
TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

Flow-animal interactions in the ocean

言語: eng

出版者: 

公開日: 2019-06-24

キーワード (Ja): 

キーワード (En): 

作成者: 田中, 衛

メールアドレス: 

所属: 

メタデータ

https://oacis.repo.nii.ac.jp/records/1770URL



1 

 

Doctoral Dissertation 

 

 

FLOW-ANIMAL INTERACTIONS 

IN THE OCEAN 

 

 

March 2019 

 

 

 

 

 

Graduate School of Marine Science and Technology 

Tokyo University of Marine Science and Technology 

Doctoral Course of Applied Marine Environmental Studies 

 

Mamoru Tanaka 

  



i 

 

 

  



i 

 

Doctoral Dissertation 

 

 

FLOW-ANIMAL INTERACTIONS 

IN THE OCEAN 

 

 

March 2019 

 

 

 

 

 

Graduate School of Marine Science and Technology 

Tokyo University of Marine Science and Technology 

Doctoral Course of Applied Marine Environmental Studies 

 

Mamoru Tanaka 

  



ii 

 

 

 

Abstract 

While marine animals are always exposed to fluid motions, interactions between 

animals and flows are still controversial. Due to difficulty in measurement, in situ 

observations of animal swimming simultaneously with environmental flow fields are 

rare. Also, it has been unclear whether animals significantly modify surrounding 

flow fields. While previous studies have focused on effects of environmental flow field 

on marine animal (or vice versa), in this study, field and laboratory experiments were 

conducted using novel technologies to investigate “two-way” interactions between 

flows and animals.  

Filed campaigns were conducted to investigate zooplankton avoidance to 

water disturbance, focusing on diel vertical migration (DVM). DVM of zooplankton 

has been identified to contribute to vertical flux of carbon in the ocean. While most 

researchers have worked on mechanism and dynamics of DVM from the view point 

of biology and/or ecology, several studies have demonstrated that surrounding flow 

field modify behavior of individual zooplankton (e.g. Seuront et al. 2004). To reveal 

how zooplankton modify their DVM in response to fluid motions, I analyzed in situ 

data acquired by a cabled observatory that carries a plankton camera (Continuous 

Plankton Imaging and Classification System, CPICS) and various environmental 

sensors. The cabled observatory was fixed on the sea floor of 20 m depth near Habu 

Port at Izu-Oshima Island, Japan. The analysis period was from August 2014 to 

January 2015. The plankton images were classified at a taxonomic level. The 

zooplankton taxa were separated into three groups: “strong migrator” (Ostracoda, 

Mysida, etc.) that appeared only during nighttime, “moderate migrator” (Calanoida, 

Larvacea, etc.) that appeared at day and night but preferred night, and “non-

migrator” (Radiolaria, Aulosphaera) that appeared at day and night evenly. Optical 

backscatter intensity measured by the turbidity sensor was frequently increased 

during night throughout the analyzed period, and the nighttime average was over 

10-fold higher than that of daytime. Abundance of the strong migrator (individuals 

L-1) significantly correlated with the optical backscatter intensity (r2 = 0.79, p < 0.01), 

suggesting that the source of the nighttime increases in the optical backscatter 

intensity was the strong migrator. Hence, I will use the optical backscatter intensity 
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as a proxy of migrator abundance. Several typhoons passed near the cabled 

observatory during the analysis period, resulting in increased significant wave 

height (𝐻1/3~4 m at maximum). I compared both the strong migrator abundance and 

the optical backscatter intensity to orbital velocity induced by the surface gravity 

wave and found that both were negatively correlated with orbital velocity (r2 = 0.32, 

p < 0.01 and r2 = 0.27, p < 0.01, respectively). Since most strong migrator were 

demersal zooplankton, given the previous studies (e.g. Seuront et al. 2004), the 

negative correlations suggest that strong migrator actively avoided water 

disturbances and stayed near the sea floor or in the deeper layers, consequently 

suppressing their DVM. Additional data that support the main suggestion will be 

shown in the main text.  

To confirm reproducibility of the zooplankton response to surrounding flow 

field, I analyzed long-term data acquired by two ADCP mooring systems. Filed 

campaigns were carried out near Izu-Oshima Island and off Eilat, Israel. While the 

observation site near Izu-Oshima Island has a typical coastal environment in middle 

latitude, the one off Eilat is in a semi-enclosed gulf (the Gulf of Aqaba) in low latitude 

where salinity is always >40 PSU throughout the year. Acoustic backscatters were 

used as a proxy of zooplankton density (Flagg & Smith 1989). Acoustic backscatters 

during nighttime were significantly higher than that of daytime, suggesting DVM of 

zooplankton. The nighttime acoustic backscatters were significantly reduced when 

current velocity increased at the both observational sites, despite the fact that the 

sites have very different environments. The consistent result from two different 

locations suggests the generality of the zooplankton avoidance in response to fluid 

disturbances.  

Zooplankton generally display positive phototaxis. Both CPICS and the 

fluorescence/turbidity sensor carried a light source. To test how zooplankton is 

attracted by these optic sensors and affect the data, I have conducted tank 

experiments using a natural zooplankton community and a cultured community 

composed of nauplius larva of Artemia salina. The fluorescence/turbidity sensor was 

put in an experimental tank with a community. While zooplankton in the both 

communities were not attracted by the light source of the sensor under room light 

condition, they are significantly aggregated nearby the light source under dark 

condition. Altering abundance of the natural community, the effect on the turbidity 

signal was then tested. The turbidity signal was 1.0 FBU when the abundance was 

430 individuals L-1, while the average was 0.1 FBU under the control (without 

zooplankton). While the turbidity increased to 2.2 FBU when the density was 870 
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individuals L-1, the turbidity did not show significant increase when the density was 

altered to 1300 individuals L-1. Second, the effect of environmental flow on the 

phototactic behavior was tested using the cultured community. While the individuals 

of A. salina are attracted by the light source of the sensor, flows were generated in 

the tank by stirrers. The flow velocity increased up to 3 cm s-1, and the turbidity data 

decreased as the individuals hovering around the sensor were flushed away. A 

significant negative correlation of turbidity against flow velocity was produced by 

this experiment (r2 = 0.40, p<0.01), which was observed by the cabled observatory. 

Bias due to the phototactic behavior on the in situ data is discussed in the main text.  

An experimental campaign on fish-generated turbulence was conducted. 

While organism-generated turbulent mixing (called biomixing) was first time 

mentioned by Munk (1966) and has been actively discussed for over the last decade, 

role of biomixing in ocean mixing is still elusive. The most controversial issue is 

whether organisms can generate turbulent eddies larger than their body size (Visser 

2007). To test this issue, several direct observations have been carried out for low-

Reynolds-number animals (i.e. zooplankton), but there is no direct observation for 

high-Reynolds-number animals (i.e. fish). To clarify if fishes can generate turbulent 

eddies large enough to mix stratified water columns, we conducted an observational 

experiment in a large aquarium tank containing several thousand Japanese sardines 

Sardinops melanostictus. Turbulence data were collected from inside the sardine 

school using a turbulence microstructure profiler. While the averaged turbulent 

kinetic energy dissipation rate was 6.7 × 10−6 W kg−1 outside the school, the averaged 

value inside the school was 2.3 × 10−4 W kg−1: two orders of magnitude higher than 

typical dissipation rates in the surface mixed layer. The school displayed fast and 

non-continuous ‘avoidance behavior’, or fast and long-lasting ‘feeding behavior’ 

during the measurements. A noticeable difference between the 2 behaviors was 

found in turbulent shear spectra: the avoidance behavior spectra showed a power 

decline in comparison with the Nasmyth empirical spectrum in the inertial sub-

range, but the feeding behavior spectra exhibited no power decline, even in the 

inertial sub-range. In the latter case, the sardine school imparted kinetic energy into 

scales larger than the average individual body size of 0.173 m. This result is a 

counter-example to a general hypothesis that swimming organisms cannot impart 

kinetic energy at scales larger than their individual body size. Ecological significance 

of the flow-animal interactions is discussed with the results from this study and 

previous studies.   
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Chapter 1 

 

Introduction 

 

1.1   Flows acting on animals 

While marine animals are always exposed to fluid motions, interactions between 

animals and flows are still controversial. Due to difficulty in measurement, there are 

only a few studies that simultaneously observed zooplankton dynamics and 

surrounding flow fields in the ocean, while zooplankton has significant roles in the 

material cycle. (Steinberg & Landry 2017). I will examine the significance of the 

study on the zooplankton reaction to surrounding flow fields based on previous 

studies (e.g. Kiørboe 2008, Yamazaki & Squires 1996, Oakey & Elliott 1982).  

While the biomass of the marine biosphere is concentrated in the upper 200 

m (Katija 2012), flows are ubiquitous in the ocean at any temporal and spatial scales. 

Thermohaline circulation is the largest circulation in the ocean (Wunsch 2002) and 

greatly affects the biogeochemical cycle (Sarmiento & Gruber 2006). The Western 

boundary currents are accompanied by various mesoscale and submesoscale 

phenomena, inducing strong gradients in temperature, salinity, and nutrients 

(Capet et al. 2008). The combination of surface tides and bottom topography 

generates internal tides that induce vertical displacement of pycnocline whose 

amplitude reaches 100 m (McPhee-Shaw et al. 2004). Kinetic energy of the dynamics 

shown above are finally converted into turbulent kinetic energy by boundary 

frictions, shear stresses, wave breakings, and hydraulic jumps (Thorpe 2007). 

Zooplankton cannot swim against large-scale flows like the Western 

boundary currents, but they can sense local flow fields induced by small-scale 

turbulence. Kiørboe (2013) reported mechanosensory setae on copepod’s antennules 

(Fig. 1.1 left), and copepods seem to distinguish deformation, vorticity, and 

acceleration of surrounding water using the setae (Fig. 1.1 right, Kiørboe 2008). 
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Similar organs have been found on antennules of North Atlantic krill as well (Patria 

& Wiese 2004).  

 

  

Fig. 1.1: (Left) Mechanosensory setae on the antennules of a copepod species, 

Pseudocalanus elongates. Excerpted from Kiørboe (2013). (Right) Schematic of 

spherical copepod with extending setae in different flow environments. 

Excerpted from Kiørboe (2008). 
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As reported by Yamazaki & Squires (1996) who compared zooplankton 

swimming speeds with turbulent flow speeds and concluded that most zooplankton 

can swim independently from local turbulence (Fig. 1.2), several field studies have 

shown modified zooplankton distribution in response to hydraulic dynamics 

(Gallager et al. 2004, McManus et al. 2005). Gallager et al. (2004) deployed a 3-

dimensional Video Plankton Recorder (VPR) with CTD at Georges Bank and showed 

that zooplankton significantly aggregated only when the motility number (ratio of 

plankton swimming speed to rms turbulent velocity) was greater than 3. A consistent 

result with Gallager et al. (2004) was found in a coastal region in Monterey Bay by 

McManus et al. (2005). They measured current velocity and acoustic backscatter 

with thermistor chains and found that zooplankton thin layers (indicated by acoustic 

backscatter) were formed only when Ri > 0.25 and oscillated vertically following 

vertical displacements of thermocline caused by internal gravity waves. In addition, 

Seuront et al. (2004) conducted a tank experiment to study zooplankton behavioral 

response to turbulence. They put zooplankton into a rectangular tank that is 1 m in 

Fig. 1.2: (A) Kolmogorov velocity scale (+) and the rms turbulent velocity scale 

against observed dissipation rates (ε). (○) Samples from a seasonal thermocline; (△) 

those from turbulence observed in fjord. (B) Average swimming speed of various 

organisms against body size. Shown are 2 phytoplankton (△, Gyrodinium dorsum; 

○, diatom), 3 zooplankton (☐, Euchaeta rimana; +, Oithona davisae; ＊, Metridia 

pacifica) and ★, a shark. (■) Escaping swimming speed for E. rimana. Excerpted 

from Yamazaki & Squires (1996). 
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length, where a horizontal turbulent gradient was generated by oscillating a grid 

located at an end. They tracked individual zooplankton swimming passes and found 

that zooplankton actively escaped from high turbulent levels and moved toward 

lower turbulent regions. Given the results from Yamazaki & Squires (1996) and 

Seuront et al. (2004), the zooplankton aggregations observed by Gallager et al. (2004) 

and McManus et al. (2005) seem to be consequences of zooplankton’s active migration 

toward less turbulent regions.  

Why do zooplankton avoid high turbulent levels? Turbulence generally 

increases encounter rates of zooplankton with their prey (phytoplankton) and 

predator (fish larva) (Rothschild & Osborn 1988, Yamazaki et al. 1991, MacKenzie 

& Kiørboe 2000). To examine how turbulence affects zooplankton’s Darwinian fitness 

(ability to reproduce the next generation; such as growth rate, survival rate), Visser 

et al. (2009) combined zooplankton’s feeding manner (suspension, ambush, and 

cruise feeding), cost of swimming, prey capture rate, and predation risk with a 

physical model where environmental turbulent level was controlled. The results 

from the model suggested that behaviors that seek out low turbulent levels increase 

individual’s Darwinian fitness for most zooplankton, and this effect is especially 

remarkable for the cruising feeders who swim throughout the water to find out prey. 

Thus, at high turbulent levels, disadvantageous aspects (e.g. predation risk) seem to 

exceed advantageous aspects (e.g. feeding efficiency).  

While Visser et al. (2009) did not consider motility of prey (phytoplankton), 

a recent experimental work reported a behavioral response of motile phytoplankton 

cells (Heterosigma akashiwo) to turbulence. Sengupta et al. (2017) put the 

phytoplankton cells into small cylinders (10 mm in length) and flipped the cylinders 

with a period of 18 s to mimic Kolmogorov-scale eddies corresponding to a turbulent 

kinetic energy dissipation rate of ε = 3 × 10−8 W kg−1. They found that a significant 

portion of the cells rapidly changed their morphology after the flips (within 60 min), 

and consequently their swimming direction was altered from upward to downward, 

resulting in significant cell accumulations at the lower end of the cylinder. They 

argued that motile phytoplankton cells actively avoid highly turbulent layers. Given 

that turbulence enhance encounter rates with zooplankton (Yamazaki et al. 1991), 

the turbulence-avoidance strategy of motile phytoplankton cell is reasonable to 

survive in the ocean.  

According to the previous studies mentioned above, an individual-based 

zooplankton strategy would be inferred as follows: individual zooplankton can detect 

surrounding local flow fields (Kiørboe 2008), can swim independently from the flow 
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fields (Yamazaki & Squires 1996), and select layers with low turbulent levels 

(Gallager et al. 2004, McManus et al. 2005) to enhance individual’s opportunity to 

reproduction (Visser et al. 2009). Zooplankton has significant roles in the material 

cycle: they transport carbon between surface layers and deep layers as part of the 

biological pump (Steinberg & Landry 2017). The carbon transport is mediated by two 

pathways: 1) particle sinking and 2) diel vertical migration (DVM) (Steinberg & 

Landry 2017). Zooplankton egest carbon as fecal pellets that are more difficult to be 

decomposed by bacteria and sink downward faster (tens to hundreds of meters per 

day for copepods) than other forms, such as marine aggregates (Steinberg & Landry 

2017). Thus, the particle sinking has been considered as an important contributor of 

downward carbon flux for over several decades (Cherry et al. 1978). In contrast to 

the particle sinking, DVM is recently recognized as an important pathway of carbon 

transport (Brierley 2014). The most frequently observed pattern of DVM is that, 

after dusk, zooplankton swim up from deep layers to surface layers and swim down 

again toward deep layers before dawn (Brierley 2014). Zooplankton graze 

phytoplankton in the surface layers during nighttime, and the ingested carbon is 

respired as CO2, excreted as dissolved organic carbon (urine), egest as particulate 

organic carbon (fecal pellet) in the deep layers during daytime. This daily active 

migration results in downward flux of carbon (Steinberg & Landry 2017). The 

mortality of the migrators in the deep layers is an additional flux (Zhang & Dam 

1997, Al-Mutairi & Landry 2001). Observed downward flux due to DVM was up to 

41 mg C m-2 d-1 in the northwestern North Atlantic (Dam et al. 1995) and up to 47 

mg C m-2 d-1 in the northeastern North Pacific (Stukel et al. 2013) that are 

comparable to that by particle sinking (Sanders et al. 2014).  

While zooplankton provide the pathways of carbon as results of their 

concurrent actions, there is no study that demonstrates (even discusses) how physics 

(flows) affect the efficiency of the transports. Since DVM consists of individual’s 

active swimming, it is predictable that the pathway by DVM is more easily affected 

by local flow fields than that by particle sinking. In the interior of the open ocean, 

away from the boundaries, turbulent kinetic energy (TKE) dissipation rates vary 

from 10–10 to 10–7 W kg−1 (Thorpe 2005), while strong turbulence of 10–6 W kg−1 is 

observed inside surface mixed layer (Oakey & Elliott 1982, Shay & Gregg 1986). 

Mixed layer depth (MLD) in middle latitude is ~10 m in summer season and reaches 

100 m in winter season. Typhoons also increase MLD. Price et al. (1978) reported 

that storms with wind speeds above 10 m s-1 increased MLD by several 10 m in 

summer season. During night-time, zooplankton would stay in the surface layers 
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shallower than 50 m (Rousseau et al. 2010) where the water column is easily 

disturbed by the atmospheric events.  

 

1.2   Animals acting on flows 

While zooplankton seem to be affected by local flow fields, recent studies have 

proposed a concept that swimming marine animals, zooplankton, fish, as well as 

cetacean, would physically mix the ocean by inducing turbulent flows and vertical 

convection through drag force while swimming (Katija 2012). Although there are still 

discussions on the efficiency of the turbulence induced by animals on the mixing 

(Visser 2007), I will use a term “biologically-induced turbulence” for the turbulence 

and “biomixing” for the subsequent mixing in this study.  

Munk (1966) introduced the concept of biomixing. While he concluded that 

the biologically-induced turbulence has a negligible contribution to the ocean mixing, 

Dewar et al. (2006) presented the opposite conclusion. They performed 

comprehensive calculations on energy budgets stored in the marine biosphere based 

on observed data that showed more biologically induced flows in the abyssal ocean 

than Munk (1966) assumed. They estimated that 1% of the total chemical power 

stored in the marine biosphere (62.7 TW) is converted into mechanical energy which 

would be used as turbulent mixing.  Also, Huntley & Zhou (2004) calculated drag 

force on body surface of various animals (from zooplankton to cetaceans) to estimate 

turbulent intensity while swimming at their moderate speeds. Taking account of 

packing density inside schools or swarms, Huntley & Zhou (2004) estimated that 

turbulent kinetic energy dissipation rates were in the order of 10−5 W kg−1, regardless 

of body size, which is comparable to that measured in well-mixed surface layers 

(Thorpe 2007).  

Besides the theoretical estimates of Dewar et al. (2006) and Huntley & Zhou 

(2004), an observational evidence of biomixing has been reported by Kunze et al. 

(2006). They encountered high turbulent kinetic energy dissipation rates of 10−5 to 

10−4 W kg−1 in layers of upward swimming krill during their DVM in Saanich Inlet, 

Canada (Fig. 1.3 left). Gregg & Horne (2009) also measured elevated turbulent 

kinetic energy dissipation rates of 10−6 to 10−5 W kg−1 compared to the background 

value of 10−9 W kg−1 within schools composed mainly of anchovy in Monterey Bay, 

USA. These measured turbulent kinetic energy dissipation rates are comparable to 

the theoretical value of 10−5 W kg−1 estimated by Huntley & Zhou (2004). 

Experimental works by Catton et al. (2011) and Patria & Wiese (2004) agreed with 

Kunze et al. (2006). Catton et al. (2011) conducted small tank experiments to study 
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fluid motions due to free swimming krill using a laser sheet illumination. They 

reported that krill aggregations actively transported water parcels downward to 

successive group members (Fig. 1.3 right), consequently disturbing the water column 

at a scale of aggregations. Patria & Wiese (2004) also showed induced jets and 

vortexes behind tethered individual krill (~45 mm in body length) that were paddling 

their pleopods. Observed flow speeds reached almost 10 cm s-1. Noss & Lorke (2012) 

conducted a tank experiment to study turbulence and subsequent vertical eddy 

diffusivity induced by Daphnia. Observed turbulent kinetic energy dissipation rates 

and diffusion coefficients were 10–6 W kg−1 and 10–5 m2 s−1 respectively, and both 

values were valid for a volume of approximately 1 cm3, about two orders of 

magnitude larger than the individual body volume. Wilhelmus & Dabiri (2014) 

conducted a tank experiment to study fluid motion around individuals of upward 

swimming Artemia salina. They found that downward jets generated by swimming 

strokes triggered Kelvin-Helmholtz instabilities larger than individual body size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1.3: Top left panel shows a nighttime ascent of a krill aggregation observed by an 

echo sounder. Bottom left panel shows turbulent kinetic energy dissipation rates that 

seem generated by the krill ascent. Right panels show a flow field generated by a krill 

aggregation swimming in a tank that was measured by particle image velocimetry. 

The krill aggregation significantly disturbed the water in the tank, indicating that 

krill aggregations induce strong turbulent mixing in the ocean like the one shown in 

the left panels. The left panels were excerpted from Kunze et al. (2006), and the right 

panels were excerpted from Catton et al. (2011). 
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While some observational and experimental studies demonstrated the 

importance of biologically-induced turbulence, some studies contradicted these 

conclusions. Visser (2007), based on a theoretical approach, pointed out that, even if 

small animals such as zooplankton induce turbulent flows during their migrations, 

they scarcely contribute to the ocean mixing since the induced turbulent eddies are 

too small to significantly disturb the water. His hypothesis was that swimming 

animals cannot impart kinetic energy at scales larger than their individual body size. 

