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ABSTRACT. We consider relationships between optimality conditions using
Newton diagrams and sums of squares of polynomials and power series.

1. Introduction. We consider the set of sums of squares of real poly-
nomials R[z] denoted by ZR[x]z and the quadratic module M(g1,...,9;) =

{Z 0:9i | 0i € ZR[:UF} generated by ¢g; € Rlz],i = 1,...,l. In addition, let
sums of squares of power series R|[[z]] be denoted by Z R[[z]]? and M(gl, e q) =

{Z Tigi | i € ZR[[&?HQ} It is well known that these play important roles in
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Key words: Polynomial optimization, Newton diagram, optimality conditions, sums of
squares.



432 Yoshiyuki Sekiguchi

polynomial optimization problems; see [7] and references therein. On the other
hand, optimality conditions in optimization theory can be used to give sufficient
conditions for a function to belong to quadratic modules generated by constraint
functions (sos-representability).

A polynomial optimization problem is the following:

(POP) min f(x)
st. gi(z) > 0,4 A
hj(x) =0,

1,...,m,

where f,g;,h; € Rlz] = Rlz1,...,2,]. We say the second order condition holds
at z if z is a minimizer and there exist \; > 0,p; € R such that Vf(z) =

Z AiVai(z) + Z 1iVhi(z), Aigi(2) =0 and
i J

VI F =D Nigi— > ik | (2)
i J

is positive definite on the subspace {z € R" | \;Vg;(2)x = 0, Vh;j(z)x = 0}. Then
[1], [8] showed that if the second order condition and some constraint qualifica-
tion conditions hold at each global minimizer, then f — fii, is contained in the
quadratic module M(gy,...,q;)+(h1,..., hy), where fuiy is the global minimum.

We are interested in relationships between other optimality conditions
and sos-representability. In this notes, we investigate an optimality condition
using Newton diagrams given in [10].

2. Preliminaries. For a polyhedral convex set P C R", F C P is called
a face of P,

For f € R[z|, the support of f is the set of all exponents of monomials of
f and be denoted by supp f. For o € Z%}, || = a1 + - - - + a,, and « is said to be
even if all coordinates are even. Let

U{a+R+|a€suppf}
AE(f) = J{a + R} | a € supp f N (22)"}.

The convex hull conv A(f) of A(f) is called the Newton polyhedron of f. The
Newton diagram T'(f) is the union of the compact faces of conv A(f). For v C R},

define f, = Z{ fax® | a € yNsupp f} and R[z], as the set of polynomials whose
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supports are included in v N Z". The polynomial p, = Z % is called the
aEyN(2Z)™
principal polynomial of .

We consider the finest locally convex topology on R[z]; see [3], [9]. This
topology is Hausdorff and each finite dimensional subspaces of R[x] inherits the
Euclidean topology, and every converging sequence in R[z] is contained in a finite
dimensional subspace. For a subset C' of a finite dimensional subspace of Rz],
the relative interior rint C' is defined as the interior of C' with respect to the
minimal finite dimensional subspace which includes C.

3. Necessary condition. Vasil’ev showed a necessary condition for
locally isolated minimality using Newton diagrams [10, Theorem 1.5 (1)].

Theorem 3.1 (Vasil’ev). Let f € R[z] with f(0) = 0 have an isolated
manimum at 0. Then

(1) T'(f) meets all coordinate axes;

(2) Ewvery vertex of I'(f) is even;

(3) For each vertex a of T'(f), fa > 0;

(4) For each face v of I'(f), fy(x) >0, Vo € R".

The following theorem gives necessary conditions using Newton diagrams
for sos-representability.

Theorem 3.2. Let f € Rlz] with f(0) =0 be a sum of square polynomi-
als. Then

(1) Ewvery vertex of I'(f) is even.
(2) For each vertex o of T'(f), fo > 0.

(3) For each face v of I'(f), f(z) € ZR[QB]Q.

Proof. As a easy consequence of the proof of [10, Proposition 1.2], we
have that nonnegativity of f implies the properties (1) and (2)

We will show the properties (3).

For each face v C I'(f), let A = {a € Z} | Ao+ Asao+- - -+ Apov, = v}
be the supporting hyperplane including the face v but not I'(f) \ 7. Here we
may assume A = (Ai,...,A,) € Z} \ {0}" and hence v = min{d - o | a €
supp f}, where the dot product is defined by A - a = ZAiai. We can write

)
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f=fo+ for1+ -, where f,s is a polynomial each of whose exponents a satisfy
A-a=1v". Then we have f, = f,.
S
Next, let f = Zg? We define w; = min{A -« | « € suppg;}, w =

i
min{wy, ... ws}. Fori=1,...,s, ¢g; is decomposed as ¢; = Giw + Giw+1 + - +
Gi,w+t for some t; € N. Then we write

S S
f= Z (Giw + Giwr1 + -+ Giwt,)” = Zgiz,w + 7
; i

(2

S
where all exponents a of f satisfies A - a > 2w. Since Zgzw % 0, we have
i=1
v < 2w. If v < 2w, there exists § € 7 such that A- 5 = v < 2w and 2P is
S

a monomial of f — Z gzw = f . This is a contradiction and we have v = 2w.

