TUMSAT-OACIS Repository - Tokyo

University of Marine Science and Technology

(東京海洋大学)

ラプラシアンから楕円型作用素へ

メタデータ	言語: jpn
	出版者:
	公開日: 2018-12-10
	キーワード (Ja):
	キーワード (En):
	作成者: 坪井, 堅二
	メールアドレス:
	所属:
URL	https://oacis.repo.nii.ac.jp/records/1613

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

ラプラシアンから楕円型作用素へ

坪井堅二

(東京海洋大学)

(4年生)

服部先生と砂田先生の指導の下で次の本を読んだ.

Berger-Gauduchuon-Mazet, Le Spectre d'une variété Riemannienne, Lect Notes Math 194

(修士)

足立先生の指導の下で次の論文を読んだ.

Atiyah-Singer,
The index of elliptic operators I~V
Ann. of Math

Definition

Let (M,g) be an oriented closed Riemannian manifold.

$$(\omega, \eta) = \int_{M} \omega \wedge *\eta \quad \text{for } \omega, \, \eta \in \Omega^{p} \, (: p \text{-forms})$$

 d^* is the formal adjoint of d defined by

$$(d\omega, \eta) = (\omega, d^*\eta)$$
.

Then the Laplacian \triangle is defined by

$$\Delta = d^*d : C^{\infty}(M) = \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d^*} C^{\infty}(M).$$
$$(\Delta = (d+d^*)^*(d+d^*) = d^*d + dd^* : \Omega^p \to \Omega^p)$$

Definition

 λ is called a spectrum of (M,g) iff

$$\exists f \neq 0 \in C^{\infty}(M), \ \triangle f = \lambda f.$$

Spectra are real non-negative discrete numbers.

Example Spectra of (S^n, g_0) are

$$\lambda_{\ell} = \ell(n + \ell - 1) \ (\ell \ge 0) \text{ and}$$

$$m_{\ell} = \text{multiplicity of } \lambda_{\ell}$$

$$= \frac{(n + \ell - 2)!}{\ell!(n - 1)!} (n + 2\ell - 1)$$

(Sketch of the proof)

Let \triangle^R , \triangle^S be the Laplacian of (\mathbf{R}^{n+1}, g_0) , (S^n, g_0) respectively.

$$P_{\ell} = \{\text{homogeneous polynomials on } \mathbf{R}^{n+1} \text{ of degree } \ell \}$$

$$\supset H_{\ell} = \{ f \in P_{\ell} \mid \Delta^{R} f = 0 \} ,$$

$$P_{\ell}^{S} = \{ f|_{S^{n}} \in C^{\infty}(S^{n}) \mid f \in P_{\ell} \}$$

$$\supset H_{\ell}^{S} = \{ f|_{S^{n}} \in C^{\infty}(S^{n}) \mid f \in H_{\ell} \} .$$

Then direct calculation shows that $\Delta^S f = \lambda_\ell f$ for $f \in H_\ell^S$ $\left(\dim H_\ell^S = m_\ell\right)$ and (f,g) = 0 if $\Delta^S f = \lambda f$, $\Delta^S g = \mu g$ $(\lambda \neq \mu)$. Here $V = \bigoplus_{\ell \geq 0} H_\ell^S$ coincides with $\bigoplus_{\ell \geq 0} P_\ell^S$ and V is shown to be dense in $C^\infty(S^n)$ by using a theorem of Stone-Weierstrass. Hence any eigenfunction of Δ^S is contained in V.

Stationary state of the electron in a hydrogen

$$\psi(t, r, \theta, \phi) = e^{-iEt/\hbar} \varphi(r, \theta, \phi) \Longrightarrow |\psi|^2 = |\varphi(r, \theta, \phi)|^2$$

 $\varphi = \varphi(r, \theta, \phi)$ is a solution of the Schrödinger equation

$$\left\{\frac{\hbar^2}{2m}\Delta^R + V(r)\right\}\varphi = E\varphi \cdots \textcircled{1}$$

where $V(r) = -\frac{\varepsilon}{r}$ is the Coulomb potential.

Set
$$\varphi(r, \theta, \phi) = R(r)Y(\theta, \phi)$$
. Then

where
$$\triangle^S = -\left(\frac{\partial^2}{\partial \theta^2} + \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}\right)$$
 is the Laplacian for (S^2, g_0) .

Then R(r) must satisfy the following condition:

$$\int_{\mathbf{R}^3} V(r) |\psi|^2 < \infty \iff \int_0^\infty rR(r)^2 dr < \infty \dots \oplus$$

②
$$\longrightarrow \lambda = \lambda_{\ell} = \ell(\ell+1) \ (\ell \in \mathbb{N} \cup \{0\}) \ \cdots$$
 ⑤

(multiplicity of $\lambda_{\ell} = 2\ell + 1$)

$$3, 4, 5 \Longrightarrow \begin{cases} R(r) = Cr^{\ell}e^{-ar} \times \text{poly(r)} \\ E = E_{\ell} = -\frac{m\varepsilon^{2}}{2\hbar^{2}} \frac{1}{n^{2}} \quad (n \ge \ell + 1) \end{cases}$$

The difference $E_n - E_{\ell+1}$ of the energy leads to the spectra in the sunlight.

For example, the difference $E_n - E_2$ $(n \ge 3)$ leads to the Balmer series in the visible rays of the sun.