As predicted by Visser (2007), Gregg & Horne (2009) reported that vertical eddy 

diffusivity inside anchovy schools were 100 times smaller than that outside the 

schools while turbulent kinetic energy dissipation rates were significantly elevated 

inside the schools. Also, Rousseau et al. (2010) reported an averaged turbulent 

kinetic energy dissipation rates of 10−8 W kg−1 within krill layers, a dissipation rate 

higher by a factor of two than the averaged background value, but three orders of 

magnitude lower than the theoretical 10−5 W kg−1 predicted by Huntley & Zhou 

(2004). Sato et al. (2014) reported no correlation between turbulent kinetic energy 

dissipation rates and krill DVM based on a long-term data set observed from a cabled 

observatory (VENUS).  

As small animals induce low-Reynolds-number flows, and large animals 

generate high-Reynolds-number ones (Kunze 2011, 2019), an animal which has a 

different body size would have a different mechanism to modify flow patterns. Small 

swimmers have been frequently studied from field campaigns (Simoncelli et al. 2018, 

Sato et al. 2014, Rousseau et al. 2010, Katija & Dabiri 2009, Kunze et al. 2006) as 

well as experimental campaigns (Houghton et al. 2018, Wilhelmus & Dabiri 2014, 

Catton et al. 2011). This relatively large number of studies may depend on 

accessibility of living body or facility (i.e. small tank). Large swimmers, such as 

pelagic fish, have been rarely studied. Pujiana et al. (2015) and Gregg & Horne 

(2009) are the only studies who reported biomixing by marine fish school in detail. 

Acoustics were utilized to detect/infer the presence of fish school during the 

measurements for their studies, while the schools seemed to be composed of anchovy 

(Gregg & Horne 2009) or tuna (Pujiana et al. 2015). Since acoustics does not identify 

animal behaviors, density, and possible reactions to the sensor during the 

measurements, a laboratory experiment is desirable to study the relationship 

between fish behavior and biomixing. As a next step for studying biomixing due to 

pelagic fish, I will present a direct measurement of biomixing by sardine in an 

experimental tank in which direct observations of fish behaviors can be conducted.  
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1.3   Layout of the dissertation 

The purpose of this dissertation is 1) to enhance our knowledge regarding how 

animals are affected by surrounding flow patterns and how animals affect local flow 

patterns and 2) to summarize the flow-animal interactions in the sense of that 

“marine animals and surrounding flow fields affect each other” based on results from 

previous studies and this study.  

Chapter 2 presents results from a long-term and continuous data acquired 

by a cabled observatory deployed near the southern part of Izu-Oshima Island. The 

cabled observatory carried an in situ microscopic camera and environmental sensors. 

Observed zooplankton were grouped into “migrator” who appeared only during 

night-time and “non-migrator” who appeared with no time preference, and the 

appearance of both taxa significantly decreased with increasing orbital velocity 

induced by surface gravity wave, suggesting zooplankton’s active avoidance to 

surrounding flow fields.  

Chapter 3 presents results from long-term and continuous data acquired by 

ADCPs moored near the northern part of Izu-Oshima Island and in the Gulf of Aqaba 

at the northern tip of the Red Sea, where acoustic backscatter intensity recorded by 

the ADCPs is used as a proxy of zooplankton density. While the acoustic backscatter 

intensity frequently increased during night-time (suggesting zooplankton DVM), the 

nighttime acoustic backscatter intensity significantly decreased when flow velocity 

increased. This trend was found in the both observation sites, although the two 

observation sites are separated spatially and environmentally.  

In Chapter 4, I carried out a tank experiment to test how zooplankton is 

attracted by light emissions from the optic sensors (i.e. the microscopic camera, the 

turbidity sensor) used for the cabled observatory and how zooplankton’s phototaxis 

would bias the data. In a small experimental tank that contained an optic sensor, 

zooplankton individuals are attracted by the light emissions, and the data from the 

both sensors increased with increasing abundance in the detection volumes of the 

sensors.  

Chapter 5 shows results from a large tank experiment to test biomixing by 

a school of Japanese sardine. The experiment was carried out in an aquarium, 

Yokohama Hakkeijima Sea Paradise, that contained several thousand sardines. I 

used an upward microstructure profiler to measure turbulence near the surface. The 

averaged turbulent kinetic energy dissipation rate was 2.3 × 10−4 W kg−1 inside the 

school, while that outside the school was 6.7 × 10−6 W kg−1. Also, based on spectrum 

analysis on the measured turbulent shear, I suggest that sardine school can generate 
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turbulent eddies that are larger than individual sardine (>1 m), during feeding phase. 

Chapter 6 summarizes the results from this study and previous studies, proposing 

ecological implications from the results, and giving perspective and outlook.  
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Chapter 2  

 

Flow-mediated DVM observed from a cabled 

observatory 

 

2.1 Introduction 

Since diel vertical migration (DVM) of zooplankton has recently been suggested to 

contribute vertical flux of carbon as part of biological pump (Steinberg & Landry 

2017), comprehensive investigation on mechanism and dynamics of DVM is 

necessary to predict distribution and flux of carbon in the future. According to 

observational studies (Gallager et al. 2004, McManus et al. 2005), experimental 

studies (Seuront et al. 2004), and numerous model studies (Visser et al. 2009), most 

zooplankton in the ocean seem to avoid high turbulent levels. The consistent 

conclusions among the studies raise the hypothesis of the turbulence-avoidance 

strategy of zooplankton.  

Several studies such as Gallager et al. (2004) and McManus et al. (2005) 

already have observed zooplankton distributions that were modified by local fluid 

dynamics in the ocean. However, results from these studies have yet to be verified to 

answer how local flow fields alter DVM of zooplankton. Gallager et al. (2004) 

reported that zooplankton significantly aggregated only when the motility number 

(ratio of plankton swimming speed to rms turbulent velocity) was greater than 3. 

Also, McManus et al. (2005) made use of acoustic backscatter intensity acquired by 

moored ADCPs as proxy of zooplankton density. While there are other studies that 

reported significant correlations between zooplankton dynamics and local flow fields 

(e.g. Lienesch & Matthews 2000, Grossmann et al. 2014, Shanks et al. 2015), almost 

no study has discussed the correlations with regard to DVM. Only Bonicelli et al. 

(2016) found a negative correlation between magnitude of DVM performed by 
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barnacle larva and significant wave height. In this chapter, I will show an additional 

data set supporting the hypothesis of the turbulence-avoidance strategy of 

zooplankton and will suggest the observed DVM was significantly suppressed as 

results of the strategy. The observed data is the first evidence that zooplankton DVM 

is directly suppressed by local flow fields.  

 

2.2 Materials and methods 

2.2.1 Location 

The observation site is in a coastal area of an isolated island, Izu-Oshima Island in 

Japan (Fig. 2.1), where current is greatly affected by internal gravity waves 

(Masunaga et al. 2017). The island is about 30 km away from mainland Japan, and 

there is no river on the island.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.1. Observation site. (a) Regional map around the observation site. Red frame 

denotes the location of Izu-Oshima Island. Black lines denote tracks of the typhoons, 

named as T1414, T1417, T1418, T1419, and T1420, that occurred during the full 

observation period. Filled circles show air pressure at day shown near each circle 

where time is in brackets, where larger circles suggest stronger typhoons (lower 

pressure). (b) Overall picture of the island. (c) Red-filled circle (34° 40’ 58.5’’ N, 139° 

26’ 39.7’’ S) denotes the location of the cabled observatory. A small bay near the red-

filled circle is a fishing harbor, Habu Port.  
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2.2.2 Cabled observatory 

A cabled observatory (Oshima Coastal Environmental data Acquisition Network 

System, OCEANS) (Fig. 2.2a) was deployed on Aug. 12th, 2014 at the observation site 

(Fig. 2.1c). The cabled observatory is fixed on an x-shaped block (~1 m in height), 

where the bottom depth is about 20 m (Fig. 2.2b). The cabled observatory is 

connected to a computer cluster in a shore lab by an armored cable composed of 

power-supply wires and data-transfer optical fibers. The shore lab was provided by 

the Tokyo Metropolitan Government and located in Habu Port (Fig. 2.1c). Biological, 

physical, and chemical sensors (Table 2.1) are attached on mounting frame or 

deployed nearby (Fig. 2.2b). A plankton camera, (Continuous Plankton Imaging and 

Classification System, CPICS, CoastalOceanVision, Inc.; Fig. 2.3), was used to obtain 

plankton images at a high resolution. CPICS took images of plankton which passed 

inside image volume of 11.0 × 15.0 × 2.0 mm3 (Fig. 2.3b) with a pixel resolution of 

6.19 μm pixel-1. Shutter frequency was set to 3 Hz, and thus hourly sampling volume 

was 3.56 L. Reduced flash exposure time of 10 μs allowed for taking unblurred 

images even under rough conditions (e.g. during storms).  

Sensors that are sensitive to biofouling (such as the chlorophyll/turbidity 

sensor, the PAR sensor, the electrical conductivity sensor (the CT sensor), the SUNA, 

and the DO sensor; Table 2.1) had a self-cleaning brush or wiper that worked every 

hour (Fig. 2.4b). In addition, the entire system was cleaned up by professional divers 

twice (once) a month in the summer (winter) season. Sampling volume for the Vector 

was located at roughly the same position as the image volume of the CPICS (Fig. 

2.3b) to measure flow patterns experienced by plankton. Acoustic frequency of the 

Aquadopp was 400 kHz, and it has 3 acoustic beams whose beam axes were tilted 

with an angle of 25 degrees from the body axis (Fig. 2.2b). Number of bins was set to 

20, bin size was 1 m, and blanking distance was 1 m to cover the entire water column. 

As the acoustic transducers were located 1 MAB (meters above the bottom), the 1st 

layer from the Aquadopp covers 2 to 3 MAB. After Oct. 19th, 2014, the bin size was 

set to 2.5 m because of human error. For the sake of easy visualization, the data 

acquired from the 2.5-m bins was interpolated to the 1-m bins. The 

fluorescence/turbidity sensor emits blue light (340 nm) in order to measure 

fluorescence, and infrared light (880 nm) was used to measure turbidity (Fig. 2.4). 

Optical backscattering strength was originally measured as voltage, calibrated by 

sodium fluorescein and formazin solution to ensure fluorescence and turbidity.   
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Fig. 2.3. The plankton camera, CPICS. 

(a) External appearance of the CPICS. 

(b) Internal structure of the CPICS; (A) 

Connectors for ethernet, RS232, and 

power (12–24 VDC), (B) internal cooling 

to eliminate overheating, (C) multi-core 

processor, (D) 6 mega pixels color 

machine vision camera, (E) 0.9 to 10 x 

telecentric lens, (F) delrin and titanium 

housing, (G) open flow (1.5 L volume) to 

image fragile organisms, (H) custom 

darkfield LED array, and (I) image 

volume (not in scale). 

Fig. 2.2. Cabled observatory (OCEANS). (a) Underwater photo taken after the 

deployment on Aug. 12th, 2014. The dimensions of the cabled observatory are 180 x 

120 x 145 cm (width x height x depth). (b) Schematic of the cabled observatory. 

Sensors are attached on the mounting frame except the Aquadopp and the thermistor 

chain (Table 2.1). The thermistor chain has 16 thermistors with a 1-m interval. The 

Aquadopp has 3 acoustic transducers. The schematic is not in scale.  
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Fig. 2.4. The turbidity/fluorescence sensor. The photos are from the manufacture’s 

website (http://www.jfe-advantech.co.jp/). 
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Sensor Object Unit Sample rate

Biological

     CPICS Plankton Individual(s) 6 Hz (shutter frequency)

     Fluorescence/turbidity sensor Fluorescence a.u. 1 Hz

                    ” Turbidity FBU   ”

Physical

     Pressure sensor Pressure dbar 1 Hz

     Vector Current m s-1 8 Hz

     Aquadopp Current (vertical distribution) m s-1 60 sec

        ” Acoustic backscatter (vertical distribution) counts    ”

     PAR sensor PAR μM s-1 m-2 1 Hz

     CT sensor Temperature deg C 1 Hz

        ” Salinity PSU   ”

     Thermistor chain Temperature (vertical distribution) deg C 1 Hz

Chemical

     SUNA Nitrate μM L-1 5 min

     DO sensor DO mg L
-1 1 Hz

Table 2.1. List of sensors mounted on the cabled observatory (OCEANS). The 

Aquadopp and the thermistor chain are deployed nearby the cabled observatory, 

while the other sensors are attached on the mounting frame (Fig. 2.2). 
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2.2.3 Data process and analysis 

Plankton images 

In-focus objects in the image volume (Fig. 2.3b) were automatically detected by the 

CPICS software (Fig. 2.5). For the detections, the intensity threshold was set to 1.50, 

the area threshold was 200 pix2 which corresponds to a circle of 100 µm in diameter, 

and the focus threshold was 0.50. Each detected object was automatically extracted 

into a small image called Region Of Interest (ROI) (Fig. 2.5). The objects were 

manually identified to taxon level (including both living and non-living). Due to the 

limited manpower, the identification was done only for the data acquired from 

September 20th to October 30th. This period was selected in order to include due to 

storm events (Fig. 2.1a).  

 

  

Fig. 2.5. Detection of the 

ROIs. The green frames 

indicate the ROIs. The 

scale bar indicates 2 

mm. This underwater 

microscopic photo was 

taken on August 18th 

20:44 after sunset.  
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Turbidity data  

Optical scattering strength calibrated by formazin solution is generally used as a 

proxy of turbidity of the water, and the unit is FTU (formazin turbidity unit). 

However, several turbidity units have been proposed to distinguish directions of 

optical scattering (i.e. backscatter, side scatter, and forward scatter) (Turbidity -- 

Units of Measurement, https://or.water.usgs.gov/grapher/fnu.html). Since the sensor 

receives backscatter of the infrared light by suspended solid, FBU (formazin 

backscatter unit) is applied in this study. In addition, the measured turbidity 

reflected presence of zooplankton rather than “turbidity” of the water (see 2.3 

Results). Hence, I use the term “optical backscatter” that expresses directly what the 

sensor actually sensed.  

The optical backscatter often showed clipping data: the measured value 

exceeded the upper detection limit of 1300 FBU. Continuous clipping data for over 

10 s (probably caused by drifting seaweeds stuck on the cabled observatory) was 

replaced by not-a-number (NaN).  

 

Stratification 

To ensure vertical distribution of seawater density, first I estimated vertical 

distribution of salinity. The CT sensor that was attached on the mounting frame of 

the cabled observatory measured temperature and conductivity simultaneously. 

Although salinity is independent from temperature, a linear relationship between 

salinity and temperature was found for a short period (Fig. 2.6). By applying this 

empirical relationship to temperature measured at different depths by the 

thermistor chain, I estimated salinity from temperature. To ensure the empirical 

relationship at a time step 𝑡𝑖, the calculation bin was set to 𝑡𝑖  ±  1.5 𝑑𝑎𝑦𝑠 (3 days in 

total). The empirical relationship was accepted only when r2 > 0.1 and p < 0.01 

(Fig. 2.6). From the salinity vertical distribution that passed the statistical tests 

above, density was calculated from salinity and temperature. Buoyancy frequency N 

was calculated as follows: 𝑁 = √−
𝑔

ρ0
∙

dρ

dz
, where 𝑔  is gravity acceleration, ρ0  is 

average density, and dρ/dz is a vertical gradient of density.  

To validate the N estimation, I also calculated N from CTD profiles 

conducted by Tokyo Metropolitan Government. The profiles were done at seven 

observational points around Izu-Oshima Island in such a way that distance between 

each point and the nearest shore line was less than 10 km. A set of the seven CTD 

profiles was acquired once a month, and each set was completed within two days. An 

https://or.water.usgs.gov/grapher/fnu.html
https://or.water.usgs.gov/grapher/fnu.html
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average N for each set was calculated at the depth range corresponding to the 

thermistor chain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significant wave height 

The pressure data was converted to depth from the international equation of state 

of seawater (Fofonoff & Millard Jr. 1983). Significant wave height 𝐻1/3  was 

estimated from 𝐻1/3 ≅ 4.004𝜂𝑟𝑚𝑠, where 𝜂𝑟𝑚𝑠 is the root-mean-square of the surface 

elevation, assuming the individual wave heights follow the Rayleigh distribution 

(Goda & Kudaka 2007). 

 

Wave orbital velocity 

Wave orbital velocity was estimated based on a linear wave theory. Maximum orbital 

velocity during a wave phase 𝑈par is estimated as follows:  

 

𝑈par =
π𝐻

𝑇

cosh(𝑘𝑑)

sinh(𝑘ℎ)
,                                                         (2.1) 

 

where 𝐻 is the wave height (~𝐻1/3 in this study), 𝑇 is the wave period, 𝑘 is the 

Fig. 2.6. Example of empirical relationship between temperature and salinity. 

Gray filled circles denote 1-h calculated values. Left panel shows a linear 

relationship that passes the statistical test of r2 > 0.1 and p < 0.01, and right 

panel shows one that does not pass the test. 
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radian wavenumber, 𝑑  is the elevation above the bottom where you want to 

calculate 𝑈par, ℎ is the bottom depth (~20 m). 𝑇 was defined as an inverse of a peak 

frequency of power spectrum density of surface elevation that is proportional to the 

changes in the pressure. A wavenumber 𝑘 was estimated by solving the dispersion 

equation ω2 = 𝑔𝑘 tanh(𝑘ℎ) , where ω  is radian frequency (ω = 2π / 𝑇 ), and 𝑔  is 

gravity acceleration. The equation was solved to 𝑘ℎ by the Newton-Raphson method 

(see Soulsby 2006). 𝑑 was set to 2.22 m that is the same depth as CPICS (Fig. 2.2b).  

The maximum orbital velocity was also estimated using the Vector data. Orthogonal 

horizontal velocity components, 𝑢  and 𝑣 , include any current phenomena with 

frequencies less than the Nyquist frequency. Horizontal velocity components, 𝑢 and 

𝑣, were decomposed as follow: 𝑢 =  𝑢′  +  �̅� and 𝑣 =  𝑣′  +  �̅�, where �̅� and �̅� are 

the background components derived by low-pass filtering 𝑢 and 𝑣 with a cut-off 

frequency of 1 / 20 Hz which was significantly low to remove wave components. 

Hence, the high frequency components, 𝑢′  and 𝑣′ , include orbital velocity. 

Maximum orbital velocity during a wave phase 𝑈obs  was estimated from the 

following equation (Wiberg & Sherwood 2008):  

 

𝑈obs = √2(var(𝑢′) + var(𝑣′) − 2var(𝑈noise)),                                  (2.2) 

 

where var(𝑈noise) is the noise variance of the instrument (~0.000036 m2 s-2 for the 

Vector). While 𝑢′ and 𝑣′ may contain turbulence, the current due to turbulence is 

much smaller than the one due to the surface waves and can be negligible in shallow-

water regions (Trowbridge 1998). To evaluate currents with frequencies less than 1 / 

20 Hz (e.g. tidal flows), background velocity �̅� is calculated as �̅� = √�̅�2 + �̅�2. 𝑈obs 

and �̅� were not available from September 16th to October 20th, since the flow pattern 

at the sampling volume of the Vector was artificially disturbed by a net surrounding 

the CPICS.  

 

Turbulent kinetic energy dissipation rate 

Near-bed turbulent kinetic energy (TKE) dissipation rate (ε, W kg-1) was estimated 

from friction velocity 𝑢∗ assuming logarithmic low of the wall (Drost et al. 2018); 

 

ε =
𝑢∗

3

𝑘𝑧
,                                                                  (2.3) 
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where 𝑘 is the von Karman constant (= 0.41), and 𝑧 is the distance from the bottom 

(= 2.22 m). The bottom friction velocity is expresses as:  

 

𝑢∗ = ( 
τ

ρ
 )

1/2
,                                                             (2.4) 

 

where τ is the bed shear stress, and ρ is the seawater density. Since non-linear 

interactions between currents and wave orbital velocity modify near-bed stress 

(Soulsby 1995), τ was estimated from the bed shear stress associated with pure 

currents τc and pure surface waves τw, tbased on a method proposed by Drost et al. 

(2018). τc was estimated from the following equation: 

 

τc = ρ𝐶𝐷�̅�2,                                                              (2.5) 

 

where ρ is the seawater density, 𝐶𝐷 is the drag coefficient (= 0.072Re−0.2, Hoerner 

1965), �̅� is the background velocity. For the Reynolds number in the 𝐶𝐷 calculation, 

�̅� and the distance from the bottom 𝑧 (= 2.22 m) were used for the representative 

velocity and length scales, respectively. Shear stress associated with waves τw was 

estimated from the following equation: 

 

τw =
1

2
ρ𝑓𝑤𝑢𝑤

2 ,                                                             (2.6) 

 

where 𝑓𝑤 is the wave friction factor, and 𝑢𝑤 is the maximum orbital velocity (~𝑈par). 