)

S
Therefore f, = Z gzw. )
i

4. Sufficient condition. We investigate sufficient conditions for a
polynomial to be a sum of squares of power series R[[z]] using Newton diagrams.
We present a sufficient condition for locally isolated minimality by Vasil’ev [10,
Theorem 1.5 (2)].

Theorem 4.1 (Vasil’ev). Let f € R[z]| with f(0) = 0.
(1) T'(f) meets all coordinate axes.
(2) Every vertex of I'(f) is even.
(3) For each vertex o of T'(f), fo > 0.
(4) For each face v of I'(f), fy(x) > 0,Va with x1---x, # 0.

Then f has an isolated minimum at 0.

Example 4.2.

f(z,y) = 2%+ a:4y + x3y3 + $2y2 + y4
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The vertices of the Newton diagram of f are (0,4), (2,2) and (6,0). The compact
faces consist of y1 = {t(0,4)+(1—1)(2,2) | 0 <t <1}, 72 = {t(2,2)+(1—-1)(6,0) |
0 <t <1} and the vertices. Here we have for x,y with xzy # 0,

=2 +y* >0

1\* 3
f72:m6+m4y+x2y2:x2{<x2+§y> +Zy2}>0.

Therefore (0,0) is an isolated minimum of f.

4.1. Simple Newton diagrams. We seek conditions which are anal-
ogous to the one by Vasil’ev. We consider the following well-known sufficient
condition from the point of view of Newton diagrams; see e.g. [7, Lemma 9.5.1].

Lemma 4.3. Let f € R[x]|. Suppose f = ka be the expansion of its

k
homogeneous components where deg fr. = k. If fo = f1 = 0 and fy is a positive
definite form, then f € ZR[[Q?HQ
Here we note that if fy is positive definite, then f5 € rint (Z R[x]f) 5,
Corollary 2.5, Remark 2.6]. Thus the lemma tells us that f € ZR[[:L‘]]z if the

Newton diagram I' := I'(f) is contained in the plane || = 2 and fr is contained
in rint <Z R[m]?) From this observation, we first obtain an extension of the

lemma in the case that the Newton diagram is contained in a plane which is
parallel to |a| = 2.

Theorem 4.4. Let fo,, be the lowest homogeneous part of f € Rx]. If
fam € rint (Z R[m]?n), then f € ZR[[:L‘]]z

To show this, we need the following lemmas. In addition, we will use the
well-known fact that for any u € R[x] with «(0) = 0,

1
1 — R{[z]]?
o, € YORIE,
see e.g. [7, Section 1.6].

Lemma 4.5. Suppose f € R[x] is a homogeneous polynomial of degree
2d and {e;} is the canonical basis of Z". Then there exists M > 0 such that

n
F4Y Mz e > " R[z]* for M > M.
=1
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Proof. This is easily implied by Ghasemi-Marshall [5, Theorem 2.1].0

Lemma 4.6. Let f € Rlz| and v be a face of T'(f). Then we have the
following:

(2) fy € rint (Z R[m]é» if and only if fy —epy € Z:R[:I:]Q%7 for sufficiently

small € > 0.

(1) The principal polynomial p of v lies in rint (ZR

w\»—Al\')

Proof.  The proof of (1) is almost identical to the one given in [2,
Proposition 5.5]. Let g € Z]R 21 Then g = Z h? for some hy € Rz ] . For
27

each a € suppg, there exist by,by € Usupp hy such that a = by + by. Since we

1 1
have by, by € 37 there exist ag, s € v N (2Z)" such that a = §(a1 + ag). Since
o 1 1.2
x4 %+ 22% = <$2°‘1ix20‘2) ,

we conclude that p, & 22 € Z Rz 2% and hence that p, —eg € ZR[%]Q%,Y for
sufficiently small € > 0.
For (2), consider V' as the affine hull of ZR 2; in the proof of [3,
2
Proposition 1.4]. O

Proof of Theorem 4.4. Let I' = I'(fa,,). Since fa,, € rint <ZR[$]3”>’
I' meets all coordinate axes and then I' = I'(f). By (2) of Lemma 4.6, there ex-
ists € > 0 such that fa,, — 2epr € ZR[x]Q. Let t = (% deg f] and {e;} be the
canonical basis of Z". Then we write

f2m = f2m - 25])1" +f(1) +f(2)

where for My > 0,

t
D=epr— ) EH:M%SU%@?

k=m+1 i=1

t n
D=epr+ D> My D faz®

k=m+1 i=1 |oo|>2m+1
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Since I' meets all coordinate axes, pr contains z2™¢ for all . Then we have

t
€$2mei . Z Mgkl'lei _ w?mei ( Z M. kx (2k—2m)e; ) e ZR

k=m+1 k=m+1

and hence f() e ZR[[QB]]Q for any M} > 0.