Notice If the solution R(r) for a spectrum λ of (S^2, g_0) is smooth at r = 0, then λ is equal to $\ell(\ell+1)$ for some nonnegative integer ℓ . (Because)

Since λ is nonnegative, there uniquely exists a nonnegative real number η such that $\lambda = \eta(\eta + 1)$.

Then the solution of ③, ④ is expressed as

$$R(r) = Cr^{\eta}e^{-ar} \times \text{poly}(r)$$
,

which is smooth at r = 0 if and only if η is a nonnegative integer. \square

Equivariant determinant of elliptic operators

<u>Definition</u> For a compact Lie group G and a G-equivariant elliptic operator D, a homomorphism $I_D: G \to \mathbf{R}/\mathbf{Z}$ is defined by $I_D(g) = \frac{1}{2\pi\sqrt{-1}} \log \frac{\det(g|\ker D)}{\det(g|\operatorname{coker} D)}.$

Formula If $g \in G$ has an order p, then the next equality holds.

$$I_D(g) \equiv \frac{p-1}{2p} \text{Index}(D) - \frac{1}{p} \sum_{k=1}^{p-1} \frac{1}{1-\xi_p^{-k}} \text{Index}(D, g^k) \text{ mod.} \mathbf{Z}$$

where $\xi_p = e^{2\pi\sqrt{-1}/p}$ and

$$Index(D, g) = Tr(g|\ker D) - Tr(g|\operatorname{coker} D),$$
$$Index(D) = Index(D, 1) = \dim \ker D - \dim \operatorname{coker} D$$

Properties

- (1) I_D is an additive homomorphism, and hence the the following equalities hold: $I_D(g^z) = zI_D(g) , I_D(g) = 0 \text{ for } g \in [G, G] .$
- (2) $I_D(g)$ is calculated from the fixed point data by using the Atiyah-Singer's theorem if g is periodic.

Using the properties above, we can use I_D as an obstruction to the existense of G-actions.

Example Let p be an odd prime number and r a natural number defined by

$$r = r_p(k) = kp + \frac{p-1}{2} \quad \left(k \in \mathbf{Z} , \ 0 \le k \le \frac{(p-1)(p-2)}{2p}\right).$$

Then it follows from a result of Glover-Mislin (1987) that

1. $\mathbf{Z}_p \subset \Gamma^r$ $\left(\begin{array}{c} \text{namely, the compact Riemann surface } \Sigma^r \text{ of genus} \\ r = r_p(k) \text{ admits an action of the cyclic group } \mathbf{Z}_p. \end{array}\right)$

2. Fixed point set of $g \in \mathbf{Z}_p$ consists of 3 points.

Suppose that the fixed point set of g consists of q_1 , q_2 , q_3 and that $g \cdot v = \xi_p^{\tau_i} v$ for $v \in T_{q_i} \Sigma^r$.

Then, the value $I_{D_{\ell}}(g)$ for the $\otimes^{\ell} T\Sigma^{r}$ -valued Dolbeault operator D_{ℓ} on Σ^{r} is calculated as follows:

$$12pI_{D_{\ell}}(g^{z}) \equiv F_{p,r}(z, \ell; \tau_{1}, \tau_{2}, \tau_{3}) \mod .12p$$
for $1 \leq z \leq p-1$ where
$$F_{p,r}(z, \ell; \tau_{1}, \tau_{2}, \tau_{3})$$

$$= 6(p-1)(1-r)(2\ell+1)$$

$$= 5(p-1)(1-r)(2e+1)$$

$$+ \sum_{i=1}^{3} \begin{cases} z\tau_{i}(p-1)(7p-11) \\ \left[\frac{(\ell+p+1)z\tau_{i}}{p}\right] \\ +6 \sum_{j=\left[\frac{(\ell+1)z\tau_{i}}{p}\right]+1} f_{p}\left(\left[\frac{jp-1}{z\tau_{i}}\right] - \ell - 1\right) \end{cases}$$

$$(f_{p}(x) = x^{2} - (p-2)x - (p-1)^{2})$$

For a prime number p, we call a finite group G a C_p group if the order of the commutator subgroup [G, G] is a multiple of p. Note that

- 1. C_p group is a non-abelian finite group
- 2. Any non-abelian finite group is a C_p group for some prime number p
- 3. $[C_p, C_p]$ contains an elment g of order p (Cauchy)

Assume that a C_p group G acts on Σ^r for $r = r_p(k)$. Then the property 3 above implies the existence of natural numbers (τ_1, τ_2, τ_3) $(1 \le \tau_1, \tau_2, \tau_3 \le p - 1)$ which satisfy the following condition:

$$F_{p,r}(z,\ell;\tau_1,\tau_2,\tau_3) \equiv 0 \mod .12p$$

$$\text{for } 1 \le z \le p-1, \ 0 \le \ell \le p-1.$$

$$(\iff I_{D_{\ell}}(g^z) = zI_{D_{\ell}}(g) = 0)$$

But direct computation using a computer shows that there does not exist such (τ_1, τ_2, τ_3) when p = 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89.

This result implies that any C_p group can not act on Σ^r for $r = r_p(k)$ if p is in the list above.

For example, C_p group can not act on Σ^r when

$$(p,r) = (5,2), (5,7),$$

 $(p,r) = (89,44+89k) (0 \le k \le 43).$

Remark Let D_{2p} be the dihedral group of order 2p. Then Bujalance-Cirre-Gamboa-Gromadzki (2003) shows that $\min\{r \mid D_{2p} \subset \Gamma^r\} = p - 1$. For example, $D_{2.5} \subset \Gamma^4$, $D_{2.89} \subset \Gamma^{88}$