𝑓𝑤 was estimated following an empirical equation (Swart 1974); 

 

𝑓𝑤 = 0.00251 exp [5.21 (
𝐴

𝑘𝑠
)

−0.19
]  for 

𝐴

𝑘𝑠
> 1.57                                (2.7) 

𝑓𝑤 = 0.3 for 
𝐴

𝑘𝑠
≤ 1.57, 

 

where 𝑘𝑠 is the Nikuradse roughness (= 0.03 m, Drost et al. 2018). Here 𝐴 is the 

wave orbital excursion length defines as 𝐴 =  
𝑢𝑤,𝑟𝑚𝑠

ω
, where 𝑢𝑤,𝑟𝑚𝑠 is the rms orbital 

velocity (Soulsby 2006), and ω  is the radian frequency. The bed shear stress τ 

associated with currents and surface waves was estimated from the following 

equation; 
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τ = τc [1 + α (
τw

τc+τw
)

β
],                                                     (2.8) 

 

where α = 1.2 and β = 3.2 are the empirical coefficients ensured by Soulsby (1995).  

 

Acoustic backscatter 

The Aquadopp incidentally records acoustic amplitude 𝐴𝑚𝑝 (in the unit of “counts”). 

𝐴𝑚𝑝 can be converted to acoustic backscatter by attenuation corrections (Nortek AS, 

www.nortek-as.com/lib/technical-notes/seditments):  

 

acoustic backscatter = 0.43𝐴𝑚𝑝 + 20 log10(𝑅) + 2αw𝑅,                        (2.9) 

 

where 𝑅 is the distance between the sampling volume and the transducer along the 

beam axis, αw is the absorption coefficients by the water (in dB m-1), and 𝑧 is the 

vertical coordinate. αw was calculated by a simplified absorption formula, taking 

account of the acoustic frequency of the Aquadop (400 kHz) and environmental data, 

such as temperature, salinity, and depth (Ainslie and McColm 1998), where salinity 

was estimated from a linear regression between temperature and salinity measured 

by the CT sensor (see Stratification in this subsection). Even after the Eq. (2.9), 

acoustic backscatter is biased due to a change in sampling volume. Sampling volume 

increases with increasing distance from each transducer, depending on the “cone 

shape” of the acoustic beams (Fig. 2.2b). To correct this bias, acoustic backscatter 

was normalized (divided) by sampling volume of each bin. Acoustic backscatter 

ensured above was not calibrated and, hence, is a variable proportional to volume 

backscattering strength. Data acquired from the 1st layer was not used since the 

values appeared unrealistic. Also, data acquired from the layers above 10 MAB (from 

the 9th layer) was not used since these layers are easily contaminated by human’s 

activities (e.g. fishery and construction).   

http://www.nortek-as.com/lib/technical-notes/seditments
http://www.nortek-as.com/lib/technical-notes/seditments


23 

 

2.3 Results 

2.3.1 Physical and biological background 

Time series of ROI counts and environmental parameters are shown in Fig. 2.7 

during the analysis period. ROIs (counts hour-1) have several local peaks, and 

fluorescence and optical backscatter are highly intermittent. Significant wave height 

𝐻1/3 frequently exceeded 1 m when typhoons approached (Fig. 2.1a).  

Buoyancy frequency N estimated at the observation site agreed with the 

estimated N from the monthly-conducted CTD profiles around Izu-Oshima Island 

(Fig. 2.7). N 2 was around N 2 = 10-4 to 10-3 s-2 during August and September. While 

N 2 was below 10-4 s-2 during the typhoon period (from the end of September to the 

middle October) (Fig. 2.1a; Fig. 2.7f,m), the stratification was enhanced again (N 2 ~ 

10-4 s-2) after the typhoon season until around November 5th. The stratification was 

very weak in the rest of November but was enhanced frequently (N 2 ~ 10-4 s-2) in 

December (Fig. 2.7m).  

Temperature spectra had power peaks at diurnal K1 and semi-diurnal M2 

frequencies during August and September, as well as the mid-October to the 

beginning of November (Fig. 2.8a). Internal gravity waves were active at the 

observation site during these periods (Fig. 2.8b). During the typhoon period and the 

period after November 5th when the stratification was relatively weak (N 2 < 10-4 s-2), 

internal gravity waves were weak (Fig. 2.8c). Regardless of the condition of the 

internal gravity waves, background current velocity �̅�  fluctuated with the 

temperature fluctuations throughout the analysis period (Fig. 2.8d,e).  

During the periods of from August to September and from the middle 

October to the November 5th, the water mass alternatively changed between warm 

low-salinity water and cold high-salinity water (Fig. 2.9). On the other hand, when 

the stratification was temporally enhanced in December, the water mass exchange 

was between warm high-salinity water and cold low-salinity water (Fig. 2.9). 

Satellite images by MODIS showed that warm water mass branched off the Kuroshio 

current axis and reached the observation site in December (Fig. 2.10). The 

approaches of the warm water masses were synchronized with the re-stratifications 

of the water column at the observation site in December (Fig. 2.10). While the 

approaches of the warm water masses modified the water mass characteristics to 

warmer and more saline even in summer and fall, the dynamic ventilation of the 

water at the observation site was maintained mainly by internal gravity waves.  
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Fig. 2.7. Time series of biological, physical, and chemical parameters over the 

analysis period. Each parameter is shown as 1-hour averaged value. Gray 

sections in the top panel denote no-data period. Red crosses in the bottom panel 

denote data from CTD profiles by Tokyo Metropolitan Government.  
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Fig. 2.9. TS diagram obtained from the 

CT sensor. Data were acquired during 

several days in August (denoted as red-

filled circles), November (yellow-filled 

circles), and December (blue-filled 

circles). The stratification was relatively 

strong N 2 > 10-4 s-2 during those periods 

(Fig. 2.7m). Gray lines denote isopycnal 

lines.  

 

Fig. 2.8. (a) Time series of temperature spectrum through the analysis period. Horizontal 

dashed lines denote diurnal K1 and semi-diurnal M2 frequencies. (b) Vertical time series of 

temperature on August 18 (pointed by a black-filled triangle in (a)) with a color range of 20 to 

22 °C. Internal gravity waves are remarkable. (c) Same as (b) but for November 26 with a 

color range of 19.2 to 20.2 °C. Internal gravity waves were not remarkable. (d, e) Background 

velocity �̅� observed on August 18 and November 26.  
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Fig. 2.10. Sea surface temperature (SST) from satellite images by MODIS. (a) SST 

averaged over the analysis period. The Kuroshio current axis was located about 100 km 

south from Izu-Oshima Island. (b) SST averaged through December 7th to 9th, and (c) 

through December 25th to 30th. Warm water masses of 20 to 21 °C branched off the 

Kuroshio current axis and approached the observation site, and the stratification at the 

observation site got enhanced (N 2 ~ 10-4 s-2) even in December (Fig. 2.7m).  
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2.3.2 ROI and zooplankton 

Over 36000 ROI images were obtained during the manual classification period. The 

zooplankton images were classified into 17 zooplankton taxa (Fig. 2.11a–q). 

Zooplankton taxa in total occupied 11.5% of the total ROIs (Table 2.2). Marine snow 

occupied 58.5% (Fig. 2.11r, Table 2.2), and mineral grain appeared 21.3% (Fig. 2.11s, 

Table 2.2). Various phytoplankton taxa were also found and classified into a taxon 

“phytoplankton” in this study (Fig. 2.11t, Table 2.2).  

9 zooplankton taxa, such as Ostracoda and Mysida, exclusively appeared 

during night time (Fig. 2.11a–i, Table 2.3). Hereinafter, these taxa are called “strong 

migrator”. 6 zooplankton taxa, such as Calanoida and Larvacea, appeared during 

both night and day time, but these taxa were more abundant during night with ratios 

of 60 to 80% (Fig. 2.11j–o, Table 2.3) (hereinafter “moderate migrator”). 2 

zooplankton taxa of Radiolaria and Aulosphaera that have almost no motility 

appeared during both night and day time evenly (Fig. 2.11p,q, Table 2.3) (hereinafter 

“non-migrators”). The strong migrator were 67.4%, the moderate migrator appeared 

18.4%, and the non-migrators occupied 14.2% in total zooplankton taxa (Table 2.2).  

The strong migrator have a peak in their abundance at around October 2nd 

(Fig. 2.12a), while the non-migrators, marine snow, and phytoplankton have a strong 

peak at the end of October (Fig. 2.12c,d,f). Both marine snow and mineral grain are 

strongly correlated with significant wave height 𝐻1/3 (Fig. 2.12d,e,g).  

  

Taxa

Marine snow 58.5

Mineral garain 21.3

Zooplankton taxa 11.5

Phytoplankton 8.7

% in

all taxa

Table 2.2. Ratio of observed ROIs. 
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Fig. 2.11. Representative ROI for each taxon. (a–q) Zooplankton taxa, (r) marine 

snow, (s) mineral grain, and (t) phytoplankton. Each zooplankton taxon is named as 

(a) Ostracoda, (b) Mysida, (c) Polychaeta, (d) Decapoda, (e) Chaetognatha, (f) 

Monstrilloida, (g) Amphipoda, (h) Isopoda, (i) Cumacea, (j) Calanoida, (k) Larvacea, 

(l) Harpacticoida, (m) Cyclopoida, (n) Poecilostomatoida, (o) Hydrozoa, (p) 

Radiolaria, and (q) Aulosphaera. Scale bar indicates 2 mm for the images with an 

asterisk (*) and 4 mm for the others.  
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Table 2.3. Correlations of abundance (ind L-1) against currents (𝑈par and �̅�) and turbulence (ε) 

for each zooplankton taxon. Single asterisk denotes p<0.05. Double asterisk denotes p<0.01. 

Letters in brackets next to zooplankton taxa names correspond to those in Fig. 2.8.  

Night Day Night Day Night Day

Ostracoda (a) 18.2 100.0 –0.48** — –0.36** — –0.54** —

Mysida (b) 15.5 99.8 –0.25** — –0.30** — –0.36** —

Polychaeta (c) 11.9 98.9 –0.30** — –0.19    — –0.32** —

Decapoda (d) 7.0 100.0 –0.35** — –0.32** — –0.41** —

Chaetognatha (e) 5.0 100.0 –0.23** — –0.06    — –0.23** —

Monstrilloida (f) 4.0 99.1 –0.28** — –0.10    — –0.30** —

Amphipoda (g) 3.4 95.6 –0.13*  — –0.28** — –0.23** —

Isopoda (h) 1.4 95.7 –0.20** — –0.20*  — –0.24** —

Cumacea (i) 1.0 96.3 –0.19** — –0.07    — –0.20** —

Total 67.4 99.3 –0.57** — –0.45** — –0.68** —

Calanoida (j) 9.1 65.1 –0.16** –0.15** 0.14 0.14 –0.12* –0.12*

Larvacea (k) 3.3 79.8 –0.08    –0.15** 0.14 — –0.02 –0.12*

Harpacticoida (l) 2.1 75.0 –0.18** –0.18** 0.00 — –0.15** –0.14*

Cyclopoida (m) 1.6 59.2 –0.19** –0.14* — — –0.15** –0.13*

Poecilostomatoida (n) 1.5 68.3 –0.20** –0.17** 0.18 –0.25*  –0.16** –0.20**

Hydrozoa (o) 0.8 60.6 –0.03   –0.02   — — 0.03 —

Total 18.4 68.4 –0.25** –0.29** 0.18 –0.01    –0.19** –0.25**

Radiolaria (p) 10.5 52.2 –0.08   0.02 0.21* 0.03 0.00 0.05

Aulosphaera (q) 3.7 46.8 –0.07   –0.14** –0.01    0.27* –0.06 –0.12*

Total 14.2 50.8 –0.10   –0.06   0.18 0.17 –0.01 –0.03

r
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Fig. 2.12. Time series of (a) PAR and abundance of (b) the strong migrator, (c) 

the moderate migrator, (d) the non-migrator, (e) marine snow, (f) mineral grain, 

(g) phytoplankton, and (h) significant wave height 𝐻1/3 over the ROI sorting 

period. The Y-axes show values calculated in 1-hour bins.  
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2.3.3 Zooplankton DVM 

While zooplankton abundance increased during night time (Table 2.3, Fig. 2.12a,b), 

acoustic backscatter showed night-time increases regardless of the depth of the 

samples (Fig. 2.13). Fig. 2.13a and b show an example of time series for PAR and 

vertical distribution of acoustic backscatter. Night-time acoustic backscatter was 2 

dB greater (corresponding to 1.6 times greater in linear scale) than that during day 

time on average (Fig. 2.13c,d). Acoustic backscatter was averaged over each night 

and compared with the strong migrator abundance, showing significant correlations 

regardless of the depth of the samples (r2 = 0.39 to 0.50, p < 0.01) (Fig. 2.13e, Table 

2.4).  

Similarly to acoustic backscatter, optical backscatter shows night-time 

increases (Fig. 2.14a,b). Optical backscatter rapidly increased after dusk and 

decreased before dawn, and night-time values are 10 times greater than day-time 

values on average (Fig. 2.14c,d). Night-time averaged optical backscatter is 

significantly correlated with night-time abundance of the strong migrator (r2 = 0.79, 

p < 0.01) (Fig. 2.13e). Night-time averaged optical backscatter is significantly 

correlated with acoustic backscatter obtained at the 2nd layer (r2 = 0.12, p < 0.01) 

that is the closest layer to the bottom and the turbidity sensor. Weak or no 

correlations were found with those measured at higher Aquadopp layers (Table 2.4). 

Coefficients of determination among sensors are summarized in Fig. 2.15.  

 

  

Sampling depth

(MAB)

Strong

migrator

2 3 to 4 0.39** 0.12**

3 4 to 5 0.43** 0.05

4 5 to 6 0.50** 0.07*

5 6 to 7 0.47** 0.06*

6 7 to 8 0.47** 0.05*

7 8 to 9 0.45** 0.05

8 9 to 10 0.40** 0.04

Aquadopp

layer number

r2

Optical

backscatter

Table 2.4. Coefficients of determination of acoustic backscatter against the strong 

migrator abundance or optical backscatter, at different sampling layers. The 

statistics were calculated based on night-time averaged values. Single asterisk 

denotes p<0.05. Double asterisk denotes p<0.01.  
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Fig. 2.13. Correlation between acoustic backscatter and the strong migrator. (a,b) An 

example of time series for PAR and vertical distribution of acoustic backscatter. (c) Acoustic 

backscatter at the 2nd layer and 8th layer are denoted as blue and red lines respectively. 

PAR is denoted as filled area. Average was done for the analysis period using 10-min bins 

set around dusk. (d) Same as (c) but for dawn. (e) Scatter plot between night-time averaged 

acoustic backscatter and night-time packing density of the strong migrator. Lines indicate 

regression lines. The statistics were calculated from n = 18 nights. 
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Fig. 2.14. Correlation between optical backscatter and the strong migrator. 

(a,b) An example of time series for PAR and optical backscatter. (c) Optical 

backscatter and PAR are denoted as black line and filled area respectively, 

averaged for the analysis period using 10-min bins set around dusk. (d) 

Same as (c) but for dawn. (c) Scatter plot between night-time averaged 

optical backscatter and night-time packing density of the strong migrator. 

Black line denotes regression line. The statistics were calculated from n = 

27 nights.  
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Fig. 2.15. Coefficients of determination among sensors. Statistics are calculated 

from night-time averaged values, as in Fig. 2.13e, Fig. 2.14e, and Table 2.4.  
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2.3.4 Currents and zooplankton 

Wave orbital velocity 𝑈obs  (directly observed by the Vector) and 𝑈par  (estimated 

from the depth variation) increased frequently, as 𝐻1/3 increased due to typhoons 

(Fig. 2.1a) (Fig. 2.7e,f,g,h). 𝑈obs and 𝑈par are highly correlated (r2 = 0.87, Fig. 2.16a). 

Since 𝑈par is available for longer period than 𝑈obs (see Fig. 2.7g,h), 𝑈par is used as 

representative of orbital velocity for further data analyses.  

Background velocity �̅� is found to increase with 𝑈par increased (see early 

November and middle December in Fig. 2.7g,i). Scatter plot of �̅� against 𝑈par show 

that the increase in 𝑈par  tends to associate with increase in �̅�  (Fig. 2.16b). To 

separate �̅� from 𝑈par, �̅� with 𝑈par<0.15 m s-1 is used for further analyses with 

biological signals (i.e. zooplankton) (Fig. 2.16b).  

Correlation coefficients of abundance of each zooplankton taxa (individuals 

L-1) were calculated against 𝑈par or �̅� (Table 2.3). All taxa for the strong migrator 

show significantly negative correlations with 𝑈par (r = –0.48 to –0.13, p<0.05) (Table 

2.3), while the negative correlations are not simple linear relationships (Fig. 2.17). 

For example, Ostracoda (Fig. 2.8a) show a wide range in their abundance (0 to 10 

ind L-1) (Fig. 2.17a). Average abundance is 1.0 ind L-1 when 𝑈par = 0.1 m s-1, while 

the average value decreased to 0.1 ind L-1 when 𝑈par increased to 0.2 m s-1 (Fig. 

2.17a). No Ostracoda individuals appeared when 𝑈par was greater than 0.3 m s-1. 

Similar decrements along with 𝑈par were found in the other zooplankton taxa in the 

strong migrator (left column in Fig. 2.17). However, degree of decrement seems to be 

different among zooplankton taxa: for example, the reduction in Mysida abundance 

is more moderate than that in Ostracoda (Fig. 2.17a,c).  

While only a limited period is available for analyses with �̅� (see Fig. 2.7a,h), 

the strong migrator also show negative correlations with �̅�, and correlations for 5 

taxa are statistically significant (Table 2.3). The 5 taxa (Ostracoda, Mysida, 

Decapoda, Amphipoda, and Isopoda) show decrements along with increased �̅� in 

their averaged abundance (right column in Fig. 2.17). Some taxa show different 

reactions to 𝑈par  and �̅� : for example, Chaetognatha clearly decreased with 

increasing 𝑈par but show almost no correlation with �̅� (Fig. 2.17i,j).  

For the moderate migrator, all taxa show negative correlations with 𝑈par 

regardless of night or day, and most correlations are statistically significant (r = –

0.20 to –0.14, p<0.05) (Table 2.3). The moderate migrator also show decrements in 

their abundance with increasing 𝑈par, and the patterns are almost the same with 

night time and day time (Fig. 2.18). The moderate migrator do not show significant 

correlations with �̅� unlike the strong migrator (Table 2.3). Non-migrators show no 
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significant correlations with either 𝑈par nor �̅� (Table 2.3).  

The average abundance of the strong migrator decreases to one-thirtieth (1 

/ 30) when 𝑈par>0.3 m s-1 relatively to those at 𝑈par<0.1 m s-1 (Fig. 2.19a). For �̅�, the 

decrement reached about one-fourth (Fig. 2.19b). The average abundance of the 

moderate migrator decreases to one-third when 𝑈par>0.2 m s-1 relatively to those at 

𝑈par<0.1 m s-1. The ratio of one-third is common in both night time and day time (Fig. 

2.19c,d) even if the moderate migrator appeared more frequently at night (Table 2.3).  

 

  

Fig. 2.16. (a) Scatter plot of estimated wave orbital velocity 𝑈par against that 

observed by the Vector 𝑈obs. The black line denotes the one-to-one relationship. 

(b) Scatter plot of the 𝑈par versus background velocity �̅�. The vertical dotted line 

indicates 𝑈par = 0.15 m s-1 below which the �̅� is available for further analyses 

with biological signals shown in Figs. 2.17,19,20 and Table 2.5.  
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Fig. 2.17. Scatter plots of the strong 

migrator abundance (ind L-1) versus 

𝑈par or 𝑈obs. Each row is plots of (a,b) 

Ostracoda, (c,d) Mysida, …, (q,r) 

Cumacea. Gray dots denote one-hour 

calculated values. Red-filled circles 

denote velocity-averaged abundances 

that are multiplied by 10 for clear 

visualization. The averages are 

displayed only for data with p<0.05 

(Table 2.3).  
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Fig. 2.18. Scatter plots of the moderate 

migrator abundance (ind L-1) versus 

𝑈par . Each row is plots of (a,b) 

Calanoida, (c,d) Larvacea, …, (k,l) 

Hydrozoa. Left column panels are for 

data obtained at night, and right 

column panels are for data at day. 

Gray dots denote one-hour calculated 

values. Red-filled circles denote 

velocity-averaged abundances that 

are multiplied by 10 for clear 

visualization. The averages are 

displayed only for data with p<0.05 

(Table 2.3). The moderate migrator do 

not show statistically significant 

negative correlations against �̅� 

(Table 2.3).  
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The same analyses with 𝑈par  and �̅�  have been done for acoustic 

backscatter and optical backscatter. Before the analyses, acoustic and optical 

backscatters were separated into night-time data (dusk + 1h to dawn – 1h) and day-

time data (dawn + 1h to dusk – 1h) as these backscatters showed the daily change 

(Fig. 2.12, Fig. 2.13). Also, the data were separated seasonally into “summer–fall” 

(period before December 1st) and “winter” (period after December 1st), as optical and 

acoustic backscatters decreased with decreasing seawater temperature at around 

December 1st (Fig. 2.7c,d,k). Correlation coefficients of acoustic and optical 

backscatters against 𝑈par and �̅� were calculated with changing time (night/day) 

and season (summer-fall/winter) (Table 2.5).  

When the temporal conditions were “night” and “summer–fall”, both 

acoustic and optical backscatters showed negative correlations with both 𝑈par and 

�̅� (r = –0.52 to –0.19, p<0.01) (Table 2.5). Acoustic backscatter showed 5 dB decrease 

(one-third decrease in linear scale) with increasing 𝑈par  (Fig. 2.19a) and 3 dB 

decrease (one-second decrease) with increasing �̅� (Fig. 2.19b). Night-time optical 

backscatter showed one-order decreases with increasing 𝑈par or �̅� (Fig. 2.19c,d).  