Next we will show f?) e ZR[x]Q. We claim that for arbitrary C, > 0,
there exists D > 0 such that

Z Cox® + Z fax® +ZD952’“+2

cueven |a=2k+1

is contained in ZR ]%. Let a € Z" with |a| = 2k + 1. For the index s such
s+1
that 22% <2k < 2204,, we define B(a), 8’ (o) € Z7} as

205, 1=1,...,s
Bla)y={2k—> 205 i=s+1
0, otherwise

and () = 2a — B(a). Then S(a), 8'() are even, |3(a)| = 2k, |8 (a)| = 2k + 2
and 2a = () + (). Thus

’ 2 2
B(a) fa B@ f y
Ca(o) @ + faz® = Cy, (x T+ ) S—
B(a) B(a) 406(&)

Let

S(k) ={aesupp [ ||af =k},
I'={peZi|Biseven,|B| =2k} \{B(a) | S(2k +1)}.

Then we have

Ti=) Caz®+ ) <Cﬂ(a)xﬂ (@) 4 faz:“> n zn: D@k +2)e

pel a€S(2k+1) i=1
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2
o <a> fa @
= E Cpz® + E Cﬁ( )< 2CB(Q)$ 2 )

Berl €S (2k+1))

S pp@e Y _Ja o
i=1 la|=2k+1 4C(a)
a€supp f

Here the last parenthesis is a homogeneous polynomial of degree 2k + 2 and
Lemma 4.5 implies that it is a sum of square polynomials for sufficiently large
D;. Thus the claim is proved.

Now we have

t n t
fO=epr+ D> Mya®i+ > | Y far®+ > far®

k=m+1 i=1 k=m+1 \|a|=2k—1 |a|=2k

where

n
M-
1) — @ 2P2m42  (2m+2)e;
g’ =epr+ Z fax +Z T
|a|=2m+1 =1

RV (D VIFLII RS o
k=m+2 \a€eS(2k—1) |a|=2k—1

3) t ~ Moi—n (913 (a)

3) _ — 2k—2)e; Bla

=D | > @

k=m+2 \ i=1 a€eS(2k—1)

g(4) _ Z Z Fox® + Z Moy, p2kei + Z Moy p2tei

k=m+1 \ |o|=2k

Note that Z 27 is a homogeneous polynomials of degree 2k — 2. Again
a€S(2k—1)

by Lemma 4.5, there exist M such that g 4) € ZR for Moy, > M. The
claim above implies that there exist M2m+2 > M such that g(l) € ZR[:I:]2
Similarly for k = m + 2,...t, there exist Moy > M such that ¢ € ZR[:I:]2
Therefore f) e ZR[QB]Q and hence f € ZR[[QB]]Q O
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Example 4.7. Consider
flz,y,2) = 220 4 2y° + 228 4+ 29323 + 2%y*2°,

The lowest homogeneous part is 2z2° + 2% + 22°, which is contained in
rint (Z R[x]%) The monomials 23?23 and z?y%2® are not even and their ex-

ponent vectors are (1,3,3) and (2,4, 3) respectively. Now we have

2(1,3,3) = (2,6,6) = (2,4,0) + (0,2,6)
2(2,4,3) = (4,8,6) = (4,4,0) + (0,4,6)

and then

1 2
22yt + a2t = (ng T 5y23> _ Zy226

1 2
x4y4 4 x2y423 — (x2y2 4 53/223) o Z3/421,6.

Now we have

f=a%+98+2° —2a(a® + o5+ 28) — b(2'0 + 10 + 219)
+ (28 4+ 98 + 25 — ea?y?)
+ [ex?y® + 2922 4 a(a® + o + 28]
+ ety 4 22028 4 b(' 10 1 210))
+ Ja(a® + o5 + 28) — 2194
= 25(1 — 2a2® — bx*) + 451 — 2ay® — by*) + 2°(1 — 2a2* — b2?)
+ (2% + 9% + 25 — ea?y?)

1 S|
+ |e (ng + —y23> — — 2208 fa(a® o8+ 2P

2e 4e

1 2
+ <x2y2+—y223> —1y426+b(x10+y10+210)

2

+ [a(:z:8 + 98 4+ 28) — :c4y4]

By Lemma 4.6, there exists ¢ > 0 such that 2% + 3% + 2% — ex?y? € ZR[x]Q.
Then by Lemma 4.5, we can choose a,b > 0 large enough so that the last three
brackets are contained in ZR[:U]z. Therefore f € Z R[[z]]?.
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4.2. General Newton diagrams. Next, we consider the case that the
Newton diagram has several faces which are contained in different planes. For
this general case, we need an assumption on the distributions of exponent vectors
of polynomials in addition to conditions corresponding to those of Theorem 4.1.

For o',...,a! € (2Z,)", a binary convex combination of these points is
a € 7'} which can be written as

a= ol +- -+ Mo,

t

for some Az > 0, Z As = 1 such that 2-adic expansions of A1,..., A\; have finite
s=1

digits. We also say that a binary convex combination has full digits if there exists

N € N such that

N
) As :Z&k?% for 65, € {0,1}, s=1,...,¢;

(2) for each k, there exists s with dg, = 1.

For Ap C Z", the set of all binary convex combinations of points in
AgN(2Z4 )" which have full digits and are contained in Z" is called the bisectional
convez hull of A and denoted by bconv Ag. Note that we have

AgNZ" C bconvAg C convAgnNZ".

