜個体の特徴＞
背鰭後縁の基部にある小さな切れ込みと、体側右側および左側にあるダルマザメ痕の配置による。2007年8月の調査時にTB-47の仔として発見記録された。
＜個体の特徴＞

背鰭後縁にある欠刻と、背鰭後方の体側右上面に3点並んだダルマザメ痕の配置による。

野間池沖の識別個体KNR-16と同一個体。
付図2

野間池沖ニタリクジラ個体識別カタログ

1998年-2005年
(KNR-01〜KRN-26)
＜個体の特徴＞
背鰭が基部より欠損し、残りの一部が右側に傾いている。
＜個体の特徴＞
背鰭後方の体側左側に淡い線状の傷を有する。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
背鰭後縁の基部から３分の１に、下方に向かうU字状の深い欠刻を有する。
K N R－0 4

＜個体の特徴＞
背鰭の後縁の基部に小さな欠刻を有する。
＜個体の特徴＞
比較的丸みを帯びた背鰭。左体側にダルマザメ喫跡1つ。*長期の識別には普遍性に欠ける。
＜個体の特徴＞

背鰭の形状が三角形状で先端が後方に伸びる。*長期の識別には普遍性に欠ける。
＜個体の特徴＞

背鰭後縁の付け根に欠刻を有する。欠刻の位置はKNR－03より基部に近いところにある。
＜個体の特徴＞
背鰭下の左体側に淡い白斑があり、頭部後方の左右体側にも白斑を有する。
＜個体の特徴＞
背鰭後端基部に微かな欠刻があり、後縁がやや垂直に立っている。*長期の識別には普遍性に欠ける。
＜個体の特徴＞

背鰭後縁の基部に半円状の欠刻を有し、頭部後方の背面に白斑を有する。
＜個体の特徴＞
背鰭後縁に複雑な形状の切れ込みを有する。
＜個体の特徴＞
背鰭後縁の基部に欠刻を有する。
＜個体の特徴＞
雌個体。背鰭の前縁にくぼみを有する。
＜個体の特徴＞
背鰭後縁に2か所の欠刻を有する。
KNR－15

＜個体の特徴＞

背鰭の直下体側にある多数のダルマザメ喰跡による。
KNR-16

＜個体の特徴＞
背鰭後縁に欠刻を有し、背鰭先端が後方に細長く伸びる。土佐湾の識別個体TB-53と同一個体。
＜個体の特徴＞
背鰭の形がやや台形状。長期間の識別には普遍性に欠ける。
＜個体の特徴＞
背鰭の先端が尖り細く上方に立つ。*長期の識別には普遍性に欠ける。
＜個体の特徴＞
背鰭前縁がなめらかで比較的鋭角的な形状。*長期の識別には普遍性に欠ける。
＜個体の特徴＞

背鰭の後縁に、四角く縦に長い欠刻を有する。
＜個体の特徴＞
背鰭後縁の基部から2分の1にかけて大きな欠刻を有する。
＜個体の特徴＞
背鰭の後縁基部が緩やかにえぐれている。土佐湾の識別個体TB-17と同一個体。
＜個体の特徴＞
背鰭後縁に縦に長い欠刻を有し、背鰭がやや細長い。
＜個体の特徴＞

背鰭後縁の基部から2分の1より上側に四角い欠刻を有する。
＜個体の特徴＞

背鰭の中央部に小さな凸部があり、背鰭前方の右背面に白斑を有する。
個体の特徴
背鰭後縁の付け根が前縁と平行に深くえぐられている。土佐湾の識別個体TB－19と同一個体。