 

Fig. 2.19. Zooplankton abundance (ind L-1) versus 𝑈par or �̅�. Each scatter plot is for (a) total 

abundance of the strong migrator versus 𝑈par, (b) total abundance of the strong migrator versus 

�̅�, (c) total abundance of the moderate migrator and 𝑈par at night, (d) total abundance of the 

moderate migrator and 𝑈par at day. (a) and (b) are only from night time since most strong 

migrator individuals appeared only at night (Table 2.3). All combinations show negative 

correlations with p<0.01 (Table 2.3).  
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Table 2.5. Correlation coefficients of biological parameters (acoustic and optical backscatter) 

against currents (𝑈par and �̅�) and turbulence (ε), with changing season (summer–fall or winter) 

and time (night or day). Single asterisk denotes p<0.05, and double asterisk denotes p<0.01. 

Under conditions of “summer-fall and night”, biological parameters constantly showed significant 

negative correlations against physical parameters.  

 

  

Upar

(m s-1)

`U

(m s
-1

)

ε

(W kg
-1

)

Upar

(m s-1)

`U

(m s
-1

)

ε

(W kg
-1

)

Night Acoustic backscatter –0.37** –0.19** –0.38** 0.28** 0.34** 0.46**

Optical backscatter –0.52** –0.40** –0.54** –0.19** –0.10 –0.17**

Day Acoustic backscatter –0.13** 0.01 –0.14 0.21** 0.19** 0.38**

Optical backscatter –0.01 –0.21** –0.06 –0.01 0.13* 0.16

Summer–fall Winter
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Fig. 2.20. Scatter plots of the biological parameters (acoustic and optical backscatter) against 

currents (𝑈par and �̅�) and turbulence (ε). Conditions were set to be “summer-fall and night” 

where all combinations showed the significant negative correlations (see Table 2.5). Gray dots 

denote raw values, and red filled circles denote velocity-averaged values.  
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2.3.5 Turbulence and zooplankton 

All taxa of the strong migrator show significant negative correlations against TKE 

dissipation rate ε (r = –0.54 to –0.20, p<0.05) (Table 2.3). Correlation of the entire 

strong migrator against ε was r = –0.68 (p<0.01) that was a stronger correlation 

than those against 𝑈par  and �̅�  (Table 2.3). Abundance of the strong migrator 

decreased sharply as ε increased from 10-7 to 10-6 W kg-1 and became almost zero on 

average when ε > 10-6 W kg-1 (Fig. 2.21a).  

Abundance of the moderate migrator significantly reduced with increasing 

ε, where the abundance at ε = 10-7 to 10-6 W kg-1 reduced by one-third compared 

with that at ε > 10-6 W kg-1 (Fig. 2.21b,c). The rate of reduction was same at both 

nighttime and daytime (Fig. 2.21b,c). The average abundance at ε > 10-6 W kg-1 

remains about 0.1 ind L-1 that is larger than that of the strong migrator (Fig. 2.21b,c). 

While almost all taxa of the moderate migrator show significant negative 

correlations with ε (r = –0.20 to –0.12, p<0.05) (Table 2.3), the correlation of the 

entire moderate migrator (r = –0.19 at night and r = –0.25 at day) was much weaker 

than that of the entire strong migrator (r = –0.68). Acoustic and optical backscatter 

showed significant negative correlations against ε as well (Fig. 2.20c,f, Table 2.5).  

 

  

Fig. 2.21. Zooplankton abundance (ind L-1) versus ε. (a) is only from night time since most 

strong migrator individuals appeared only at night (Table 2.3). All combinations show 

negative correlations with p<0.01 (Table 2.3). 
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2.4 Discussion 

2.4.1 Physical background 

While many zooplankton taxa were found at the observation site, the water column 

where those are living was always exposed to various physical processes (Fig. 2.22). 

Several typhoons passed near the observation site during the analysis period (Fig. 

2.1a). The typhoons elevated significant wave heights 𝐻1/3 (Fig. 2.7f). The increase 

in 𝐻1/3 was accompanied by the increases in the estimated orbital velocity 𝑈par and 

the observed orbital velocity 𝑈obs.  

The increase in 𝐻1/3 was also accompanied by the increase in background 

velocity �̅�  (Fig. 2.15b). Over 90 % of high wave heights (𝐻1/3 > 0.5 m s−1 ) were 

classified as “Stokes wave” (a non-linear surface gravity wave; van der Bremer & 

Breivik 2017). For a Stokes wave, the orbit of the water movement is not closed, and 

an initial point of an orbit drifts forward in the next orbit (see the cartoon in Fig. 

2.24). This drift is called Stokes drift and significant from the surface to a depth of 

λ / 2, where λ is wavelength (van der Bremer & Breivik 2017), while the wavelength 

was estimated as 50 to 200 m from the dispersion equation (Soulsby 2006, Wiberg & 

Sherwood 2008). The velocity of Stokes drift averaged over the orbits (hereinafter 

Stokes velocity, 𝑈SD) at a depth of 𝑧 is defined as 𝑈𝑆𝐷 = 𝑎2ω𝑘
cosh(2𝑘(ℎ+𝑧))

2 sinh2(𝑘ℎ)
, where 𝑎 

is wave amplitude (~0.5𝐻1/3), ω is angular frequency, 𝑘 is angular wavenumber, ℎ 

is the bottom depth (van der Bremer & Breivik 2017). The 𝑈SD  calculated from 

observed parameters (𝐻1/3 and 𝑘) was upper bounded by 1 cm s-1 throughout the 

analysis period which is obviously smaller than observed �̅� associated with high 

𝐻1/3 (Fig. 2.7f,i). Also, the induced current was always southeastward that flows 

from the shore to the ocean (Fig. 2.23); clearly opposite to the predictable direction 

of surface wave propagation. Hodograph by the ADV shows that the rotation 

direction of the orbits was consistent with typical orbit for Stokes wave that 

propagate from the ocean to the shore (Fig. 2.24). However, the velocity averaged 

over the cycles (corresponding to �̅�) was opposite to the wave direction (Fig. 2.24). 

This is probably due to complicated topography around the observation site (Fig. 

2.1c). Since there is a semi-enclosed small bay nearby the observation site, a possible 

source could be counter-flows which balance total water mass. 

Internal gravity waves were active when the stratification was strong. 

Especially in August and September, the fluctuations of temperature signals were 

high during diurnal K1 and semi-diurnal M2 frequencies. The complex topography 

around Izu-Oshima Island is the source of internal gravity waves (Masunaga et al. 
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2017). While M2 fluctuation is typically stronger than K1 fluctuation in mid-

latitudes, internal gravity waves with K1 frequency cannot propagate freely, thus 

the wave is trapped around the Izu-Oshima island as a Kelvin wave (Masunaga et 

al. 2017). Also the trapped wave resonates since the travel time around the island 

matches the forcing period (Masunaga et al. 2017). The K1 internal tides enhanced 

by the resonations would generate the observed intrusions of the cold-water bores 

(Fig. 2.8b) and subsequent currents (Fig. 2.8d) under strong stratification in summer.  

The meso-scale eddies and streamers typically enhance stratification of the 

water column even in winter (Mahadevan et al. 2012). Because of the approaches of 

the Kuoshio-originated water masses in the winter (Fig. 2.9; Fig. 2.10b,c), the local 

stratification was elevated from 𝑁2 = 10−5 s−2 to 𝑁2 = 10−4 s−2 (Fig. 2.7m), that 

induced baroclinic flow (included in �̅�) even in winter (Fig. 2.7i; Fig. 2.8c,e).  
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Fig. 2.22. Summary of physical processes and influence on zooplankton. Arrows 

denote direction of influence. Phenomena at upper (lower) part occur at relatively 

large (small) scale. Typhoon induce surface waves and consequently enhance 

wave orbital velocity 𝑈par  in the water column. Background velocity �̅�  was 

associated with significant wave height. Surface tide induce barotropic flows, as 

well as internal tides that generate baroclinic flows. Meso-scale eddies and 

streamers that are branched off from Kuroshio also modify local stratification 

and consequently affect local flow fields at the observation site. Mean flow flush 

zooplankton away from their original habits. Bottom friction by 𝑈par  and �̅� 

induced strong turbulence by which zooplankton feel water deformation, 

rotation, acceleration at a scale of their body size. Zooplankton (e.g. copepods) 

show avoidance responses to only water deformation (Kiørboe 2008).  
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Fig. 2.24. Hodograph for an example data by ADV (sampled at 8 Hz). While the observed orbit 

is consistent with the typical orbit in terms of rotation direction, current direction averaged 

over cycles are opposite. The example is 30 seconds (~2 cycles) and acquired at midnight of 

November 6th when 𝐻1/3>1 m (Fig. 2.7m).  

Fig. 2.23. Scatter plot of (a) 1-h averaged northward velocity and (b) eastward 

velocity against significant wave height.  
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2.4.2 ROI 

While phytoplankton biomass is typically larger than zooplankton biomass (Yurista 

et al. 2014, Sprules & Stockwell 1995), the observed phytoplankton ROIs were fewer 

than zooplankton ROIs (Table 2.2). While the most dominant phytoplankton size 

class in the open water is pico-size (<2 µm), the minimum detection size for ROIs 

was set to be 100 µm in equivalent sphere diameter. Hence, the observed 

phytoplankton ROIs were mostly chained/aggregated colonies.  

The normalized biomass size spectra (NBS spectra; Yurista et al. 2014, 

Sprules & Stockwell 1995) were calculated for the phytoplankton and the 

zooplankton to evaluate the biomass structure in the observation site. The NBS 

spectra for the trophic levels (i.e. phytoplankton, zooplankton) are typically 

approximated by dome-shaped regressions (Yurista et al. 2014, Sprules & Stockwell 

1995). The NBS spectra from this study were also fitted with the regressions (Fig. 

2.25). The regression is expressed as log10(Y) = A + 0.5 × C(log10(X) − B)2, where Y 

is normalized biomass per unit volume (in the unit of g L−1 ∆g−1, where ∆g is width 

of size class), A and B are the vertex coordinates of the dome, C is the curvature of 

the dome, and X is the size class (in g). Volume of individual (or colony/aggregation) 

was estimated from the equivalent sphere diameter of the ROI, and the volume was 

then converted to the mass (in g) assuming that the density of the organism body 

was same as the seawater density. The coefficients for the regression (i.e. A, B, and 

C) for zooplankton are comparable with those reported previously (Table 2.6). Since 

the previous study (Yurista et al. 2014) obtained the coefficients A and B based on 

phytoplankton single cells unlike this study, the coefficients obtained from this study 

are several orders of magnitude different from the previous study (Table 2.6).  
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Fig. 2.25. Normalized biomass size spectra (NBS spectra) for zooplankton (•) 

and phytoplankton (+). Solid lines denote the dome-shaped regressions 

expressed as log10(Y) = A + 0.5 × C(log10(X) − B)2. The coefficients A, B, and 

C for each regression are shown in Table 2.6.  

Table 2.6. Coefficients in the dome-shaped regressions for the normalized biomass 

size spectra (NBS spectra).  

A B C A B C

Izu-Oshima Is. –0.65 –3.72 –0.63 –0.76 –4.32 –0.58 This study

Lake Superior –0.94 –4.56 –0.38 aa 6.90 –11.67 –0.41 Yurista et al. 2014

Lake Ontario 1.24 –6.57 –0.34 — — — Sprules and Stockwell 1995

Lake Erie 1.14 –5.46 –0.82 — — — Sprules and Stockwell 1995

Zooplankton Phytoplankton
Location Reference
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2.4.3 Acoustic and optic backscatters 

Acoustic backscattering from zooplankton has been utilized to quantify their 

population abundance remotely (Brierley et al. 2002). While echo sounders are 

typically used for this purpose (Gregg & Horne 2009), acoustic backscatter by current 

meters, such as Aquadopp and ADCP, also have used to ensure zooplankton 

dynamics (Yahel et al. 2005, Holzman et al. 2007). Since the calibration method for 

the acoustic backscatter by current meters has not been established, the acoustic 

backscatter ensured in this study represents relative changes. The wave length of 

the pings from the Aquadopp is roughly 3.8 mm, based on the acoustic frequency of 

400 kHz and a typical sound speed of 1500 m s-1. Target strength from an animal 

(defined as ratio between intensity of echo reflected by the animal against that of 

incident echo) largely depends on the size of the animal. An animal that is 

significantly smaller than the wave length has a negligible target strength. The body 

size of the observed zooplankton taxa was comparable to or smaller than the wave 

length (see plankton photos in Fig. 2.8). The wave length of 3.8 mm corresponds to 

the 80 percentile of the body size of the strong migrator; most strong migrator were 

smaller than this wave length. This probably resulted in the low correlation of the 

acoustic backscatter against the strong migrator (Fig. 2.12). Also, the wave length 

corresponds to the 95 percentile of the body size of the moderate migrator, probably 

resulting in no significant correlation between the acoustic backscatter and the 

moderate migrator.  

While zooplankton bodies can be optical scatterers in the ocean, in situ 

measurements of zooplankton abundance utilizing optic backscatter are very rare. 

Dickey et al. (1991) moored optical turbidity sensors together with various sensors 

(e.g. thermistors, current meters, etc.) off the eastern coast of the US where the 

bottom depth was 100 m. The turbidity sensors were vertically distributed through 

the water column, and they reported night-time increases in the turbidity data with 

slight time lags among sensors. At dusk, the increases in upper layers were delayed 

against those in the lower layers, and the opposite things happened at dawn; the 

signals were most likely from zooplankton community performing diel vertical 

migration. While Dickey et al. (1991) did not have zooplankton sampling, the optical 

backscatter (turbidity) observed in this study also showed diel pattern showing a 

high correlation against the strong migrator (r2 = 0.79, p<0.01). The results suggest 

that optical backscatter by turbidity sensor can be utilized as a proxy of zooplankton 

population abundance.  

At the same time, a potential issue of the use of turbidity sensor is phototaxis 
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of zooplankton against light source of the turbidity sensor. The turbidity sensor 

emitted blue light (460 nm) in order to measure fluorescence., where the wave length 

typically attracts zooplankton. The influence of zooplankton phototaxis would 

happen even on CPICS data due to the same potential issue. Further investigations 

on zooplankton phototaxis against artificial light emissions from optic sensors are 

performed in Chapter 4.  

 

2.4.4 Influence of current and turbulence on DVM 

Diel rhythm was observed in the plankton abundance (ensured by the CPICS), the 

acoustic backscatter (the Aquadopp), and the optical backscatter (the turbidity 

sensor). These data showed significant negative correlations against the currents 

and turbulence (Fig. 2.19, Fig. 2.20, Fig. 2.21). The negative correlations strongly 

suggest that the zooplankton community which performed DVM (the 

moderate/strong migrator) avoided fluid disturbances.  

Zooplankton in the ocean is typically attracted by light sources, while the 

NBS spectra ensured by the zooplankton community followed the dome-shaped 

regression curve (Fig. 2.25). Since the regression curve is a general feature found in 

any environments (Yurista et al. 2014), the bias due to the phototactic behaviors on 

the plankton abundance ensured by the CPICS seems to be limited. The acoustic 

backscatter that must not be affected by the phototactic behaviors also showed the 

negative correlations (Fig. 2.20a,b,c). In addition, the moderate migrator showed the 

negative correlations even in daytime when zooplankton individuals do not perform 

phototactic behaviors (Fig. 2.19d, Fig. 2.21c). Avoidance of zooplankton in response 

to turbulence has also been observed by net samplings (Incze et al. 2001). Even if 

some limited bias existed on the data acquired in night time, the results suggest that 

the physical disturbances suppressed the zooplankton DVM.  
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Chapter 3 

 

Flow-mediated DVM observed from ADCP 

 

3.1   Introduction 

In Chapter 2, it was suggested that zooplankton avoid enhanced turbulence, and the 

turbulence avoidance results in suppressed Diel Vertical Migration (DVM). While 

the turbulence avoidance has been suggested by previous studies (Incze et al. 2001, 

Seuront et al. 2004, Gallager et al. 2004), the suppression of DVM due to turbulence 

was suggested first time in Chapter 2.  

The cabled observatory OCEANS carried two instruments that emitted 

visible light by zooplankton. Since zooplankton is generally attracted by visible light 

source (phototaxis), the zooplankton data by the optic sensors would be biased. While 

acoustic backscatter measured by the Aquadopp was also used to demonstrate the 

turbulence avoidance, the backscatter near the optic sensor would be biased.  

Here, the turbulence avoidance of zooplankton was tested using only 

acoustic data without using the optic data. The data were acquired by an ADCP that 

was moored without any light-emitting device near the Izu-Oshima Island. A 2-years 

acoustic data set by an ADCP was also available near a coastal city (Eilat) in Israel 

that faces to the Gulf of Aqaba, the Red Sea, provided by the Interuniversity 

Institute for Marine Sciences, Israel. Using the ADCP data from both Izu-Oshima 

Island and Eilat, I confirmed reproducibility and generality of the turbulence 

avoidance of zooplankton and the subsequent DVM suppression.  

 

3.2   Materials and methods 

3.2.1 Location 

Filed campaigns were carried out near Izu-Oshima Island, Japan and off Eilat, Israel. 

See “2.2.1 Location” for details of Izu-Oshima Island. Eilat is a city located at 
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southern tip of Israel that faces to the Gulf of Aqaba, Red Sea (Fig. 3.1). The gulf is 

surrounded by deserts, and annual rain fall in Eilat is 25 mm that is about 1% of 

general rain fall in Izu-Oshima Island. Salinity is >40 PSU throughout the year 

(Manasrah et al. 2006), and annual temperature range is 21 to 26 °C in the upper 

100 m off Eilat (Genin et al. 1995). The water column is stratified with N2 = 10-4 s-2 

in summer (Monismith & Genin 2004), but surface mixed layer in winter reaches the 

deepest bottom of 1000 m in the gulf (called deep convective mixing), resulting in 

high temperature of >20 °C even in the depth of 1000 m (Genin et al 1995, Manasrah 

et al. 2006). The currents in the surface layers are associated with internal gravity 

tides throughout the year except winter (Monismith & Genin 2004, Carlson et al. 

2014).   

Fig. 3.1. a) Map of Izu-Oshima Island. Red cross denotes the location of the ADCP 

mooring. White lines denote isobaths of 100, 200, 300, 500, 1000, 1500 m. b) Same 

as a), but for Eilat, Israel. Subset figure shows a spatial relationship between the 

Gulf of Aqaba and the Red Sea.  
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3.2.2 ADCP 

Both ADCPs were moored near the bottom or at a middle depth, looking upward. A 

RDI Sentinel V 500 kHz was moored off Okada Port at Izu-Oshima Island (Fig. 3.1a, 

Table 3.1). A RDI Work Horse 600 kHz was used for the mooring off Eilat (Fig. 3.1b). 

The data set from Izu-Oshima Island is hereinafter called “Oshima Data”, and that 

from Eilat is called “Eilat Data”. Most specifications and configurations were similar 

(Table 3.1), but the observation period for the Oshima Data was about 3 months 

while that for the Eilat Data was about 2 years. For the Eilat Data, the ADCP was 

replaced with a cycle of several days to several weeks due to the limitation of battery 

and memory. The specifications and configurations for each ADCP were maintained.  

 

 

 

 

Table 3.1. Comparison of the specifications and configurations for the ADCP 

moorings.  

 

 

 

 

 

 

 

  

Data set name "Oshima Data" "Eilat Data"

Start date Apr 21 2016 Aug 04 2014

End date Jul 19 2016 Jul 05 2016

Lattitude 34° 48' 30'' 29° 30' 00''

Longitude 139° 23' 00'' 34° 56' 00''

Acoustic frequency (kHz) 500 600

Ensemble interval (min) 6 10

Pings per ensemble 40 250

Water depth (m) 100 43

Instrument depth (m) 90 42.5

Bin size (m) 1 2

Number of bins 55 21

Blanking distance (m) 1 0.5
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3.2.3 Data analysis 

Velocity data 

Current velocity data from the ADCPs were processed by a regular detection method, 

namely, if the ratio of valid data (%good) is lower than 80% within an ensemble, the 

data were rejected. For the Oshima Data, the bottom 5 layers (corresponds to 10%) 

were noisy and not used. For the Eilat Data, the bottom 2 layers (corresponds to 

10%) were not used, and the top 10 layers (corresponds to 50%) were not used to 

avoid contamination from the surface process (e.g. micro bubbles). The data acquired 

during nighttime was used to examine the interactions between flow pattern and 

acoustic backscatter. The nighttime was defined as period from sunset + 0.5 h to 

sunrise – 0.5 h. The velocity data were decomposed into along-shore velocity and 

cross-shore velocity according to the bottom topography (Fig. 3.1).  