Example 4.8. Let A = {(16,0) + Z% }U{(0,10) + Z2 }. Then (11,7) €
beconv Ag. In fact, we have

1

(11,7) = (; + 23> (16,0) + 55(4,22) + (0,12)

(4,22),(0,12) € ApN (2Z4)" and it has full digits.
Proposition 4.9. Let Ap C Z'}. Then we have
beconv Ag = Z"N

N
{22—’28’“ + 27NN+ gk c Apn (22" k=1,...,N +1 for some N € N} .
k=1
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Proof. Let o € beconvApg. Then there exist al,...,at € Ag N

t
(2Z4 )" A1y N > O,Z)\s = 1 such that

s=1
a= X a! +-- 4+ \al
N+1
and it has full digits. Suppose that Ay = Z 05627 % for s = 1,...,t. Since
k=1

t
Z)\S = 1 and {dsn+1}s corresponds to the N + 1 st digits which are the last
s=1

ones, the number of nonzero {Jsn41}s is even. Thus there exist at least two

nonzero dg N1, 05/ N41-
Since « has full digits, for each k = 1,..., N, there exists 7 € {1,...,t}
such that d,; = 1 and then let 7(k) be the least such index. Then we have

t

N
1 = Z )\5 Z Z 5T(k)k2ik + 6SIN+127N71 + 68//N+127N71
s=1 k=1

N
= ohpo Nl Nl o,

k=1
Therefore there is only one s with §, = 1 for each k = 1,..., N. It gives the
desired representation. O
Proposition 4.10. For g* € (2Z4)" k=1,...N+1, let

N
aoS Loy Lova
2k 2N ’

k=1

be contained in Z". Then we have

N

1 k 1 N+1
Z 21<:—N’+2B + 2N—N’+2f8 :
k=N’

N
is contained in Z', for N' =2,...,N +1 with the convention Z ar = 0.
k=N-+1
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Proof. Since g¥ € (2Z,)", the left hand side of

N'—1 N
N’ 2 (a Z Bk) B Z 1 gk 4 1 BN+
k 2ka’+2 2N7N’+2 :

k=1 k=N’
is contained in Z'} and so is the right hand side. O

Example 4.11. By Example 4.8,

1

(11,7) = %(16,0) + o5

1
(0.12)

and (4,22) € Ag. In addition, we have all of right hand sides of

1
16,0) +

4,22) + 5

1 1
1

~(16,0) + %(o, 12),
2 <(11,7) ~5(16,0) - 5 (4 22)

1
= 5(16.0) + 55
1

2—3(16,0)> = 5(0, 12)

> (0 12)

1

1
23
22 <(11,7) - 5(16,0) - §(4, 22) —

are contained in Zi.
Now we present sufficient conditions.
Theorem 4.12. Let f € R[z] with f(0) =0. Suppose that

(1) Every vertex of I'(f) is even.

(2) For each vertex o of T'(f), fo > 0.
(3) For each mazimal face v of T'(f), f~(x) € rint (ZR [z]3 )
(4) If for each mazimal face v of T(f),

{a € supp f Nconv A(fy) \ v | a is odd or fo, < 0} C beonv Ag(f,).

Then f € Y R[[z]]

We note that by Theorem 3.2, Condition (3) of Theorem 4.12 implies the

corresponding interiority condition for each face of I'(f). To show the theorem,
we need the following lemmas.
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Lemma 4.13. Let
N 1 1
_ } : k N+1
a = 2_kB -+ 2_NB N
k=1

where B* € (2Z4)",N € N. For anye > 0,a € R,t € {1,...,N + 1} there exists

M > 0 such that
N+1

Z e’ — az® + MaP' € ZR[:L’]Q.
k=1

Proof. Caset=N +1.

N+1 .
Z ex? — ax®
k=1
N+1 5
=Y e te (l‘z’lﬁl — ifoLQ?’kﬁk*TwNH)
pe 2¢e
. <£>2 waf:Q 2—k+1/3k+27N+1/3N+1
2¢e
N+1 5
=Y e +e (xz’lﬁl _ ifoLQ?’kﬁk*TNﬁNH)
ped 2¢e
—1p2 1 a 2 N —k+19k —N+1aN+1 2
+€<af2 L (—) g2k=32 T AH2TETS )
2 \2e
1 a 2 2 N —k+2 9k —N+2a9N+1
—e _(_) Al 2Rk NH2gN S
2 \2e
Nl j N kti—1 gk N+j—1gN 2
— e 4 € (952715] — CjpXi=in? D +1>
j=1
L <x2*15N B CN$271ﬁN+1>2 . ]2\[$/BN+1
where a
C = 5 C;=27'C; ,, j=1,2,...,N.
Thus we have ,
™!
Cj = =1,2,...,N.
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N
By Proposition 4.10, we have Z 2_k+j_15k + 27 NHI=1gN+1 ig contained in
k=j+1
N+l
Z" for each j. Therefore Z ex?” —az® +eC% € ZR[J:]Q
k=1
Caset ={2,...,N}.
N4l
Z ex? — ax®
k=1
vl = ; N ktj—1gk o N+j—1gN+1\ 2
=> e +> e (96271” + Cjakm 2T AT )
j=t j=1
_ 502 :L»chv:t 27k+t715k+27N+j715N+1
N+1

= Z ex® + Z ( T ijzg:jﬂTkﬂflﬁkﬁwﬂilﬁjvﬁ)z — La”