 

TKE dissipation rate 

The structure function method (Wiles et al. 2006) was applied for Oshima Data 

whose measurements were away from the boundaries. A second order structure 

function 𝐷(𝑧, 𝑟) at depth 𝑧 is calculated as follows; 

 

𝐷(𝑧, 𝑟) =  (𝑣′(𝑧) − 𝑣′(𝑧 + 𝑟))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                                              (3.1) 

 

where 𝑣′  is turbulent velocity component, and 𝑟  is distance from 𝑧 . 𝑣′  is 

calculated as 𝑣′ = 𝑣 − �̅�, where 𝑣 is along-beam component of the water velocity 

measured from each ping, and �̅� is averaged 𝑣 over each ensemble. The maximum 

value for  𝑟 is set to 12 m as in Wiles et al. (2006). Assuming the Taylor cascade 

theory, 𝐷 is expressed as following form;  

 

𝐷(𝑧, 𝑟) =  𝐶𝑣
2𝜀2/3𝑟2/3,                                                      (3.2) 

 

where 𝐶𝑣 is a constant (~1.45) (Wiles et al. 2006). The slope of a linear fit of 𝐷(𝑧, 𝑟) 

versus 𝑟2/3 yields value for ε. 

For Eilat Data, ε was estimated from friction velocity 𝑢∗ assuming the law 

of the wall as follows; 

 

ε =
𝑢∗

3

𝑘𝑧
,                                                                  (3.3) 
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where 𝑘 is the von Karman constant (= 0.41), and 𝑧 is the distance from the bottom. 

𝑢∗ can be calculated by solving the following relationship between mean current 

𝑈(𝑧) and 𝑢∗ as follows (Drost et al. 2018);  

 

𝑈(𝑧) =
𝑢∗

𝑘
𝑙𝑛 (

𝑧

𝑧0
),                                                          (3.4) 

 

where 𝑧0 is bottom roughness length scale. The slope and intercept of a linear fit of 

𝑈(𝑧)  versus 𝑙𝑛 (𝑧)  yields values for 𝑢∗  and 𝑧0 , respectively. Only profiles that 

conservatively satisfied the assumption of a logarithmic profile (with r2 from the 

linear fits >0.5) were included in the analysis, a criterion which was satisfied for 

approximately 41.6% of the profiles.  

 

Acoustic backscatter 

Acoustic amplitude recorded by the ADCPs was converted to acoustic backscatter 

from the same process mentioned in Chapter 2 (See 2.2.3 Data processing and 

analysis, Acoustic backscatter). Although the acoustic backscatter intensity was not 

calibrated, the data were useful to examine relative changes in backscatter (i.e. 

zooplankton abundance) in space and time. The acoustic backscatter by the ADCP 

has been used as a proxy of zooplankton abundance off Eilat (Yahel et al. 2005, 

Holzman et al. 2007) as well as other areas (Flagg & Smith 1989, Zhu et al. 2000).  

The acoustic backscatter data includes signals from any type of scatterers 

including fish whose bladder is a source of strong signal. To eliminate signals from 

fish that is a noise for this study, a filtering process (fish filter) was newly developed, 

and the filter was applied for the both data sets. The ADCPs have 4 acoustic beams, 

and the signal from each beam is recorded separately. (A representative value at a 

certain depth and time is ensured by averaging the data over the beams.) Here, if an 

individual or a school of fish passed over the cluster of the beams, a large variation 

among the values by the beams would occur (Fig. 3.2); the signal from fish may be 

detected from this variation. In this study, the criterion is defined as follows; 1) 

calculate differences among the 4 beams at a certain depth and time, 2) the data is 

rejected if any of differences exceed a certain threshold value (Fig. 3.3). The 

threshold is set to 10 dB in this study. Since the distance among individuals within 

a school is proportional to individual body size (Huntley & Zhou 2004), the filter 

effectively eliminates the signal from large fishes.  

Since the acoustic backscatter of the Eilat Data was very noisy probably due 
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to suspended sediments, an additional filter was required to separate zooplankton 

signals for the Eilat Data. Although acoustic wavelength is about 2.5 mm when 

acoustic frequency is 600 kHz (assuming a sound speed of 1500 m s-1), particles much 

smaller than the wavelength (e.g. <0.2 mm) would greatly affect acoustic backscatter 

(Simmons et al. 2010). The variation among the signals by the beams was used for 

eliminating the noise. To quantify the variation, I calculated coefficient of variation 

(CV) at a certain time and depth from the values by the beams. The CV is defined as 

follows: 

 

CV =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
,                                                     (3.5) 

 

where the standard deviation and the mean were calculated from the values 

acquired by the 4 beams. Hence, the CV can be calculated for each spatial and 

temporal bin. Since the calculated CV values were very noisy due to the small 

number of samples (n = 4), an averaged CV (expressed as CV̅̅̅̅ ) is calculated over the 

night time and the water column. The criterion is the following; the acoustic 

backscatter values recorded during a night were rejected if the CV̅̅̅̅  at the night 

lowered a threshold value. The threshold value was set to 0.20 for this study. Using 

this filter (hereinafter CV filter), 94 nights passed out of 655 nights. The 94 nights 

were sampled from all seasons and both years and not biased temporally.  
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Fig. 3.2. a) Schematic diagram for the acoustic beams of the ADCP. A 

representative acoustic backscatter value at certain depth and time is acquired 

by averaging the recorded values over the beams. b) Schematic when a fish school 

passed over the cluster of the beams. c) Same as b) but for a zooplankton 

aggregation. Even if average acoustic backscatter values are the same in the 

cases b) and c), the variation among the values from the beams is different due 

to the individual body size and the spatial distribution. A fish school would cause 

a larger variation than that from a zooplankton aggregation.  
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Fig. 3.3. Scatter plots for all combination from the 4 beams. Black dots denote the acoustic 

backscatter values that passed the fish filter. Red dots denote the values rejected by the fish 

filter. Solid line denotes the one-to-one relationship. Dotted lines denote that the line of the one-

to-one relationship is shifted by ±10 dB.  
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3.3   Results 

3.3.1 Physical and biological background 

For the Oshima Data, acoustic backscatter was typically lower than 60 dB but 

increased after July 1 2016 (Fig. 3.4b). Absolute velocity typically ranged from 0.1 to 

0.3 m s-1 but temporally exceeded 0.5 m s-1 associated with surface tide (Fig. 3.4c). 

TKE dissipation rate ε typically ranged from 3x10-9 W kg-1 to 3x10-8 W kg-1 and 

rarely exceeded 10-7 W kg-1 (Fig. 3.4d).  

For the Eilat Data, acoustic backscatter shows an annual cycle; the 

backscatter increased rapidly in Spring and decrease gradually toward the next 

Spring (Fig. 3.5b). The high levels of acoustic backscatter were generally found from 

May to September (Fig. 3.5b). Surface elevation also shows an annual cycle 

associated with monsoon winds acting on the Red Sea (Fig. 3.5a) (Monismith & 

Genin 2004). Absolute velocity is typically lower than 0.2 m s-1 but frequently 

exceeded 0.4 m s-1 (Fig. 3.5c). ε generally ranged from 10-9 W kg-1 to 10-6 W kg-1 (Fig. 

3.5d). Estimated ε exhibited the log-normal distribution for both Oshima and Eilat 

Data (Fig. 3.6).  

For the both data sets, acoustic backscatter shows a diel cycle (Fig. 3.7). In 

the Oshima Data, the backscatter rapidly increased after sunset and decreased 

gradually toward sunrise (Fig. 3.7a,b). The backscatter from the Eilat Data shows a 

similar pattern, but the range of difference between daytime and nighttime is much 

smaller than the Oshima Data (Fig. 3.7c,d). Also, there is a secondary peak 30 min 

before sunset that is common for the both data sets (Fig. 3.7a,c).  

 

3.3.2 Acoustic backscatter and current velocity 

For the Oshima Data, acoustic backscatter significantly decreased with increasing 

current velocity (Fig. 3.8a) if the data is only limited to the period after July 1 2016 

where the backscatter is relatively strong (Fig. 3.4b). On the other hand, if the data 

is only limited in the period before July 1, the decrease was not found (Fig. 3.8b).  

After the CV filter for the Eilat Data, acoustic backscatter significantly 

decreased with increasing current velocity (Fig. 3.9a) even if the data is from the 

entire observation period (Fig. 3.5). If the CV filter was not applied, the decrease 

disappeared (Fig. 3.9b).  

Even if the ranges of absolute velocity and acoustic backscatter were 

different between the two data sets (<1.0 m s-1 and 50 to 80 dB for the Oshima Data; 

<0.3 m s-1 and 55 to 90 dB for the Eilat Data), the trends in acoustic backscatter 

against the absolute velocity were similar (Fig. 3.8a, Fig. 3.9a). Acoustic backscatter 



60 

 

also significantly decreased with increasing turbulent level for the both data sets 

(Fig. 3.10).  

  

Fig. 3.4. Time-series for Oshima Data. Data except the depth is from the 

layer of 30 MAB.  
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Fig. 3.5. Time-series for Eilat Data. Data is from the layer of 10 meters 

above the sensor except the depth.  



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. PDF of TKE dissipation rate ε for a) Oshima Data and b) Eilat Data. 

Vertical solid lines denote average values, 1.7x10-8 W kg-1 for Oshima Data and 

7.7x10-8 W kg-1 for Eilat Data. 
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Fig. 3.7. Acoustic backscatter averaged around dusk (a) and dawn (b) with 10-

min bins for the Oshima Data. c,d) Same as a,b) but for the Eilat Data.  
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Fig. 3.8. Bar plots of nighttime acoustic backscatter averaged over different velocity 

levels for a) the former period (after July 1) and b) the later period (before July 1). 

Error bars denote standard errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. Bar plots of nighttime acoustic backscatter averaged over different velocity 

levels a) with using the CV filter and b) without using the filter. Error bars denote 

standard errors.   
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Fig. 3.10. Bar plots of nighttime acoustic backscatter averaged over different 

turbulent levels for a) Oshima Data and b) Eilat Data. Error bars denote standard 

errors.  
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3.4   Discussion 

While the physical processes at the both observation sites were different (Fig. 3.4, 

Fig. 3.5), acoustic backscatter significantly decreased against current velocity (Fig. 

3.8a, Fig. 3.9a) and turbulent level (Fig. 3.10). At the Oshima observation site, strong 

current velocities (>0.5 m s-1) were synchronized with large variations in surface 

tides (Fig. 3.4a,c), probably affected by internal gravity waves that are generated by 

surface tides and the complex topography around the island (Fig. 3.1a) (Masunaga 

et al. 2017). At the Eilat observation site, current velocity was generally below 0.3 m 

s-1 that is consistent with previous field surveys (Reidenbach et al. 2006, Monismith 

& Genin 2004). While the stratification at the observation site is generally the same 

as or much weaker than typical stratifications in the open ocean (Thorpe 2007), the 

current is greatly affected by internal gravity waves which are generated at the 

Strait of Tiran where density-driven exchanges between the gulf and the Red Sea 

occur (Fig. 3.1b) (Monismith & Genin 2004). TKE dissipation rates ε estimated from 

the structure function method and the friction velocity 𝑢∗ exhibited the log-normal 

distributions for the both data sets (Fig. 3.6). Averaged ε of 1.7x10-8 W kg-1 for the 

Oshima Data is almost the same level as the averaged ε in the open ocean (Thorpe 

2005), while the averaged ε of 7.7x10-8 W kg-1 in the Eilat Data is one-order smaller 

than previously reported average value of 10-6 W kg-1 at 1 mab (Reidenbach et al. 

2006).  

Zooplankton community for the Oshima Data is expected to be similar to 

that observed by the cabled observatory located at the southern part of the island 

(see Fig. 2.8 in Chapter 2). The community for the Eilat Data was not observed in 

detail for this study but, in general, composed of the pelagic community which is 

dominated by calanoid copepods and the neritic community which is a mixture of 

reef-originated zooplankton and demersal zooplankton (Yahel et al. 2005, Sommer et 

al. 2002, Echelman & Fishelson 1990). Acoustic backscatter in the Eilat Data showed 

a seasonal trend that high levels of acoustic backscatter were generally found 

between May and September (Fig. 3.5b). The seasonal peaks in May and June (Fig. 

3.5b) appeared to follow phytoplankton spring blooms generally found in March to 

middle April (Genin et al. 1995, Lindell & Post 1995).  

Although two observation sites were spatially and environmentally 

separated, acoustic backscatter which is proportional to local zooplankton 

abundance (Flagg & Smith 1989) decreased with increasing current velocity and 

turbulent level (Fig. 3.8a, Fig. 3.9a, Fig. 3.10). This trend is clearly consistent with 

the results from Chapter 2 (see Fig. 2.18, Fig. 2.19, Fig. 2.20) which showed 
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significant decrease in zooplankton abundance with increasing current velocity and 

turbulent level. Also, the previous field/experimental studies have demonstrated the 

turbulence avoidance by various types of zooplankton. Seuront et al. (2004) used 

freshwater-cultured Daphnia pulicaria (~2 mm) and oceanic calanoid copepod 

Temora longicornis (~1 mm) that was collected from the Eastern English Channel 

for their tank experiments, and the both species showed active escape reactions with 

increasing turbulence intensity. Gallager et al. (2004) observed by a 3-dimensional 

video plankton recorder in Georges Bank that most zooplankton taxa including 

Calanus spp., Oithona sp., and Pseudocalanus sp. were significantly aggregated only 

when their swimming speed significantly exceeded rms turbulent velocity. Incze et 

al. (2001) found that copepodite stages of Temora spp., Oithona spp., Pseudocalanus 

spp., and Calanus finmarchicus avoided high turbulent levels in the surface mixed 

layer associated with increased wind stress, based on net samplings and 

microstructure measurements in Georges Bank. In the North Sea, Visser et al. (2001) 

found that Oithona similis avoided strong turbulent levels in the surface mixed layer, 

using net samplings and microstructure measurements. Although no avoidance was 

found in some zooplankton due to species or life stages (Incze et al. 2001, Visser et 

al. 2001), various types of zooplankton from the different geographic locations 

exhibited turbulence avoidance (Seuront et al. 2004, Gallager et al. 2004, Incze et al. 

2001, Visser et al. 2001) which is consistent with this study (Fig. 3.8a, Fig. 3.9a, Fig. 

3.10).  

The zooplankton abundance observed in Chapter 2 would be biased due to 

positive phototaxis that is common among oceanic zooplankton (Tranter et al. 1981, 

Meester & Dumont 1989, Storz & Paul 1998, Jékely et al. 2008, Ma & Johnson 2017), 

and, hence, it has been critical whether the decrease in abundance was caused by 

active avoidance or passive dispersion by turbulence and currents. If zooplankton 

migrate toward the artificial light of the instrument, the estimated abundance would 

be larger than the natural condition, and zooplankton would be flushed away by 

currents or dispersed by turbulence, consequently exhibiting the decreases in 

abundance as in Fig. 2.18, Fig. 2.19, and Fig. 2.20. However, the mooring systems 

used in this chapter did not carry any light-emitting device, and the zooplankton 

abundance was implied by acoustic backscatter, not optical data. Hence, I conclude 

that the zooplankton avoidance is a real phenomenon which is common both in the 

seas around Izu-Oshima Island and off Eilat.  
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3.5   Conclusion 

The two upward-looking ADCP moorings deployed nearby the Izu-Oshima Island 

and off Eilat, Israel successfully observed current velocity and acoustic backscatter 

from the water columns (the Oshima Data and Eilat Data). The objective of this 

study was to confirm the consistency of the turbulence abundance by zooplankton 

observed in Chapter 2, using acoustic instruments without any light-emitting 

devices at different geographic locations. TKE dissipation rates were estimated from 

the structure function method for the Oshima Data and from the law of the wall for 

the Eilat Data. Since the value of acoustic backscatter reflects signals from all 

potential scatterers, not only zooplankton (e.g. fish, bubble, sediments), filters that 

utilized the acoustic backscatter differences among 4 beams were applied to extract 

signals which were most likely from zooplankton. After the filtering processes, the 

acoustic backscatter showed nighttime increases which most likely reflected diel 

vertical migration of pelagic zooplankton or nighttime emergence of demersal 

zooplankton in the both data sets. While the two observation sites were spatially and 

environmentally separated, acoustic backscatter significantly decreased with 

increasing current velocity and turbulent level for the both data sets. The results 

from the ADCP moorings strongly supported the results from Chapter 2 that 

suggested the turbulence avoidance by individual zooplankton.  
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Chapter 4 

 

Zooplankton phototaxis to optic sensor 

 

4.1   Introduction 

Zooplankton in the ocean generally show positive phototaxis toward visible light 

source. In general, a fluorescence sensor uses blue light, therefore, zooplankton may 

be attracted to the turbidity sensor. On the other hand, a turbidity sensor normally 

uses infrared light that is invisible to zooplankton. However, turbidity sensor 

receives optical backscatter from suspended particles in the water column. If 

aggregation of zooplankton is present, the turbidity signals may be contaminated by 

the zooplankton aggregate.  

Optic sensors are used to measure water turbidity and fluorescence (a proxy 

of chlorophyll). For this purpose, the sensors generally carry light-emitting and 

receiving parts, and optic backscatter from particles (suspended solid, phytoplankton 

cell, etc.) is used for estimating suspended solid or chlorophyll concentration. Major 

manufactures use blue light (450 to 495 nm) for fluorescence measurement; for 

example, RINKO-profiler (JFE Advantech, 460 nm), Water Quality Monitor (Sea-

Bird Scientific, 470 nm). Those sensors also carry a turbidity sensor nearby the 

fluorescence sensor, and the sampling volume is typically shared by the both 

turbidity and fluorescence sensors.  

Phototaxis of zooplankton have been studied in fields (Tranter et al. 1981, 

Meester & Dumont 1989, Storz & Paul 1998, Jékely et al. 2008, Ma & Johnson 2017). 

Most studies demonstrated positive phototaxis toward visible light source (Tranter 

et al. 1981, Meester & Dumont 1989, Storz & Paul 1998, Jékely et al. 2008, Ma & 

Johnson 2017), while some animals show negative phototaxis (Ma & Johnson 2017). 

The reason for the positive phototaxis is not well understood yet, but phototaxis 

seems to enhance mating rates.  
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Several limnologic studies have reported nighttime increases in turbidity 

data measured by optical sensors at inland rivers (Rice et al. 2016, Loperfido et al. 

2010). The nighttime turbidity increased by 10 times from daytime value on average 

(Loperfido et al. 2010), concluding the water turbidity was elevated by biological 

activities in the rivers (Rice et al. 2016, Loperfido et al. 2010). However, diel pattern 

of turbidity is rarely reported in the ocean (e.g. Dickey et al. 1991).  

In addition, the effect of background current velocity on phototactic behavior 

is elusive. While swimming velocity of zooplankton is in general much faster than 

turbulent velocity in the upper layers (Yamazaki & Squires 1996), the effect of the 

background hydrodynamics on the phototactic behavior has not been tested.  

The purposes of this study are investigations on 1) the effects of phototactic 

behavior in turbidity data and 2) the effects of the background hydrodynamics on 

phototactic behaviors. A series of laboratory experiment was conducted using a 

zooplankton natural community collected from the ocean as well as cultured 

zooplankton.  

 

4.2   Materials and methods 

4.2.1 Sensor 

A RINKO-profiler manufactured by JFE Advantech was used for this study. The 

RINKO-profiler carries a turbidity/fluorescence sensor (a combined unit), as well as 

a conductivity/temperature sensor, a dissolved oxygen sensor, and a pressure sensor 

(Fig. 4.1). The turbidity/fluorescence sensor emit a blue-light beam (460 nm) for the 

fluorescence measurement and an infrared-red beam (880 nm) for the turbidity 

measurement, sharing a sampling volume of 4 mL (Fig. 4.1b). The blue-light beam 

is visible for the most zooplankton in the ocean. The sampling frequency was set to 

10 Hz for the following experiments.  

 

4.2.2 Experimental setup 

Two types of laboratory experiments were carried out. The first experiment 

(hereinafter Experiment A) is designed to investigate the effect of zooplankton 

phototactic behavior on turbidity data with altering the abundance, using a 

zooplankton natural community (mostly copepods). Experiment B is designed to 

investigate the effect from ambient current velocity on zooplankton’s phototactic 

behavior and the turbidity data, using cultured Artemia Salina. 

Experiment A. Zooplankton were collected from a coastal region off São 

Paulo State, Brazil. A plankton net (100 μm mesh) was towed throughout the water 
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column during daytime where the bottom depth was 5 m. Individuals were classified 

at the level of species, and the community was mostly composed of copepods (Table 

4.1). The community was used for the experiment within 24 h after the sampling.  

RINKO profiler was fixed in an experimental tank with the zooplankton 

natural community (Fig. 4.2). Filtered seawater that was collected nearby the 

sampling location was put in the tank (7.8L). The tank was made from acrylic glass 

to eliminate shades in the tank under room light condition. The temperature and the 

salinity were 23.1 °C and 34.7 PSU, respectively. The room light intensity was 460 

lux in an experimental room. When turbidity signals were collected, the room light 

was turned on/off alternatively every 3 min, making two dark periods during the 

entire duration of 15 min. Three measurements were carried out with different 

packing densities of 430, 870, and 1300 individuals L-1 (called Experiment A1, A2, 

and A3, respectively) (Table 4.2). Videos were taken by a smart phone camera during 

the measurements. A control experience was carried out under dark condition with 

only the filtered seawater, without zooplankton.  

Experiment B. A. Salina individuals were hatched and kept in chambers, 

under room light condition. The nauplius larva were used for the experiment within 

24 hours after hatching. The individuals were fed until the experiment to eliminate 

the effect of hunger on phototactic behaviors (Meester & Dumont 1989).  

RINKO-profiler was fixed in a beaker filled with artificial seawater (1 L) 

(Fig. 4.2). The temperature was 28.5 °C, and the salinity was 18.9 PSU that was 

lower salinity than their natural environments (Vanhaecke et al 1987). The 

abundance of A. Salina was set to be 1850 ind L-1. A tube was installed to generate 

turbulent flow in the beaker by aeration (Fig. 4.2). The end of the tube was located 

at a bottom corner to generate a circulation without contaminating data by air 

bubbles. The experiment was carried out under dark condition, and the aeration was 

started occasionally to imitate strong levels of turbulence in the ocean. 

Videos were taken by a smart phone camera during the measurements, with 

a pixel resolution of 0.05 mm pix-1 and a frame rate of 30 fps. Individuals as well as 

non-living passive particles (i.e. egg shells after hatching, fecal pellets) were detected 

using an image processing software, ImageJ. Time-series of current velocity was 

ensured based on the cross-correlation method (Catton et al. 2011). The spatial 

displacement of particles between successive two images can be found by calculating 

cross-correlation of 2-D brightness data. The calculation region was 100 x 100 pixels 

(corresponds to 5 x 5 mm), where the center of calculation region was 1 cm below the 

turbidity/fluorescence sensor same location as the sampling volume. The maximum 
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lag for the vertical and horizontal displacements is set to 50 pixels. Hence, the 

minimum and maximum detectable velocities are 0.15 cm s-1 and 10.6 cm s-1, 

respectively. Noise velocity from trajectories of swimming individuals were removed, 

and hence velocity calculation was based on the passive particles. Only two 

components of the current velocity (u and w) can be calculated from the method. For 

calculating 3-D absolute velocity, the horizontal velocity u is used as another 

horizontal component v, assuming u and v are statistically in the same magnitude.  

 

 

 

 

  

Fig. 4.1. RINKO-profiler. a) The height of the instrument is about 40 cm. The 

sensors are positioned at the lowest part of the instrument. b) The bottom view 

of RINKO-profiler. The photos are from the manufacture’s website 

(http://www.jfe-advantech.co.jp/).  



73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 4.2. Schematics for Experiment A and B. The schematics are not drawn in scale.  
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Table 4.1. Composition of zooplankton natural community collected from a coastal 

region off São Paulo State, Brazil that was used for Experiment A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Comparison of experimental settings for Experiments A and B.  

 

 

 

 

 

 

 

 

 

  

Experiment name Experiment A Experiment B

Zooplankton Ntural community A. Salina

Packing density

(individuals L-1)

Altered

(430 → 870 → 1300)
1850

Stirrer No Yes

Species

Acartia lilljeborgi 76

Pseudodiaptomus acutus 14

Oithona oculata 5

Oithona hebes 2

Temora turbinata 1

Paracalanus quasimodo 1

Euterpina acutifrons 1

Ratio

(%)
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4.3   Results 

Turbidity data increased significantly under dark condition even when the 

abundance was set to a low value (430 ind L-1) (Fig. 4.3a). Turbidity was below 1 FBU 

under the light condition (0 to 3 min in Fig. 4.3a). After the light condition was 

switched to the dark condition (3 to 6 min in Fig. 4.3a), local peaks appeared on the 

turbidity data that lifted the average value. The dark condition was again switched 

to the light condition, and then, the turbidity decreased to the same value as before 

(6 to 9 min in Fig. 4.3a). The same increase in the turbidity data was found in the 

second dark condition (9 to 12 min in Fig. 4.3a), as well as in the measurements with 

higher packing densities of 870 ind L-1 (Fig. 4.3b) and 1300 ind L-1 (Fig. 4.3c). Active 

accumulations of zooplankton near the sampling volume were found under the dark 

conditions (Fig. 4.3d,e).  

To compare the effect of different packing densities, average and standard 

deviation of the turbidity values were calculated over the last 1 min of the dark 

conditions for each measurement (5 to 6 and 11 to 12 min in Fig. 4.3a,b,c). While the 

background value from the control experiment (just from the filtered seawater) was 

0.17 FBU, the turbidity with the low abundance (430 ind L-1) was 1.02 FBU, about 6 

time increase from the background (Fig. 4.4). While the turbidity increased to 2.23 

FBU for the middle abundance (870 ind L-1), the measurement with the highest 

abundance (1300 ind L-1) did not show further increase in the turbidity where the 

average was 2.26 FBU (Fig. 4.4).  

During Experiment B, the individuals of A. Salina accumulated near the 

sampling volume of the turbidity/fluorescence sensor as in Experiment A. The 

turbidity data was about 30 FBU after the packing density around the sampling 

volume was saturated (see 10 s in Fig. 4.5a). Total are of the detected particles in the 

still images (including living and non-living) was correlated with the turbidity at a 

statistically significant level (r2 = 0.96, p<0.01; Fig. 4.5a,c). When the currents were 

generated by the stirrers, the current velocity reached 3 cm s-1 (20 to 40 s and 80 to 

100 s in Fig. 4.5b), flushing the individuals around the sampling volume away. The 

turbidity and the total area of the detected particles suddenly decreased to the 

background level associated with the increased current velocity (Fig. 4.5a,b). The 

turbidity data is negatively correlated with the current velocity (r2 = 0.40, p<0.01; 

Fig. 4.5d).  
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Fig. 4.3. a) Time-series of the turbidity data with a packing density of 430 ind L-1. 

The room light was turned on except the light gray periods that show dark conditions 

(3 to 6 and 9 to 12 min). b) Same as a) but for a different packing density of 870 ind 

L-1. c) For a packing density of 1300 ind L-1. d) A still image taken just after the room 

light was turned off, shown by the left arrow in c). e) A still image taken at the middle 

of the dark condition, shown by the right arrow in c). Turbidity increased due to 

zooplankton that actively accumulated near the turbidity/fluorescence sensor.  
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Fig. 4.4. The comparison of the effect of different zooplankton abundances on 

turbidity data. Black filled circles denote average value over the last 1 min of the 

dark conditions (5 to 6 and 11 to 12 min in Fig. 4.3). Error bars indicate 1 

standard deviations.  
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Fig. 4.5. a) Gray solid line denotes the turbidity. Black dotted line denotes the total 

area of the detected particles. b) Time series for the absolute current velocity 

calculated by the image processes. c) Scatter plot of the total area of the detected 

particles against the turbidity data, showing strong positive correlation (r2 = 0.96, 

p<0.01). d) Scatter plot of the absolute current velocity against the turbidity data, 

showing negative correlation (r2 = 0.40, p<0.01). 
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4.4   Discussion 

The results from the experiments suggest that 1) zooplankton individuals are 

attracted by light emission (blue color, 460 nm) from the turbidity/fluorescence 

sensor, 2) zooplankton accumulation around the sensing part results in turbidity 

increase by up to 2 FBU higher than the background turbidity (confirmed from 

natural zooplankton community), and 3) zooplankton individuals are flushed away 

and cannot swim against strong currents even if they are attracted by the light.  

The natural zooplankton community collected from a coastal region off São 

Paulo for Experiment A was mainly composed of copepods and classified at a level of 

species (Table 4.1). The most abundant two calanoid species Acartia lilljeborgi and 

Pseudodiaptomus acutus were common species in the coastal region off Brazil (Melo 

et al. 2010, Lopes 1994). Other species with relatively small abundances have also 

been sampled off Brazil (Melo et al. 2010, Lopes 1994). The water temperature and 

salinity during the experiments (23.1 °C and 34.7 PSU) are typical off Brazil in 

summer (Campos et al. 2000). Cultured Artemia Salina used for Experiment B 

originally inhabit highly saline lakes (>100 ‰) (Vanhaecke et al. 1987), and the 

water used for the experiment is much less saline (18.9 PSU) in comparison with 

their natural environment (Vanhaecke et al. 1987). I confirmed that the individuals 

foraged their food (Spirulina) and swam actively in the tank, by visual inspections. 

The packing density for Experiments A and B that ranged from 430 to 1850 

individual L-1 (Table 4.2) is unusually high in comparison with natural packing 

density, while the same magnitude of density is rarely found in the natural 

environment (Heidelberg et al. 2004).  

While the intensity of the light emission from the turbidity/fluorescence 

sensor is not strong in comparison with the sun light, the light emission stands out 

under dark conditions (e.g. nighttime, deep layers). Blue light (435 to 480 nm) is 

generally used for measurement on in situ fluorescence. Recent instruments carry 

both turbidity and fluorescence sensors on the same platform, and a shared sampling 

volume is frequently adopted. JFE Advantech’s Infinity-CLW is designed for long-

term in situ measurements on turbidity and fluorescence and has a shared sampling 

volume for the measurement which is a same type as RINKO-profiler used in this 

study. Sea-Bird Scientific’s Water Quality Monitor is also designed for long-term 

mooring. The sampling volumes for turbidity and fluorescence measurements are 

not shared but spatially very close (<10 cm). Since blue light is visible by various 

zooplankton and induces their behavioral response (Buskey & Swift 1985), 
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phototactic behavior of individual zooplankton would affect turbidity data recorded 

by those instruments which have been designed and used for long-term 

measurements (Fig. 4.3). In addition, even when the instruments are used as a 

profiler, zooplankton individuals would reach the sensor’s light source if the profiling 

speed is slower than individual’s swimming speeds that could reach 10 cm s-1 

(Buskey & Swift 1985).  

I found that only a part of the entire zooplankton community was attracted 

by the light source. According to the previous studies, individual’s life stage and 

nutrient condition determine if the individual shows positive phototactic behavior 

(Meester & Dumont 1989). However, turbidity significantly increased throughout the 

experiments due to accumulation of individuals around the sensor (Fig. 4.3, Fig. 4.5). 

The background turbidity was observed as 0.17 FBU for the control experiment of 

Experiment A (Fig. 4.4). The turbidity increased by about 1 FBU for Experiment A1 

(430 individuals L-1) and 2 FBU for A2 (870 individuals L-1) (Fig. 4.4). However, the 

elevation remains 2 FBU for A3 (1300 individuals L-1). This can be explained by the 

sampling volume of the turbidity/fluorescence sensor. Zooplankton individuals 

hovering in the sampling volume of 4 mL are only sensed by the sensor, so there is a 

limitation how many individuals can be hovering in the sampling volume. 

Zooplankton, in general, can sense the distance between neighbors from fluid signals 

(Kiørboe 2008) and keep a significant distance in their swarm (Haury & Yamazaki 

1995, Mackie & Mills 1983). Even if they are attracted by the light source, they may 

keep a preferred distance from neighbors. Hence, maximum zooplankton abundance 

in the sampling volume would be limited by the biological reason.  

The maximum elevation of 2 FBU which was observed from the natural 

zooplankton community does not explain the nighttime increase in turbidity (>50 

FBU) observed in Chapter 2 (Fig. 2.13c,d). In Experiment B which used cultured A. 

Salina with abundance of 1850 individual L-1, the turbidity elevation of 30 FBU was 

observed due to the accumulation around the sensor (see around 10 s in Fig. 4.5a), 

better explaining the nighttime increase observed in Chapter 2 (Fig. 2.13c,d). This 

suggest that the community structure (which species compose the community) may 

affect how effectively zooplankton community changes turbidity value. The 2 FBU 

difference due to natural zooplankton community is much smaller than turbidity 

fluctuations in coastal regions (Jafar-Sidik et al. 2017, Constantin et al. 2016) or 

inland rivers (Rice et al. 2016, Loperfido et al. 2010) but would be larger than that 

in the open ocean (Takata et al. 2008).  

During Experiment B, individuals of A. Salina which were accumulated 
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around the sensor were flushed away by the generated current (Fig. 4.5a,b,d). This 

experiment simulated the observed negative correlations between velocity and 

turbidity in Chapter 2 (Fig. 2.19d,e and Fig. 4.5). Hence, the in situ decrease in 

zooplankton abundance with increasing current velocity could be explained by the 

combination of the phototaxis of the zooplankton and the currents that flush them 

away. On the other hand, the decrease in acoustic backscatter with increasing 

current velocity observed by the ADCP moorings in Chapter 3 cannot be explained 

by the zooplankton phototactic behavior, since the data was acquired only from 

acoustic devices. Thus, even if the data from the observatory is affected (biased) by 

the zooplankton phototaxis at a certain level, the main conclusion from Chapters 2 

and 3 does not change.  

 

4.5 Conclusion 

Two experimental campaigns were carried out to confirm/evaluate 1) phototactic 

behavior of zooplankton individuals against artificial light of turbidity/fluorescence 

sensor, 2) influence of their abundance on turbidity, and 3) influence of 

environmental current on their phototactic behavior. Experiment A used natural 

zooplankton community mainly composed of copepod species collected off Brazil, 

with changing their packing density. Zooplankton individuals start accumulating 

around the sensor after the room light turned off, and the turbidity signals increased 

as individuals stayed in the sampling volume. While the control experiment without 

zooplankton shows average turbidity of 0.17 FBU, turbidity elevated to 1.02 FBU for 

packing density of 430 individuals L-1, 2.23 FBU for 870 individuals L-1, and 2.26 

FBU for 1300 individuals L-1; a linear increase was found between packing density 

and turbidity when the packing density was limited below 870 individuals L-1. 

Experiment B used cultured Artemia Salina as a model animal, with packing density 

of 1850 individuals L-1. They also exhibited accumulations around the sensor under 

dark condition that led significant increase in turbidity up to 30 FBU. When the 

environmental current was generated by rotating stirrers, the accumulated 

individuals were flushed away, and turbidity signal decreased. This experiment 

simulated the observed negative correlation between current velocity and turbidity 

in Chapter 2. While turbidity elevation of 2 FBU in Experiment A does not explain 

nighttime increase in turbidity in Chapter 2 (>50 FBU), the elevation of 30 FBU by 

A. Salina better explains the nighttime increase. This suggests that community 

structure is important in how effectively zooplankton community affect turbidity 

signal.   
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Chapter 5 

 

Sardine-generated turbulence 

  

5.1   Introduction 

Mixing due to swimming marine organisms (hereinafter biomixing) is a poorly 

understood phenomenon. Although major energy sources that drive the global ocean 

general circulation, such as tides and winds, have been relatively well quantified, 

contributions from biomixing have been elusive (Ferrari & Wunsch 2009). 

Nevertheless, some studies (Dewar et al. 2006) have reported that biomixing could 

possibly be an important component for the global energy budget of ocean general 

circulation. Dewar et al. (2006) have estimated that 1% of the total chemical power 

stored in marine organisms, 62.7 TW, could be converted into mechanical energy of 

the ocean. This is comparable to the power input from winds and tides (Ferrari & 

Wunsch 2009). In addition, Huntley & Zhou (2004) estimated that schools and 

swarms of organisms swimming at their moderate speeds can produce strong 

turbulence equivalent to a rate of kinetic energy dissipation of 10−5 W kg−1, 

regardless of body size (from zooplankton to cetaceans). This value is comparable to 

the energy dissipation rates measured in well-mixed surface layers (Thorpe 2007). 

The estimates shown above imply the importance of biomixing in ocean mixing, and 

consequently, in driving the ocean general circulation.  

Besides the theoretical estimates of Dewar et al. (2006) and Huntley & Zhou 

(2004), observational evidence of biomixing has been reported. Kunze et al. (2006) 

measured high turbulent kinetic energy dissipation rates of 10−5 to 10−4 W kg−1 in 

layers with high acoustic backscatter intensity, mainly due to krill, observed by an 

echo sounder in Saanich Inlet, BC, Canada. Gregg & Horne (2009) also measured 

elevated turbulent kinetic energy dissipation rates of 10−6 to 10−5 W kg−1 compared 

to the background value of 10−9 W kg−1 with high acoustic backscatter intensity in 
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Monterey Bay, CA, USA, and surmised that the constituents of the high acoustic 

intensity were anchovy schools, based on the acoustic signals. These measured 

turbulent kinetic energy dissipation rates are comparable to the theoretical value of 

10−5 W kg−1 estimated by Huntley & Zhou (2004).  

However, there are a number of reports which contradict the studies that 

suggest the importance of biomixing. From additional field observations of biomixing 

in Saanich Inlet, Rousseau et al. (2010) reported turbulent kinetic energy dissipation 

rates of 10−8 W kg−1 with high acoustic backscatter intensity, a dissipation rate higher 

by a factor of 2 than that in acoustically quiet waters, but 3 orders of magnitude 

lower than the theoretical 10−5 W kg−1 estimated by Huntley & Zhou (2004). Sato et 

al. (2014) reported no correlation between turbulent kinetic energy dissipation rates 

and volume backscattering strength in Saanich Inlet. On the other hand, Ross & 

Lueck (2005) developed an inverse method to estimate turbulence intensity (10−8 to 

10−3 W kg−1) from volume backscattering strength in a stratified and highly turbulent 

water column. Even if marine organisms can induce strong turbulence, it does not 

always mean strong turbulent ‘mixing’. Visser (2007) pointed out that small 

swimmers, such as krill (~1 cm), cannot produce eddies and subsequent density 

inversions larger than their body size, implying that biomixing by small swimmers 

is less efficient than physically induced turbulence. Based on krill body size (1 cm), 

Visser estimated that, at most, 1% of the total kinetic energy produced by krill 

swimming is used in mixing, while it is up to 20% for physically induced turbulence 

(Osborn 1980). Using in situ observation data, Gregg & Horne (2009) reported that 

mixing inside fish schools was 100 times less efficient for vertical mixing of density-

stratified water than that due to physically induced turbulence, consistent with 

Visser (2007). In contrast, based on field campaigns with turbulence measurements, 

net samplings, still image recordings and acoustic surveys, Lorke & Probst (2010) 

found that, regardless of whether turbulence was measured inside or outside of fish 

schools, roughly 20% of the turbulent kinetic energy was used for vertical mixing of 

density. Katija & Dabiri (2009) pointed out that fluid viscosity and body shapes, 

rather than generated eddy size, are important in determining the efficiency of 

swimming-induced mixing, as the viscous fluids can be drifted along the swimming 

organisms, and that more efficient swimmers are more efficient in drifting fluid 

around their bodies: the length of drifted water along the streamline, not the body 

length, is the important scale. The studies discussed above, with conflicting 

conclusions regarding the efficiency of biomixing, clearly demonstrate the need for 

further studies. 
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One of the most problematic issues in the previous studies is that one cannot 

be sure whether the measured turbulence was caused by the swimming organisms, 

and that it is not possible to know the detailed swimming behaviors of the organisms 

when they encountered the instruments just by using echo sounders, which were 

frequently utilized in the studies. Characteristics such as swimming behavior, 

swimming speed and synchrony of group motion can be influenced by the presence 

of instruments (e.g. avoidance of an approaching turbulence microstructure profiler). 

Although these characteristics appear to be critical for determining the intensity of 

the induced turbulence (Huntley & Zhou 2004), the previous observations did not 

consider swimming behavior but used acoustic backscatter merely to estimate 

population density. However, in a tank experiment, Catton et al. (2011) reported that 

individual (not aggregated) krill were able to transfer a water parcel by a distance 

of 1 body length, while aggregated krill actively transferred water parcels down to 

successive group members and disturbed the water column at a scale of aggregations. 

They suggested that different biological characteristics (i.e. individual or 

aggregation, distance between group members) result in different fluid motions 

around the swimming organism. Thus, obtaining turbulence measurements 

simultaneously with visual observations of organism aggregations and their 

swimming behavior is necessary to investigate the intensity of turbulence generated 

by an organism and to elucidate whether the generated turbulent eddy is large 

enough to produce mixing in the ocean. 

In this study, we conducted an experiment in a large aquarium tank 

containing several thousand Japanese sardines Sardinops melanostictus to measure 

turbulence inside the sardine school and to observe the school characteristics 

simultaneously. S. melanostictus and the other species in the genus Sardinops, 

which have similar body dimensions and behavioral characteristics, are a 

cosmopolitan taxon and have a large biomass in the ocean (Whitehead 1985), and 

hence, the result from this experiment is expected to be applicable for the world 

ocean. The objectives of this study were to measure biologically induced turbulence 

and to investigate the relationship between turbulent properties and school 

characteristics. 

 

5.2   Materials and methods 

5.2.1 Microstructure profiler 

A microstructure profiler, the Turbulence Ocean Microstructure Acquisition Profiler-

9 (Fig. 5.1A; hereinafter TM9; JFE Advantech), was used to measure turbulence 
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inside the sardine school. The 1.3 m long free-ascending TM9 sampled data from the 

bottom of the experiment tank until it reached the surface without any interruptions 

(Figs. 5.1B & 5.2). Nominal ascending speed was roughly 0.5 m s−1. In a past study, 

the TM9 was deployed in a small bay as shallow as 20 m depth (Saita et al. 2009). 

The TM9 had 2 turbulent shear probes (hereinafter shear-1 and shear-2; digitized at 

512 Hz), an FP07 fast temperature probe (512 Hz), a light-emitting diode 

fluorescence/turbidity probe (256 Hz), a CTD (64 Hz) and XYZ 3-directional 

accelerometers (256 Hz) on the head. Previous studies (Kunze et al. 2006, Gregg & 

Horne 2009, Rousseau et al. 2010) used free-fall microstructure profilers, which may 

not be suited to measure turbulence near the water surface due to unstable motion 

of the profiler’s body. In order to maximize the sampling water column, we employed 

a free-ascending profiler. 

For deployment, a weighted releaser was attached to the tail of the TM9. 

After the TM9 had sunk to the bottom, we waited 3 min before releasing the attached 

weight in order to avoid contamination from disturbances generated by the 

instrument setup. Eight deployments were performed during the course of the 

experiment (Table 5.1). 