+ L:L‘ _ 502 mzé\/:t 27k+t71ﬁk+27N+t71/3N+1
N+1

. _ . _ . 2
=) e’ +Z ( T Oy iRy T2 1/BN> — (L +e)a”
j=t+1

2
+ I mzflﬁt _ &xzfc\f:”l 27k+t71/3k+27N+t71ﬁN+1
2L
_ &a;ZfLm 2-kttgh o= N+tgN+1
22[
N+1

Z Y L + 8 -l- Z (xzilﬁj + ijZkN:j+1 27’“”715’“4‘271\/”7151\/)2
J=t+2

2
+L (leBt B 261_2372{;’:”1 2k+t15k+2N+t1ﬂN+1>

271ﬁt+1 1 Ct2 ZN 27k+t/8k+27N+tﬁN+1 2
+elx — %ﬁx k=t+2

©22¢ \ 22
BN _ (L + €)xf3t

2\ 2
1 <Ct > xsz:tH2*k+t+1ﬁk+27N+t+1ﬁN+1

=E&x
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t—1
+Z€< 2714 —|—C:L‘Zk 12 k+j715k+27N+jflﬂN+1)2
Jj=

1
—1pat Ct k+t—1pk N+4t—1gN+1 2
+ L x B Zk t+127 BE+27 B

)

N
i i 2
—1pj —k+j5—143k —N+j—1gN+1 N+1
=t+

Jj=t+1

where
2
Ci

Dt+1 = 23«5[4’

D;j=27'D} |, j=t+2,...,N,

and hence we have

1 ot 2i—t=1
a .
Dj = 92i—t=1—1] <2Qt+1+1€2t+1L> , j=t+2,...,N.

N+1

Then by taking L large so that Dy < 1, we obtain Z ex® —az® + (L+5):B/Bt €
k=1

ZR[IL‘]Q. Case t = 1 is identical to the case t =N +1. O

Lemma 4.14. For f € R[z| with f(0) = 0, let v be a face of T'(f).
Suppose that f. € rint (Z ]R[x]%W) Then for any a > 0, a € beonv Ag(fy) \ 7,
2

fy£az® € Rz])?
Proof.  Since f, € rint (Z R[x]Q%W), there exists ¢ > 0 such that
fy —¢epy € ZR[:L’]Q. Let arbitrary o € beconv Ag(fy) \ v be fixed. Then there

N
exist {#*} € Ap(f,) N (2Z4)" such that o = 22_k,8k + 27 NgN*L Since

k=1
v is a face, there exist A = (Ay,...,A,) € Z7 \ {0}" and v > 0 such that
{o/ €Z% | A-o/ = v} contains 7. By taking the dot product of A and «, we have

N

1 1 N+1
=D A B+ oA BN
k=1
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N
Since o ¢ 7, we have A -« > v. In addition, since 22_k +27N=1 = 1, there
k=1
exists t € {1,...,N + 1} such that A - 3" > v and thus 3' ¢ ~.
Now, for M > 0 we have

fy £ ax®
o N+l o N t t
—f7_5p7+ng—N—+2;x5 +N—+2;xﬁ +ax® — M2? + MazP
oo -
:(f,y—epy)%—(z—:p,y—N—H;:cﬁ —M:L”B>
+< c %xﬁkia:vajLMxﬁt)
N+2 & '

By Lemma 4.13, there exists M > 0 such that the last pafenthesis is contained
in ZR[IE]Q. Since ' € Agp(fy) \ v N Z", there exist Bt € v N (2Z4)" and
w € (2Z4)™\{0}" such that 8 = Bt—i—w. In addition, let r = #{B* | g¥ = gtk =
l,...,N+1L andr=#{p* | p* =Bt k=1,... N+1}. Then 0 < r,7 < N+1
and

N+1

g k t
_ § B _ B
EDy N2 : 1:z: Mx

B o ,ét_ re IBNk:_ g IBk
=c Z T +ex N+2x N2 Z T

a’E'yﬂ(2Z+)”
ol £t

— (re(N 4+2)71 + M)aP

=¢ Z xo‘/—Nj_2 Z 28"

a’eyn(224)" k#t
o £6t pkpt, gk

t

texf (1 —F(N+2)71 —e7(re(N +2)7! + M)a®)

is contained in Z R[[z]]*. Therefore, we have f. & az® € ZR[[:L‘]]z O

Example 4.15. Let f(z,y) = z'® + ¢y — 2!3y? and ' = I'(f). Then
I = {A\(16,0) + (1 — A\)(0,10) | 0 < X < 1} and Ag(fr) = {(16,0) + (2Z+)?} U
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{(0,10) + (2Z+)*}. We have (13,2) € beonv Ag. In fact,

1 1 1 1 1
(13,2) = 5(16,0) + 55(16,0) + 2(0,10) + 7(16,0) + 37(0, 12)
and (0,12) = (0,10) 4+ (0,2) € Ag(fr) \ . Now we have

1 1 1 1

5(16,0) + (0,10) + (16,0) + (0, 12) = (5,2)
1 1 1

52(0,10) + 55(16,0) + 5(0,12) = (2.4)
1 1

52(16,0) + 5(0,12) = (4,3)
1

L0.12)= (0,6),

Thus we obtain that for any €9 > 0 there exists M > 0

€0 (3:1:16 + y10 + y12) _ x13y2 + My12
—_ 60(168 _ (271661)$5y2)2 +€0($8 _ (273662)‘%,23/4)2 +€0(y5 _ (277564):1:43/3)2
+ 50(1’8 _ (2715568)3/6)2 + (50 + M — 27305615)y12‘

is contained in Z R[z]?. Therefore

Fla,y) = 20 410 — 2132 — o(210 4 10) 4 (216 4 410)
— 67 (3010 + 410 4 12) 4 671e (3010 + 10 + y'2) — My'2 + MyP
=(1-e)z+ (1 -y +e1—-2"Ha'0
+ey®(1-6"1 =167 e + M)y?)
+ 6712 (3210 + 10 4 y12) — 2132 4 Myl

is contained in Z R[[z]]%.

Proof of Theorem, 4.12. For a maximal face v of ' := T'(f), let s be
the number of elements of supp f N (conv A(f,) \ 7). For arbitrary small ¢ > 0
and each « € supp f N (conv A(f,) \ 7), Lemma 4.14 ensures that

~fo + faz® € Y Rla]*

Therefore
efy+ Y _{fax® | @ € supp £ N (A(f,) \ )}
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is contained in ZR[[:L‘]]z Since € > 0 is an arbitrary small constant and f, €

rint (Z R[x]z) for any face 4 of I', we conclude that

f=fr—ed fy+ed fr+ Y {far®|acsuppf\T}
v v a

belongs to ZR[[QB]}Q, where the first and second summations are taken with
respect to every maximal face v of I'. O

4.3. Regularity of Newton polyhedra. In Theorem 4.12, Condition
(4) is hard to check. However there are some kinds of Newton diagrams which
the condition is automatically satisfied. In addition, it will be shown that when
we use Theorem 4.12, we need to check the condition for only lower degree parts
of polynomials. First we define a regularity property of Newton polyhedra.

Definition 4.16. Let f € R[z] with f(0) = 0. We say that f has a
reqular Newton polyhedron, if f satisfies that

(1) Every vertex of I'(f) is even;
(2) For each vertex a of T'(f), fo > 0;
(3) If for each mazimal face v of T'(f),

{a € supp f Nconv A(fy) \ v | a is odd or fo, < 0} C beonv Ag(f,).

With this regularity, Theorem 4.12 can be restated as follows:
Theorem 4.17. Let f € R[z] with f(0) = 0. Suppose that f has a reqular
Newton polyhedron. If we have f,(x) € rint (Z R[w]iv) for each mazimal face
2
7 of T(f), then f € R[[z]]*.

The following proposition explains a different aspect of Lemma 4.3 that
if a Newton diagram is included in the plane |a| = 2 and meets all coordinate
axes, its Newton polyhedron is regular.

Proposition 4.18. Let f € Rlz|. Suppose that
r:=r(f) = {ozGZ’}r ] a1+---+an,1+an:2}.

If fr is positive definite, then conv A(fr) N Z"™ C beonv Ag(fr) and thus f has
a regular Newton polyhedron.
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Proof. Let f = Z fx be the expansion of its homogeneous components

k
where deg fi. = k. We note that the assumption is equivalent to that fo = f1 =0
and f5 is positive definite. We show the conclusion by induction on the number
of variables.

d
If n = 1, we can write f = fox? + Z fra® where d = deg f. Then fo > 0

k=3
and supp f C {2} + Z. Thus conv A(fr) NZ C Ag(fT).
Suppose that the conclusion holds for n. Let f € R[z1,...,z,4+1] be such
that

I=T(f)={aecZ a1+ +ap1 =2}
and fr is positive definite. Then for the canonical basis {e;} of Z"!, we have
2¢; € T Nsupp fo for i = 1,...,n + 1. Clearly, f satisfies the condition (1) and

(2) of Definition 4.16. Suppose a € conv A(fr) NZ" L.
Case apt1 > 2. Then

a € {241} + 27 Csupp fr N (2Z)"T + 20 € Ap(fr) Nzt

Since Ag(fr) NZ ™ C beonv Ag(fr), we have a € beonv Ag(fr).
Case apq1 = 1. Then a = e,41 + (5,0) for some 3 € Z'}. Now we have

a= %{2en+1 + (25,0)}.

Since at least one component of 23 is greater than or equal to 2, the same
arguments in the previous case implies that (23,0) € Ag(fr). In addition 2e,,4+1 €
Ag(fr) and thus a € beconv Ag(fr).

Case o171 = 0. Then a = (&,0) for some & € Z?. Define f =
f(z1,...,2,,0). Then f € Rlz1,...,x,], fo = fi = 0 and f is positive defi-
nite. Since {a € supp fa | any1 = 0} = supp fo x {0}, we have

a € (conv A(ff) NZ") x {0} C bconvAE(ff) x {0},

where the inclusion is implied by the induction hypothesis. Now we claim that
AE(]‘}) x {0} € Ap(fr). Let o € AE(ff) x {0}. Then o = (B + r,0) for
some 3 € supp ff N (22)", r € RY}. Since ($,0) € supp fr N (2Z)"™!, we have
(6 + 7“,0) = (6,0) + (T‘, O) S AE(fF) Thus

a € beonv AE(ff) x {0} = bconV(AE(fI:) x {0}) C beconv Ag(fr).
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Therefore conv A(fr)N C beonv Ag(fr). Since I' is the unique maximal
face of f, f has a regular Newton polyhedron. O

In the case that a Newton diagram is contained in a plane, we can slightly
relax a condition of Theorem 4.4 which means that it has to be parallel to the
plane |a| = 2.