 

5.2.2 Experimental tank and sardines 

We used a large indoor tank (Fig. 5.1B) at an aquarium (Yokohama Hakkeijima Sea 

Paradise, www.seaparadise.co.jp/english/). Since the tank is managed as part of a 

commercial aquarium, we had a limited time window and were allowed to deploy the 

instrument only 8 times. The 7 m deep tank held 1500 m3 of seawater and contained 

roughly 5000 Japanese sardines Sardinops melanostictus, caught in the sea around 

Japan. Body length of the sardines, 𝐿 , was measured as total length after the 

experiment, and averaged 0.173 m (n = 35; Table 5.2), typical of adult Japanese 

sardines (Whitehead 1985). The tank also contained predators of sardines, such as 

sand tiger sharks, rays and mackerels. Due to their presence, the sardines regularly 

formed an aggregation, or school, during the measurements. Since predator 

abundance was relatively low compared to that of the sardines (e.g. a few sand tiger 

sharks and rays, and several tens of mackerels) and no predators were identified 

near the measuring sensors, turbulence generation due to the predators was ignored.  

Water temperature and salinity in the tank were 20.0 ± 0.016°C (mean ± SD) 

and 30.6 ± 0.001 respectively. Mean and SD were calculated from all deployments of 

the TM9. The water column was almost homogeneous, with very weak stratification 

dominated by temperature. The spatial- and temporal-averaged stratification 

http://www.seaparadise.co.jp/english/
http://www.seaparadise.co.jp/english/
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corresponded to a buoyancy frequency of 𝑁 = 1.6 ×  10−3 s−1, comparable to that in 

the surface mixed layer of the ocean (Thorpe 2007). Aeration devices that created 

bubble columns and circulation to stir the water were turned off 1 h before 

commencing the experiment to minimize turbulence generated from the circulation 

system. 

In order to visually inspect the performance of the TM9, 3 video cameras 

were placed around the tank (Figs. 5.1B & 5.2): Camera #1 in front of the panorama 

window, Camera #2 in front of an acrylic glass window located 6 m above the bottom, 

and Camera #3 in an underwater tube. Cameras #1 and 2 were mounted on tripods 

and Camera #3 was hand-held. Footage was recorded simultaneously by all 3 video 

cameras. 

Based on the film footage, we distinguished 3 different types of swimming 

behavior of the sardine school: avoidance, feeding, and cruising behaviors. Given 

that the turbulence sensors (i.e. the shear probes) require a background flow to 

measure turbulence, and thus the TM9 needed to ascend in the tank, it was not 

possible to suppress the sardines’ avoidance behavior in response to the TM9, which 

was measuring turbulence inside the school. All of the turbulence measurements 

inside the school were made when the sardines showed avoidance behavior. However, 

when aquarium personnel fed food pellets (2 mm in diameter) to the sardines before 

the launch of Deployment 3, and the sardines were feeding on the pellets, they 

exhibited a different swimming pattern (feeding behavior) from avoidance behavior 

shown in the other deployments. Avoidance behavior was short-burst swimming; on 

the other hand, feeding behavior was comparatively fast and long-lasting swimming. 

The school displayed cruising behavior when neither avoidance nor feeding behavior 

was exhibited. Thus, no turbulence measurement from cruising behavior was 

obtained. 

For each behavior, we were able to measure swimming speeds relative to 𝐿 

from the footage. Relative speeds were used to estimate absolute swimming speeds, 

assuming 𝐿 = 0.173 m. Swimming behavior is described in ‘5.3.1 School behavior’ 

and discussed in ‘5.4.1 Swimming behavior’. 

For packing density of the sardines in the school, we tried to estimate this 

using video footage obtained from the 3 video cameras. However, packing density 

was hard to quantify from the footage since the arrangement of the video cameras 

was not suited to establish the 3-dimensional position of each sardine. Therefore, we 

estimated packing density by making use of the measured body length of the 

sardines and assuming that the distribution of the sardines in the school displayed 
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hexagonal close-packing of equal spheres, as discussed in ‘5.4.3 Dissipation rates’. 

 

5.2.3 Turbulent kinetic energy dissipation rate 

Assuming isotropy of turbulence, the rate of turbulent kinetic energy dissipation, ε 

is estimated as 

 

ε =  
15

2
∙ ν ∙ (

∂𝑢

∂𝑧
)

2̅̅ ̅̅ ̅̅ ̅
=  

15

2
∙ ν ∙ ∫ ϕ(𝑘) d𝑘

𝑘2

𝑘1
,                                       (5.1) 

 

where ν is the kinematic viscosity, the overbar indicates the temporal average, 

∂𝑢 /  ∂𝑧  is the velocity vertical shear, 𝑘  is the wavenumber, ϕ  is the shear 

spectrum as a function of 𝑘, and 𝑘1 and 𝑘2 are the integration range. In this study, 

𝑘1  =  1  cycles per meter (cpm) and 𝑘2 = 𝑘η / 2 , where 𝑘η  is the Kolmogorov 

wavenumber, 𝑘η  =  (ε ∙ ν−3)1/4. When 𝑘2 was larger than the Nyquist wavenumber 

(~500 cpm in this study), ϕ was extrapolated to 𝑘2 by using the Nasmyth empirical 

spectrum (Oakey 1982), which is an empirical spectrum for a well-developed 

turbulence field. Wavenumber ranges, excluding high-frequency noises from the 

system electronics, were extrapolated by the Nasmyth spectrum for the integration 

in Eq. (5.1). The logarithmic spectral power loss along increasing wavenumbers, 

which depends on the size of the sensing tips of the turbulent shear probes (~1 cm), 

was corrected using a single pole filter (Oakey 1982). The rate of kinetic energy 

dissipation was estimated from a 2 s section of data which was half-overlapped with 

the next sections. From the video footage, we were able to visually distinguish 

whether or not the estimated ε values were acquired inside the sardine school by 

measuring the distance between the school and the turbulent shear probes. 
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Fig. 5.1. (A) Microstructure profiler, Turbulence Ocean Microstructure Acquisition 

Profiler-9 (TM9). (B) Experimental setup. Approximate scale shown at lower left. 
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Table 5.1. Deployments of the TM9 microstructure profiler. Presence: whether or not 

deployment was successful in measuring inside the sardine school. Period: amount 

of time taken for the TM9 to measure inside the sardine school (highlighted in light 

gray in Fig. 5.3). Depth: vertical distance measured by the TM9 inside the sardine 

school. Thickness: sardine school thickness along vertical coordinate. (ε̅): energy 

dissipation rate averaged over the period. Background ε̅: energy dissipation rate 

averaged over the calculation sections outside the sardine school. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2. Body dimensions and wet weight of sardines kept in the tank during 

measurements. 

 

 

  

 1 

  sardine school  

deployment 

name  

launch  

time 
presence 

period 

(s) 

depth 

(m) 

thickness 

(m) 
behavior 

ϵ  

(W kg-1) 

Background ϵ̅ 

(W kg-1 x 10-6) 

Deploy 1 19:33 Yes 3–9 0.5–3.6 3.1 Avoidance 3.2 x 10-4 6.2 

Deploy 2 19:54 Yes 0–2 3.0–3.9 0.9 Avoidance 8.6 x 10-5 5.9 

Deploy 3 19:59 Yes 6–8 0.5–1.6 1.1 Feeding 2.2 x 10-4 3.1 

Deploy 4 20:02 Yes 4–7 0.5–2.1 1.6 Avoidance 8.7 x 10-5 5.1 

Deploy 5 *19:45 No — — — — — 9.7 

Deploy 6 20:07 No — — — — — 8.1 

Deploy 7 20:10 No — — — — — 4.9 

Deploy 8 20:21 No — — — — — 4.1 

 

measured items mean (m) S. D. (m) 

Length 0.173 0.015 

Width 0.018 0.002 

Height 0.029 0.002 

Wet weight 0.033 (kg) 0.008 (kg) 
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Fig. 5.2. Still images from video footage taken during Deployment 1 by Camera #1. 

(A) Sardines forming a school above the TM9 microstructure profiler prior to release. 

(B) TM9 ascending toward sardine school. (C) TM9 measuring turbulence inside the 

sardine school. Approximate times elapsed from release of TM9 shown in bottom left 

of each image. 
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5.3   Results 

5.3.1 School behavior 

Deployments 1 to 4 passed inside the sardine school. Except for Deployment 3, the 

sardine school avoided the oncoming TM9 by dispersing in different directions. For 

each deployment, the distance between the school and the TM9 was about 1 m. The 

swimming speed of this avoidance behavior was 𝑣avoidance =  1.08 ±  0.11 m s−1 

(mean ± SD, n = 7), estimated from Deployment 2 footage. Predator avoidance (i.e. 

ray) was observed as well. Swimming speed during avoidance behavior (away from 

the predator) was 1.32 ± 0.18 m s−1, estimated from footage taken before Deployment 

1, and the estimated distance between the rear of the school and the predator was 

about 1 m. On the other hand, when sardines were fed 20 s before the launch of 

Deployment 3, the school swam relatively quickly (𝑣feeding =  0.72 ±  0.09 m s−1; n = 

7) in the same direction. When the TM9 was ascending into the school, sardines 

avoided the instrument, keeping a distance of ~1 m from it without changing their 

swimming speed; this response was not as prominent as in avoidance behavior, and 

was categorized as feeding behavior. During feeding behavior, sardines appeared to 

be more focused on the food than on the approaching TM9. Except when expressing 

avoidance or feeding behavior, the sardine school swam at a relatively slow speed, 

categorized as cruising behavior, at a rate of 𝑣cruising =  0.26 ±  0.04 m s−1 (n = 10), 

estimated from footage taken before Deployment 1. For any behavior, the sardines 

kept synchrony with regard to their swimming speed, duration, and timing when 

they changed from one behavior to another. Deployments 5 to 8 passed outside of the 

sardine school. 

Predators did not affect school behavior during any deployments, and the 

spatial distance between the predators and the TM9 was significantly large for each 

deployment. No physical contact between the sardines and the turbulent shear 

probes was observed. Thus all turbulence signals inside the school recorded by the 

TM9 were due to sardine swimming. 

 

5.3.2 Turbulence inside and outside sardine school 

Based on TM9 data obtained outside the sardine school (Deployments 5 to 8), the 

range of background energy dissipation rates was ε =  10−6 to 10−5 W kg−1  (Fig. 

5.3E−H). The average was ε =  6.7 ×  10−6 W kg−1. Maximum ε was roughly 10–5 W 

kg−1 and minimum ε was 1.1 × 10–6 W kg−1. This background turbulence level is 

similar to that found in the surface mixed layer of the ocean (Thorpe 2007). 

Inside the sardine school, ε values exceeded 10−4 W kg−1 (Fig. 5.3A−D, Table 
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5.1). The average was 2.3 × 10−4 W kg−1, roughly 50 times greater than the 

background value. There was no significant difference in the magnitude of ε 

between the avoidance and feeding behaviors (Table 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3. Time series of turbulent velocity shear (thin gray lines) and kinetic energy 

dissipation rates ε (thick black bars) for 8 deployments (deploy) of the TM9 micro 

structure profiler. Widths of black bars (2 s) indicate sections used to estimate ε. 

Data from (A−D) inside and (E−H) outside the sardine (Sardinops melanostictus) 

school. Light gray sections in (A−D) show when the TM9 acquired data from inside 

the school. 
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5.3.3 Spectrum analysis 

In order to consider the properties of turbulence induced by the sardine school, we 

examined the wavenumber spectra of turbulent velocity shear. Because mean 𝐿 was 

0.173 m, the wavenumber 𝑘 =  𝐿−1  =  5.8 cpm is considered to be representative for 

that size. 

Shear spectra measured outside the sardine school followed the Nasmyth 

spectrum, as in physically induced turbulence in the ocean (Fig. 5.4). The Nasmyth 

spectrum was within or close to the upper and lower 95% confidence intervals of the 

measured shear spectra. 

Shear spectra obtained from the data inside the school during avoidance 

behavior did not follow the Nasmyth spectrum well (Fig. 5.5). For example, in the 

case of Deployment 1, the spectrum had a slope of 𝑘1  in 1−20 cpm, while the 

Nasmyth spectrum has a slope of 𝑘1/3 in the inertial sub-range (Fig. 5.5A). Spectral 

power at 20−40 cpm was higher than that of the Nasmyth spectrum, while spectral 

power in the wave number ranges lower than 𝐿−1 = 5.8 cpm was significantly lower 

than the Nasmyth spectrum (Fig. 5.5A). Spectra computed from Deployment 2 and 

Deployment 4 data, inside the sardine school, had power declines in the inertial sub-

range similar to Deployment 1 (Fig. 5.5B,C). For these spectra, the spectral power 

at 1 cpm was about one-third that of the Nasmyth spectrum regardless of the 

magnitude of ε, which is clearly shown by the variance-preserving forms of the 

velocity spectra corresponding to each shear spectrum (Fig. 5.5D−F). 

On the other hand, shear spectra measured inside the sardine school while 

the sardines were fed show relatively good agreement with the Nasmyth spectrum 

in the wavenumber ranges lower than 𝐿−1 (Fig. 5.6). The shear spectra computed 

using shear-1 and shear-2 had power levels comparable to that of the Nasmyth 

spectrum in the wavenumber ranges lower than 𝐿−1 (Fig. 5.6A,B). However, the 

spectral shapes are somewhat distorted from the Nasmyth spectrum, with convex 

down and up at the transition between inertial sub-range and viscous sub-range, 

probably reflecting the high spatial and temporal variabilities in turbulence 

generated by the sardine school. 

All non-dimensionalized spectra and their averaged spectra are shown 

separately for the turbulence induced by avoidance behavior (Fig. 5.7A,C) and that 

induced by feeding behavior (Fig. 5.7B,D). Turbulence induced by avoidance behavior 

had a power decline in the inertial sub-range on average, while that induced by 

feeding behavior showed no power decline. 
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Fig. 5.4. Spectra (ϕ) of turbulent velocity shear outside the sardine school for (A−D) 

Deployments 5 to 8, respectively, as functions of wavenumber 𝑘 (cycles per meter, 

cpm). Measured spectra denoted by thick black lines, upper and lower 95% CIs by 

thin dashed lines, and Nasmyth spectrum by thick red lines. Each Nasmyth 

spectrum corresponds to the turbulent kinetic energy dissipation rates (ε, W kg−1) 

above the panels. Peaks at around 𝑘 =  300 cpm caused by instrument’s electrical 

noise. 
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Fig. 5.5. (A−C) Spectra (φ) of turbulent velocity shear inside the sardine school 

displaying avoidance behavior for Deployments (A) 1, (B) 2, and (C) 4. Line 

descriptions same as in Fig. 5.4. Inverse of the average body length 𝐿−1  =  5.8 cpm 

(𝐿 =  0.173 m) shown as a triangle. (D−F) Variance-preserving forms of velocity 

spectra corresponding to (A−C). Areas where velocity spectra are lower than 

Nasmyth spectrum highlighted in light gray. See Fig. 5.4 for further details.  
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Fig. 5.6. Same as Fig. 5.5, but with spectra acquired inside the sardine school during 

feeding behavior in Deployment 3. (A,C) Shear-1 and (B,D) shear-2 probes. See Figs. 

5.4 & 5.5 for further details.  
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Fig. 5.7. (A,B) Non-dimensionalized turbulent shear spectra (ϕ) using (ε3 / ν)1/4 as 

a function of non-dimensionalized wavenumber by Kolomogorov wavenumber (𝑘η). 

ε: turbulent kinetic energy dissipation rate, ν: kinematic viscosity. Raw spectra 

denoted by thin gray lines, averaged spectrum by thick black lines, and Nasmyth 

spectrum by red lines. (C,D) Variance-preserving forms of velocity spectra which are 

non-dimensionalized using (ε ν)1/2  as a function of non-dimensionalized 

wavenumber by Kolomogorov wavenumber. Area where averaged velocity spectrum 

is lower than the Nasmyth spectrum highlighted in light gray. (A,C) Data for sardine 

avoidance behavior include 16 spectra, and (B,D) data for feeding behavior include 2 

spectra.  
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5.4   Discussion 

5.4.1 Swimming behavior 

Turbulence was measured inside the sardine school displaying either avoidance or 

feeding behavior, but turbulence during cruising behavior was not measurable. Few 

studies have reported in situ swimming speed of sardines: 0.21 to 0.77 m s−1 from 

Hara (1987) and 0.67 to 1.59 m s−1 from Misund et al. (2003). Swimming speeds 

observed in the present study during 3 types of behavior were 𝑣avoidance =  1.08 ±

 0.11 m s−1, 𝑣feeding =  0.72 ±  0.09 m s−1, and 𝑣cruising =  0.26 ±  0.04 m s−1. All are 

within the range of the in situ observed swimming speeds shown in Hara (1987) and 

Misund et al. (2003). In the present study, the avoidance behavior shown against the 

TM9 and predator(s) was similar with regard to swimming speed and distance 

between the school and the instrument or predator. While there has been no 

quantitative study on sardines avoidance behavior against predators in the ocean, 

we speculate that the level of turbulence induced by sardines in the ocean is the 

same as that in this study. 

During feeding, Japanese sardines exhibit 3 types of behavior in the ocean: 

filter-feeding, particulate-feeding, and intermediate mode (Garrido & van der Lingen 

2014). Filter-feeding is characterized by fish holding their mouths open while 

swimming without visual detection and selection, and particulate-feeding is 

characterized by visual detection and selection of individual prey (Garrido & van der 

Lingen 2014). Sardine particulate-feed when prey size is larger than 1.23 mm (van 

der Lingen 1994). Since 2 mm diameter food pellets were fed to the sardines prior to 

the launching of Deployment 3, we suspect that they employed particulate-feeding 

behavior, given that it was not clear from the film footage which feeding behavior 

was employed. Garrido & van der Lingen (2014) note that Japanese sardines appear 

to frequently filter-feed in the ocean, swimming slower than during particulate-

feeding but faster than cruising speeds (Garrido et al. 2007). 

During cruising, it was not possible to directly measure turbulence induced 

by this behavior. Since slower swimming speed may result in lower turbulent kinetic 

energy production (Huntley & Zhou 2004; see ‘5.4.3 Dissipation rates’), the level of 

turbulence induced by cruising behavior is expected to be lower than the measured 

turbulence intensity, 2.3 × 10−4 W kg−1 on average. On the other hand, no difference 

in ε between avoidance and feeding behaviors was observed (Table 5.1). 

 

5.4.2 Background turbulence 

Although the background turbulence of 10−6 W kg−1 measured in the tank is possible 
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in the ocean, it occurs under limited situations, such as inside the surface mixed 

layer forced by winds (Oakey & Elliott 1982) and surface cooling (Shay & Gregg 

1986) or in shallow regions under strong tidal forcing (Kokubu et al. 2013) or island 

wakes in strong ocean current regions (Hasegawa et al. 2004). In the interior of the 

open ocean, away from the boundaries, values of ε vary from 10–10 to 10–7 W kg−1 

and are generally in the order of 10–9 to 10–8 W kg−1 (Thorpe 2005). Since turbulent 

kinetic energy, which is newly input by a forcing source (e.g. internal wave breaking, 

shear instability) into the water column, is integrated on (added to) background 

turbulent kinetic energy (Nikora 1999), ε of 10−4 W kg−1 acquired inside the sardine 

school may not be the net intensity of turbulence induced solely by the sardine school. 

However, since ε inside the sardine school was 2 orders of magnitude higher than 

the background, bias due to background turbulence was negligible (~1%) in this 

study. 

 

5.4.3 Dissipation rates 

The observed ε caused by the sardine school was 2.3 × 10–4 W kg−1 on average, which 

is among the largest values of past field studies (Hasegawa et al. 2004). Kunze et al. 

(2006) reported ε =  10−5 to 10−4 W kg−1  in krill aggregations in Saanich Inlet, 

Canada. On the other hand, Rousseau et al. (2010) noted ε =  1.4 ×  10−8 W kg−1 

with high acoustic backscatter intensity that was likely krill aggregations, in 

Saanich Inlet. Gregg & Horne (2009) related ε =  10−6 to 10−5 W kg−1 , with high 

acoustic backscatter intensity that was likely anchovy schools in Monterey Bay, USA. 

Lorke & Probst (2010) reported ε =  3 ×  10−9 to 1 × 10−8 W kg−1  based on fast 

response temperature sensor data in freshwater fish schools in Lake Constance, 

Germany. All the above studies used microstructure profilers similar to this study 

for measuring turbulence. Because the sardine school in this study displayed 

avoidance behavior against the microstructure profiler, it is possible that the results 

from the other studies might be due to avoidance behavior as well. 

According to Huntley & Zhou (2004), swimming organisms produce 

turbulence corresponding to ε =  10−5  W kg−1  regardless of body size (from 

zooplankton to whales) using the equation: 

 

εp =
𝑒𝑑

η
∙

1

ρ
∙

𝑛

𝑉
,                                                             (5.2) 

 

where εp (W kg−1) is the total rate of energy production by a group of animals, 𝑒𝑑 is 
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the rate of energy expenditure to overcome drag by an individual animal, η  is 

propulsive efficiency, ρ is density of seawater, and 𝑛 / 𝑉 is the number of animals 

per unit volume of seawater. The εp is equivalent to ε for swimming organisms, 

and 𝑒𝑑  and η are functions of swimming speeds. While Huntley & Zhou (2004) 

obtained εp = 10−5 W kg−1 based on only cruising speeds, we recalculated 𝑒𝑑 and η 

using the observed swimming speeds during avoidance behavior, 𝑣avoidance =  1.08 ±

 0.11 m s−1 (mean ± SD), and feeding behavior, 𝑣feeding =  0.72 ±  0.09 m s−1.  

𝑒𝑑 is shown as: 

 

𝑒𝑑 = 𝐷𝑣,                                                                 (5.3) 

 

where 𝐷 is the drag force and 𝑣 is swimming speed. 𝐷 is given as: 

 

𝐷 =  
1

2
ρ𝑣2𝑆𝑊𝐶𝐷,                                                           (5.4) 

 

where ρ is the density of seawater calculated from the international equation of 

state of seawater (UNESCO 1981), 𝑆𝑊 is the total wetted surface area, and 𝐶𝐷 is 

the drag coefficient. 𝑆𝑊 is approximated as 𝑆𝑊 = 2𝑊𝐿, where W is the average body 

width and 𝐿 is the average body length. 𝐶𝐷 is approximated as 𝐶𝐷 = 0.072 Re−0.2 

(Hoerner 1965). η is defined as a ratio of 𝑒𝑑  divided by the total rate of energy 

utilized by a single animal and approximated as (Weihs 1977, Wardle et al. 1996): 

 

η = 0.39 𝑣0.24.                                                            (5.5) 

 

The measured swimming speeds were 𝑣avoidance =  1.08 ±  0.11 m s−1  (mean ± 

standard deviation) for the avoidance behavior and 𝑣feeding =  0.72 ±  0.09 m s−1 for 

the feeding behavior. Assuming that the possible ranges of the swimming speeds are 

within one standard deviation, we obtain 𝑒𝑑 =  (1.9 to 3.3) ×  10−2 W  and η =

0.39 to 0.41 for the avoidance behavior, and 𝑒𝑑 =  (5.6 to 11.3) ×  10−3 W and η =

0.35 to 0.37 for the feeding behavior. 

Since we could not measure 𝑛 / 𝑉 from the video footage, we estimated it 

based on the following assumptions: (1) the distribution of individual sardines in the 

school displayed hexagonal close-packing (hcp) of equal spheres, and (2) the radius 

of the spheres was equal to the average body length 𝐿 = 0.173 𝑚 . The second 

assumption assumes that each sardine kept a distance of at least 1 body length from 
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its neighbors. Hcp is a concept that is common in crystallography and has been used 

for estimating animal distributions in the water (e.g. Mackie & Mills 1983). The 

volume of a cell 𝑉𝐶 is expressed as: 

 

𝑉𝐶 = 8√2𝑟3,                                                              (5.6) 

 

where 𝑟  is the radius of the spheres. The number of spheres in a cell is two, 

𝑛𝑠𝑝ℎ𝑒𝑟𝑒𝑠 =  2. The density of spheres 𝑛 / 𝑉𝑠𝑝ℎ𝑒𝑟𝑒𝑠 is shown as: 

 

𝑛 / 𝑉𝑠𝑝ℎ𝑒𝑟𝑒𝑠 =  
𝑛𝑠𝑝ℎ𝑒𝑟𝑒𝑠

𝑉𝐶
.                                                      (5.7) 

 

We take 𝑟 ~ 𝐿 = 0.173 m; thus, we obtain 𝑛 / 𝑉𝑠𝑝ℎ𝑒𝑟𝑒𝑠 =  34.1 spheres m−3. Assuming 

that each sphere corresponds to an individual sardine, we obtain 𝑛 / 𝑉 =

34.1 individuals m−3, which seemed reasonable after comparing it with the footage. 

Seawater density 1 / ρ in Eq. (5.2) is canceled since 𝑒𝑑 is a linear function of ρ. 

Assuming possible ranges of the swimming speeds within 1 SD, the total rates of 

energy production are εp avoidance =  (1.6 to 2.7) ×  10−3 W kg−1  for avoidance 

behavior and εp feeding =  (5.3 to 10.2) × 10−4 W kg−1  feeding behavior. Thus, the 

estimated values from Huntley & Zhou (2004) are an order of magnitude higher than 

the measured ε =  (0.8 to 5.2) × 10−4 W kg−1  in our experiment. Lorke & Probst 

(2010) also reported that the estimated values of Huntley & Zhou (2004) were higher 

than their measured turbulent kinetic energy dissipation rates. 

 

5.4.4 Spectrum shapes 

The spectra for avoidance and feeding behaviors showed deviations from the 

Nasmyth spectrum through all wavenumber ranges (Figs. 5.5 & 5.6). This suggests 

that sardines successively generated turbulent eddies and continuously modified the 

turbulence field, unlike physically induced eddies. Since energy containing scales in 

the ocean (e.g. thickness of surface mixed layer, internal wave height) are typically 

larger than the size of a microstructure profiler, the profilers can only measure eddy 

cascades and viscous dissipation processes in the ocean. On the other hand, the 

largest possible energy-containing eddies were formed at the scale similar to the 

sardine school size or the individual size (𝐿 = 0.173 m) in this experiment. Although 

the spectra of the background turbulence followed the Nasmyth spectrum (Fig. 5.4), 

the spectra from the avoidance behavior showed power declines at wavenumber 
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ranges lower than 𝐿−1 = 5.8 cpm (Fig. 5.5). This suggests that the energy-containing 

scale was the same as or smaller than 𝐿 = 0.173 m (Fig. 5.8A), since the kinetic 

energy of 3-D turbulent eddies cascades into smaller eddies (higher wavenumbers) 

(Nikora 1999). The power declines formed roughly 𝑘+1 slopes in the inertial sub-

range, consistent with Gregg & Horne (2009), and was similar to that found in the 

turbulence field inside the bottom boundary layer where turbulent eddies are 

successively generated as a result of flow instability (Nikora 1999). 

The spectra from the feeding behavior did not show power declines at 

wavenumber ranges lower than 𝐿−1 = 5.8 cpm (Fig. 5.6). Although only a single 

turbulence microstructure profile was made during feeding behavior, spectral shapes 

obtained simultaneously by 2 turbulent shear probes indicate that there was no 

power decline even in the inertial subrange. This suggests that the energy-

containing scale was the same as or larger than the school thickness of ~1 m (Fig. 

5.8B, Table 5.1). On the other hand, there was a discrepancy between the spectra 

(Fig. 5.6A,B), which clearly shows that the flow field was not isotropic. This 

anisotropic turbulence may be caused by the anisotropic swimming pattern produced 

by the feeding school. 

Catton et al. (2011) conducted a small tank experiment to study fluid motion 

around swimming krill using laser sheet illumination. They reported that krill 

aggregations actively transferred water parcels down to successive group members, 

consequently disturbing the water column at a scale of aggregations. Although fluid 

motions around krill and sardines are different, we speculate that the sardines’ 

synchronous long-lasting group motions generate turbulent eddies larger than their 

individual body size (Fig. 5.8B). 
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Fig. 5.8. Relationship between fish school behavior and size of school-generated 

turbulent eddy. (A) Turbulent eddies generated by a school displaying a quick and 

non-continuous motion, such as avoidance behavior, have the same size as individual 

body size. (B) Turbulent eddies generated by a school displaying a fast and long-

lasting motion, such as particulate-feeding, have the same size as the school. 
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5.4.5 Mixing efficiency and eddy diffusivity 

Based on results from the nearly homogeneous tank experiment, which suggest that 

sardines are able to generate eddies as large as their school size and as small as their 

body size, and assuming that these results are applicable in the stratified ocean, we 

estimate plausible values of the efficiency factor Γ and vertical eddy diffusivity of 

density 𝐾ρ in the ocean, where Γ is a ratio between buoyancy destruction rate and 

turbulent kinetic energy dissipation rate, and is generally upper bounded by Γ = 0.2 

(Osborn 1980). Visser (2007) pointed out that when Γ is low, turbulence scarcely 

contributes to mixing even if turbulent kinetic energy dissipation rates are high. He 

estimated that Γ  does not exceed 0.01, when turbulence is generated by an 

individual small swimmer (~1 cm). However, his assumption does not take into 

account the effects of group motions, which can be effective as indicated by Catton 

et al. (2011) and this study. Following the model by Osborn (1980), 𝐾ρ is expressed 

as: 

 

𝐾ρ =  Γ
ε

𝑁2,                                                                (5.8) 

 

where 𝑁 is the buoyancy frequency. Smyth et al. (2001) showed that Γ may be 

approximated as: 

 

Γ ~ 0.33 (
𝐿𝑇

𝐿𝑂
)

0.63
,                                                          (5.9) 

 

where 𝐿𝑇  is the Thorpe scale, representing an overturning scale, and 𝐿𝑂  is the 

Ozmidov scale, 𝐿𝑂 =  (ε / 𝑁3)1/2 , which is the largest turbulent eddy size in a 

stratified water column. Measured ε caused by the sardine school varied between 

8.2 × 10–5 and 5.2 × 10–4 W kg−1. Generally, 𝑁 =  1 ×  10−2 to 3 ×  10−2 s−1 in the 

stratified ocean (Thorpe 2007). Based on our results, the overturning scale by 

sardines is as small as their individual body size, and as large as their school 

thickness (Fig. 5.8). First, we assume that the overturning scale is similar to the 

thickness of the school, 𝐿𝑇 ~ 1 m (Fig. 5.8B). Using all ranges of ε and 𝑁, we obtain 

Γ = 0.05 to 0.23  and 𝐾ρ =  2.1 ×  10−2 to 2.4 × 10−1 m2 s−1 . The estimated Γ  can 

reach Γ =  0.2, as in Osborn (1980). On the other hand, when the overturning scale 

is assumed to be individual body size 𝐿𝑇 ~ 𝐿 = 0.173 m (Fig. 5.8A), we obtain Γ =

0.02 to 0.08  and 𝐾ρ =  7.0 ×  10−3 to 7.9 ×  10−2 m2 s−1 . The estimated Γ  is in a 

range consistent with Visser (2007). Regardless of the assumptions of 𝐿𝑇 , the 
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estimated 𝐾ρ  range is noticeably high when compared with 𝐾ρ =

 10−4 to 10−3 m2 s−1 measured in a highly tidally mixed channel (e.g. Kokubu et al. 

2013). These rough estimates of mixing efficiency and diffusivities are based on the 

assumption that the sardine school can generate large energy-containing eddies in a 

stratified ocean, the same as that in the nearly homogeneous tank experiment. Note, 

however, that because stratification can support internal waves and suppress 

turbulent eddies, the scale of the eddies could be smaller than that found in this 

study. 

 

5.4.6 Implications of large-scale mixing 

While the results from this study contain uncertainty due to the small number of 

samples, we provide a rough estimate of sardine impact on ocean mixing at scales of 

local seas. We consider a case off the west coast of the United States where mixing 

processes and sardine biomass are well studied. We assume that the results from our 

study are applicable to Pacific sardine Sardinops sagax, whose characteristics such 

as body shape, body length, and wet weight, are similar to S. melanostictus 

(Whitehead 1985). The estimated biomass of S. sagax off the west coast of the USA 

is roughly 1 million t, where the area under consideration is 400 000 km2, and 

standard length and wet weight of the sardine are 0.20 m and 0.10 kg on average 

(Hill et al. 2014). Based on average wet weight and estimated biomass, the 

population abundance is roughly 1010 individuals. We now assume that all the 

individuals form schools whose dimensions are roughly 100 to 300 m2 in area and 5 

to 10 m in height for each school (Castillo & Robotham 2004), and that the 

distribution of the individuals form hexagonal close-packing of equal spheres, whose 

radius is equal to the average body length 𝑟 ~ 0.20 m (see Eqs. 5.A4 & 5.A5 in ‘5.6.2 

Estimation of 𝑛 / 𝑉’): the population density is approximately 22.1 ind. m−3. Dividing 

population abundance by population density, the total volume of the schools is 4.5 × 

108 m3, which can be converted to mass by multi plying typical seawater density in 

the upper 100 m in the ocean, 1028 kg m−3 (Thorpe 2005). Thus, the total water mass 

that the schools occupy is 4.7 × 1011 kg. Multiplying the total water mass by turbulent 

kinetic energy dissipation rates with a range of ε ~ 10−5 to 10−4 W kg−1, where we 

use a lower limit as reported by Gregg & Horne (2009) and an upper limit as 

measured in this study, the total kinetic energy dissipation is 4.7 to 47.0 MW. This 

estimation is comparable with or higher than the kinetic energy dissipation of 8.3 

MW generated by internal wave breaking in the Monterey Canyon (Jachec et al. 

2006), where diapycnal turbulent mixing actively occurs (Kunze et al. 2002). 
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Therefore, biomixing may not be negligible in certain parts of the world ocean. 

 

5.5   Conclusion 

We successfully collected microstructure data from inside a school of Japanese 

sardines Sardinops melanostictus in an aquarium tank where we were able to ‘watch’ 

sequences of biomixing. The average turbulent kinetic energy dissipation rate inside 

the school was ε = 2.3 × 10−4 W kg−1 , while ε = 6.7 × 10−6 W kg−1  was the 

average background value outside the school. Our experiment using video cameras 

first revealed that the fishes exhibited avoidance behavior to the approaching 

microstructure profiler, suggesting that it is very challenging to measure true 

biologically induced turbulence without any artificial influences. Most of the 

turbulence measurements inside the sardine school were the result of the fish 

undergoing short bursts of speed in an effort to avoid the oncoming profiler. On the 

other hand, the school exhibited relatively fast and long-lasting synchronized 

swimming when they were being fed. Here, their swimming behavior was dominated 

by feeding motions, whereas the school manifested avoidance behavior in regard to 

the profiler, keeping about 1 m from the instrument. Turbulent shear spectra for the 

avoidance behavior showed a power decline in the lower (< 𝐿−1) wavenumber ranges 

against the Nasmyth spectrum, consistent with Gregg & Horne (2009), while spectra 

for the feeding behavior exhibited no power decline, similar to physically induced 

turbulence. For the avoidance case, the largest scale of turbulent kinetic energy that 

the sardine could produce was roughly its individual body size 𝐿, consistent with 

Visser (2007). On the other hand, the largest scale was at least 1 m, as large as the 

sardine school thickness of approximately 1 m, for the feeding case. However, at the 

level of turbulent kinetic energy dissipation rates, there was no noticeable difference 

between avoidance behavior and feeding behavior. Although the results from this 

study contain some uncertainty due to the small number of deployments, the data 

clearly show that fish schools are able to generate turbulent eddies as large as their 

school thickness and cause efficient turbulent mixing similar to naturally occurring 

turbulence. 
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Chapter 6 

 

Conclusion and outlook 

 

6.1   Conclusion 

The field data obtained from the cabled observatory (OCEANS) in Izu-Oshima Island 

revealed the evidence that zooplankton avoid elevated currents and subsequent 

turbulence. The plankton camera (CPICS) detected 17 zooplankton taxa, in which 9 

taxa appeared only during night time (strong migrator), 6 taxa appeared at both 

during day time and night time but preferred night time (moderate migrator). The 

last 2 taxa were non-motile. The strong migrators were mostly composed of demersal 

zooplankton, such as Ostracoda and Mysida. The moderate migrators were mostly 

composed of pelagic zooplankton, such as Calanoida and Larvacea. The acoustic 

backscatter signals obtained from Aquadopp were positively correlated with the 

migrator abundance (r2 = 0.39 to 0.50, p<0.01; depending on the layer). The optic 

backscatter signals measured by a turbidity sensor also showed positive correlation 

with the migrator abundance (r2 = 0.79, p<0.01). Abundance of the strong migrator 

showed negative correlation with wave orbital velocity (r2 = 0.32, p<0.01), current 

velocity (r2 = 0.20, p<0.01), and near-bed turbulence (r2 = 0.10, p<0.01). The negative 

correlations against the physical disturbances were found in both the acoustic and 

the optic backscatters during night time in summer and fall. Day-time abundance of 

the moderate migrator also showed negative correlation with wave orbital velocity 

(r2 = 0.08, p<0.01), where the low correlation may be due to the low number of the 

samples. Since the strong migrator (about 70% of zooplankton) was mostly demersal 

zooplankton, it was suggested that near-bed hydrodynamic disturbances prevented 

their migration from the bottom and consequently suppressed their DVM.  

While the zooplankton avoidance against ambient flow disturbance was 

clearly shown by the filed data, additional field observations were carried out using 
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only acoustic instruments. The purposes of the experiments were 1) to confirm 

reproducibility of the avoidance phenomenon and 2) to eliminate a potential bias due 

to positive phototaxis of zooplankton against visible light from optic sensors (e.g. the 

turbidity/fluorescence sensor, the plankton camera). Two ADCP moorings data sets 

were used in this study: one near Izu-Oshima Island and the other off Eilat, Israel. 

Both data sets consistently showed that the acoustic backscatter intensity increased 

during night time. Only signals from zooplankton were extracted by using a newly 

developed special filter which utilized the differences among backscatter intensities 

from each beam. The acoustic backscatter signals from the both sites were 

significantly reduced when current velocity increased. The trends found at the both 

sites were surprisingly similar, while the two sites were physically separated and 

had very different environments. This consistency indicates that the generality of 

zooplankton avoidance against increased current velocity.  

The influence of zooplankton aggregation due to positive phototaxis on the 

turbidity data was confirmed by the laboratory tank experiments. The experiments 

showed that zooplankton individuals were attracted by visible light emitted from a 

fluorescence sensor, and the optic backscatter signals from zooplankton individuals 

appeared as elevated turbidity. When currents were artificially generated in the tank 

individuals actively aggregated toward accumulated around the light source were 

flushed away. The turbidity data were negatively correlated with the current velocity 

(r2 = 0.40, p<0.01). Hence, the negative correlations found by the cabled observatory 

may be simply explained by the phototactic behavior. However, given the results 

from the ADCP filed data, the suppression of zooplankton DVM due to ambient 

currents and turbulence should real.  

Turbulence generated from sardine school was confirmed by a large tank 

experiment. Turbulence kinetic energy dissipation rates were significantly increased 

in the sardine school (2.3x10-4 W kg-1 on average), where the background dissipation 

rate in the tank was 6.7x10-6 W kg-1 on average. When the sardines showed a quick 

and non-continuous motion to avoid the instrument, the turbulent shear spectra had 

a power decline at the low wavenumbers (large scales), suggesting the school did not 

input kinetic energy in the large scales. On the other hand, when the sardines 

showed a fast and long-lasting motion for feeding, the turbulent shear spectra 

followed the Nasmyth empirical spectra, suggesting the school input kinetic energy 

in the scales larger than the individual sardine. The results suggest that biomixing 

by fish school potentially contribute to the ocean mixing.  

There have never been comprehensive discussions on the interactions 



109 

 

between animals and flows in the ocean, while each phenomenon (e.g. biomixing, 

turbulence avoidance of zooplankton) has been studied separately. Based on the 

results from this study and previous studies, the interactions are here summarized 

(Fig. 6.1). Large animals, such as pelagic fishes, generate turbulent eddies during 

their biological activities (swimming, feeding, mating) (Fig. 6.1). While the 

disturbance by the animals have been recognized as a negligible source for the ocean 

mixing (Visser 2007), this study first time suggested that a fish school can generate 

eddies large enough to induce significant mixing (Chapter 5). The fish-generated 

turbulence may cause non-trivial mixing in the coastal regions where their 

population is generally large (Fig. 6.1).  

Microscale turbulence generated by both biological and physical processes is 

always accompanied by microscale water deformation that is detectable by 

zooplankton (Kiørboe 2008). When zooplankton sense water deformations, they 

generally show avoidance reactions (Chapters 2 and 3) (Seuront et al. 2004, Gallager 

et al. 2004, Kiørboe 2008). High levels of ambient turbulence diminish the 

probability of the reproduction of an individual zooplankton (Visser et al. 2009). 

Hence, the avoidance is always reasonable even if the individual zooplankton cannot 

distinguish whether turbulence was induced by predator (fish) or not (Fig. 6.1). This 

study first time suggested that this individual-based strategy (avoidance) by 

zooplankton changes their spatial distribution and consequently modifies their DVM 

(Chapters 2 and 3). On the other hand, a recent study demonstrated that vertical 

migrations by zooplankton aggregation generate turbulence and mix up the water 

column (Houghton et al. 2018).  
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Fig. 6.1. A schematic summarizing the interactions between marine animals 

and physical phenomena, based on the results from this study (red arrows) and 

previous studies (black arrows).  
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6.2   Outlook 

A newly developed cabled observatory with a novel plankton camera was used in this 

study, and the observed data provided new knowledges about the interactions 

between marine animals and environmental flow fields. Turbidity/fluorescence 

sensor is widespread and used for the purposes of coastal engineering and 

environmental assessment; the biological effect on turbidity data will be an 

important technical issue. Mooring systems and cabled observatories are important 

technics to observe ocean ecology and surrounding environment simultaneously for 

long time and find new biological phenomena as presented in Chapter 2 and 3. To 

observe natural biological conditions, we need to devise how to use optical sensors 

(fluorescence sensors, underwater cameras) in the ocean; for example, use infrared 

light which is not visible by most marine animals, or measure fluorescence and 

turbidity after seawater suction inside instrument’s body to hide light source from 

zooplankton. Quantifying biomixing by fish school as well as zooplankton 

aggregation would be important in understanding coastal physical processes. As 

shown in Chapter 5, marine animals would change their motion/behavior in response 

to instrument itself. Hence, fluid motions around animal bodies should be measured 

remotely, without disturbing their motion. Particle image velocimetry (PIV) 

successfully measured fluid motions around zooplankton swarm in previous studies 

but has not been used for fish school in the context of biomixing. Flexible uses of 

conventional instruments are expected to understand interactions between fluid and 

marine animals.   
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