Theorem 4.19. Let f € R[z]. Suppose that
D:=T(f)={a€Z} | kai+ -+ kan_1 + an = 2k}

for some k € Z. If fr € rint ZR 2% then f has a regular Newton polyhe-
dron.

Proof. Suppose a = (&, ;) € (conv A(fr)NZY)\I'. Then k|a|+ a, >
2k.

Case |&| > 2. Let vy =T'n{a € Z} | a, = 0} Then v = {(a 0) €
ZY | o) 4+ -+ aj,_; = 2} and v is a face ofF In addition v = I'(f )>< {0}
where f(z1,...,2p-1) = f(z1,...,2n-1,0). Let ¥ = F(f) Then f, = fv and
& € conv A(j%) N Z"!. By Lemma 4.6, fr — epr belongs to ZR[:U]z for a
sufficiently small ¢ > 0. Applying Theorem 3.2 to the face v of ', we also have
fy —epy € ZR[w]z. Then we have fq = fy = (fy — €py) + €py is a positive
definite quadratic form in x1,...,x,_1. Thus Proposition 4.18 implies that

a = (&,0) +(0,...,0,a,) € conv A(fz) NZ" ! x {0} + Z7}
- convA(f)ﬂZ” Y'xz, c bCOIlVAE(f:y) X Ly

Since supp j%ﬂ (2Z)" 1 x {0} C supp f,N(2Z)", we have AE(]%) XZ4 C Ap(fy)-
Thus

a € beonv Ag(f5) x Z4 C beonv Ag(f,) C beonv Ap( fr).

Case |a| = 1. Notice that a,, > k and there exists an unique index ¢ such
that oy = 1 and o, = 0 for s # t. Suppose that ¢t = 1. Then we have

1
a = (1,0,--,0,ap,) = 5{(2,0,“- ,0)+(0,--+,0,2a,)} € beonv Ag(fr).
The same argument gives the inclusion for the case t =2,...,n.
The case |&| = 0 is obvious. O

Example 4.20. Let f(z,y, 2) = 2> 4+ y> + zyz 4+ y2° + 2!, Then I'(f) =
{a € R% | by + 5ag + a = 10}. Here the lowest form g(z,y, z) = 2® +y? is only



Notes on Newton diagrams and sums of squares 451

a positive semidefinite form and thus Lemma 4.3 can not be applied. However
fe Z R[[z])?> by Theorem 4.19 and Theorem 4.17. In fact, we can see it directly

—2(1 3 2 1 ? Lo 1 5)2
=y 17 ) T letgyr) +32 +§(yz+z).

The following proposition ensures that the regularity of lower degree parts
is enough for a polynomials to belong ZR[[:L‘]]z

Theorem 4.21. Suppose that f € Rx] satisfies the following;

(1) T'(f) meets all coordinate axes;
(2) for each mazimal face v of T'(f), fy(x) € rint (Z R[w]iw)

If Z{faxo‘ s la] < deg(fr) + 1} has a regular Newton polyhedron, then we have
fed Rl

Proof. Let d = deg(fr), fo = Z{faxo‘ : la] < d+ 1}. Then there
exists € > such that fo — ep, € rint (Z R[x]év) for each maximal face v of

I'(f). By Theorem 4.12, we have fo — epy € ZRH:L’HQ Thus we also have

fo—epr € ZR[[m]]Q, by taking ¢ > 0 smaller if necessary.
Since d is even, Lemma 4.5 ensures that for any K > 0 there exists M > 0

such that
MZxd+2 + Z fax® € rlntZR

la|=d+2

f=(fo—epr)+ <€pr - sz;’i'ﬁ‘?)
+ MZxd+2+ Z fax® + Z fax®

o] =d+2 la|>d+2

Since T'(f) meets all coordinate axes, the second parenthesis is contained in
ZR[[Q?HQ By Theorem 4.4, the last parenthesis is contained in ZR[x]Q. 0

As an easy consequence of Theorem 4.21, if the Newton diagram stays
away from other exponents, regularity is not necessary to ensure f € Z R[[z]]?.



452 Yoshiyuki Sekiguchi

Corollary 4.22. Suppose that f € R[z] satisfies

(1) I'(f) meets all coordinate axes;

(2) for each mazimal face v of T'(f), fy(x) € rint (Z R[w];)

If the degree of each monomial in f — fr is greater than deg(fr) + 1, then we
have f € ZR[[:L‘]]z

5. Constrained case. In this section, we seek a sufficient condition for
f € R[z] to belong to a quadratic module generated by several polynomials. Here
we consider a local order on monomials in R[z]. For example, the anti-graded rex
order on R[z,y] is a local order satisfying that

1>z >y>2%>zy > 12

For the detailed definition and discussion, see [4, Section 4.3]. For a given order-
ing, the leading term LT(f) of f be the maximal monomial appearing in f. The
following theorem is well-known [4, Cor. 3.13 in Chap.4].

Theorem 5.1 (Mora’s division). For f,g; € R[z],i =1,...,] and a local
order >, there exist u,q;,r € R[z] such that

(1) A+u)f = qu'gi + 7,

(2) u(0) =0,
(3) LT(f) = LT(qig:) for all i,
(4) LT(r) can not be divided by LT(g;) for all i.

Here we consider slightly modified version of the division.

Definition 5.2 (Modified Mora’s division). After applying the Mora’s
division

A+u)f=> qgi+r,

let g be the polynomial obtained by eliminating all terms of r included in the
ideal generated by the leading monomials of linear parts of g;, h;. For I' :=T'(rg),
let d = deg(ror).
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(1) Divide further as
(I+u)f= qugi + ',

where any monomials of v’ with the degree < d + 1 can not be divided by
LT(g;) for alli.

(2) Let 7 be a polynomial obtained by eliminating all monomials of r' with degree
>d+ 1.

We call v the essential remainder.
For f € R|x], we use the notation f,(z) := f(z + z) — f(2). Note that
f2(0) =0. For g; € R[z],i =1,...,1, let (g1,...,q1)" = {Z 7:.9i | i € R[[z]]}.

l
Theorem 5.3. For a global minimizer z of (POP), let L = f— Z Aigi —
i=1
Z,ujhj with A; > 0, 1 € R satisfying VL(z) = 0 and \;g;(2) = 0. Suppose that

Jj=1
for a local order, an essential remainder ¥ of modified Mora’s division of

Lz by {)‘igi,Zahj,z ’ )\ngl(Z) 7& 0}
satisfies the following:
(1) T' =T(F) meets all coordinate azxes of appearing variables in 7.

(2) Vyel, ry € rintZ]R[x]

]2 N

(3) 7 has a regular Newton polyhedron.

Then we have [ € M(ng, cosGlz) F Rz, )"

Proof. For a global minimizer z, let I = {i | \;Vgi(z) # 0}. By the
modified Mora’s division, there exist u, p;, ¢;, 7, w € R[z] such that «(0) = 0 and

m
(I+w)L. =) pidigiz+ Y qihjz + 7+ w,
iel =1

where LT(L,) > LT (p;iX\igi,»), LT (qih; ) in the local order, each monomial of 7
can not be divided by LT(g; »), LT (h;.) and w € (gi ., h; )i ; and the least degree
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of w > d+2, where d is the number given in the definition of the modified Mora’s
division. Since L(z) = 0,VL(z) = 0, we have deg(LT(L,)) > 2. Then the least
degree of the monomials of p;Ag; . > 2 for all i € I. Thus the least degree of

monomials in p; > 1 and hence p;(0) = 0 for all i € I.

Further by the Division theorem in R[[z]] [6, Theorem 6.4.1], there exist

p,q, 7" € R[[z]] such that

w_zpz zgzz_‘_zq]h]z"i_r

el

where each monomial of 7' can not be divided by LT (\;g;), LT (h;) and the least

degree of 7’ > d + 2. Similarly, we have p;(0) = 0. Then
l m
fz = Z )\igi,z + Z Mjhj,z + Lz
i=1 j=1
=3 1+p’+pl +Z qﬁqﬂ h;
= ) i,z ,U/] Tu j,z

i€l
7“ —|— r!
+ Z Zgl z .
il

Since 7+’ is contained in Z R[z]? by Theorem 4.21, we have f, € M(ng, .

M1z shmz)™. O
Example 5.4.
min f = 2® +¢® + 22 + w' 42
st. g=2—a*—yt =zt —wt>0
The optimal is a = (—1,—1,0,0). We have

Vi@ = Va0, 7 (f-39) @) -

o O O W
o O w o
oNn OO
o O O o

Thus V> < f— Z g) (a) is not positive definite on the subspace

€1

4 1 0 0

L /|4 _/|-1| |o| |o
Vg(a) <0> < 0 ’ 1 ’ 0>7

0 0 1

0

7gl,2)+
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and hence the second order condition is not satisfied. Let > be the anti-graded
rex order. We have

fo=3z+3y—322 -3+ 22+ 23+ +w?
go = 4z + 4y — 62% — 6y + 423 + 4y — 2t —y* — 2* —w?,

and the remainder of f, by g, is

1 9 9 17
r:3y2+22+1$3—Zx2y+1xy2—zy3
R N LA R LS S

3 3 3 3 3 3
+ gxy4 + §x24 + gxw‘l - §y5 - §y24 - gyw4.

By eliminating terms of r contained in LT(g,) = (), we obtain

94,34 435 3

17 7 3
r0:3y2+22——y3+ y +-2+-w —3sy ——yz4——yw4.

4 4 4 4 8 8 8
For I :=T'(ro),
To,r=3y2+22+£w4
and degror = 4, Then the essential remainder 7 = 79 and T =

ro,r € rint ZR[$, Y, 2, w]QlF. Since the Newton diagram of 7 satisfies the condi-
2
tions of Theorem 4.19, 7 has a regular Newton polyhedron. By Theorem 5.3, we

have f € M(g).
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