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Abstract 

 

A structure designed and constructed for decreasing wave height is usually 

called breakwater in coastal engineering. Breakwaters are important structures 

to create appropriate environment for nearshore. Submerged plate structures, 

permeable structures usually supported by steal piles, are widely proposed as 

breakwater. Submerged horizontal-plate structures are believed to have some 

good features and performance in harsh natural conditions with harmony to 

surroundings, reasonable construction cost by fewer maintenances and shorter 

construction periods; practical experiences show that submerged horizontal-

plates are quite effective in shoreline restoration. Meanwhile, submerged 

inclined-plate breakwaters structure inherit features from horizontal ones, and 

can be adopted in many fishing ports to meet the variation of tide. While 

compared to a conventional breakwater depending on the gravity as a solid 

structure, a submerged inclined-plate breakwater is limited to some extent on 

wave control performance to serve as a predominant prior option. 

The motivation behind the present research was to enhance the performance 

of inclined-plate breakwater for wave control, and stages of work were carried 

out to accomplishment of the objective.  

Specifically, wave deformation over the inclined-plate breakwater was 

evaluated based on velocity potential theory; wave deformation considering 

wave breaking over inclined-plate breakwater was investigated; an 

improvement scheme of inclined-plate breakwater for better wave control 

performance was purposed and tested. For the first stage of objective, a step-like 
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approximation method was developed to evaluate the reflection and 

transmission coefficients of a submerged inclined-plate breakwater; in the 

analytical model, the inclined-plate was assumed to comprise a series of small 

horizontal plates in different water depth, and each small horizontal plate 

region can be resolved by utilizing eigenfunction matching method (Ijima, T., et 

al., 1970) to analyze horizontal plate breakwater. Then a wave flume experiment 

with a physical model was conducted to investigate wave control performance 

with the consideration of wave breaking; wave energy dissipation coefficient in 

different breakwater configurations and wave conditions was evaluated. An 

improvement scheme for wave control with consideration of roughness and 

porosity was tested and its main influencing factors was studied. 

A comparison between the analytical model results and former experimental 

results (Aoyama, T., et al., 1988) indicates that wave breaking at shallow 

submergence is a significant factor for water wave. It is the reason that the 

shallow submerged-plate plays a critical role on wave breaking. It is found from 

the experiment that wave steepness is another crucial factor for wave control. 

The comparison also shows the inclined-plate breakwater should be quite long 

(usually 0.25 times of wave length, which is 20~30 meters long) if this 

breakwater is as effective as the conventional breakwater. The consequent aim 

is to improve the performance of breakwater focusing on the plate roughness 

and the plate porosity by adding serrated blocks and making slot gaps on the 

plate. A wave flume experiment is conducted to measure wave height in different 

breakwater configuration and wave conditions, and then to calculate the 

reflection, transmission and wave energy dissipation coefficients.  

Discussion starts with wave breaking analysis over the plate. Higher wave 

is easier to break over the plate; for the plate with roughness, wave breaking is 

earlier than that when plate is smooth. It is because the cubes on the plate 

disturb flow along plate direction which release more wave energy; for plate with 

slots, flow exchanges easier than solid plate both vertically and horizontally. On 

the contrary, wave breaks easily on solid plate due to continuous obstruction.  
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Chapter 1  

Introduction 

 

1.1 General Introduction to Breakwater 

 

A structure designed and constructed for decreasing wave height are usually 

called breakwaters in coastal engineering. Breakwaters are important 

constructions to create appropriate environment for nearshore zones in harbors 

or to protect shorelines.  

Due to the increasing demands from land to nearshore, offshore and ocean 

development during centuries, breakwater had constantly evolved fast at a 

single glance. It was believed that breakwater had a long history in human 

civilization, in the period of Wuyue, which was an independent coastal kingdom 

founded during the Five Dynasties and Ten Kingdoms (907–960) of Chinese 

history, overhaul the seawall and breakwater is one of its important national 

policies; from the gleaned information, the first breakwater ever constructed in 

the United State is the Delaware Breakwater near Cape Henlopen, Delaware, 

which was constructed from 1828 to 1869 by rubbles stacking randomly with 

5276 foot long, 43.5 foot high from the sea bottom, 1 on 3 sea side slop and its 

cross section shows below in Figure 1-1 (Alonzo, 1971).  

Concrete blocks met more favors than rock-mound due to harsh wave 

conditions. To improve the stability of rock mound breakwater, concrete blocks 

began to protect the surface of breakwater with a steeper slope, which was 1 on 
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2. A secondary armor of rocks was laid between breakwater core and concrete 

blocks, which is usually constructed in where natural rock is insufficient or wave 

height is large. An example of concrete block on rock mound breakwater is 

illustrated in Figure 1-2 (Alonzo, 1971) which shows the breakwater at Naval 

Air Station, Coco Solo in Panama Canal. 

 

 

Figure 1-1 First rock-mound breakwater constructed in the U.S. 

 

 

Figure 1-2 Cross section through concrete block armored breakwater. 
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Figure 1-3 Cross section through tetrapod armored breakwater.  

 

The irregular concrete unit armor has the advantage over standard shape 

concrete blocks in permitting steeper slopes and lighter weight, which improve 

the stability of concrete block armored breakwater, and varieties of irregular 

shaped concrete armor units were designed and implemented. In 1955, the main 

breakwater at Safi was extended with utilizing 25-ton tetrapods on 1 on 1 slope 

of rock mound breakwater on sea side as shown in Figure 1-3 (Alonzo, 1971). 

Breakwater with steeper slope gradually extended dual functions for the 

sake of navigation and mooring to load and unload cargos. And then developed 

concrete caissons which reducing construction period with high structural 

stability and minimal maintenance cost. 

The story for conventional breakwaters tells a rough route map of human 

exploration activities from terrestrial to deeper oceanic field and the evolution 

of the breakwaters. While with so many challenges facing in offshore which sea 

water in regions exchange slow, hard coastal structures change dynamical 

environmental boundary conditions and seascape is hard to accessible that a 

submerged plate breakwater gives an alternative solution. From this motivation, 

it was interesting to estimate some new alternative type breakwater concern on 

both engineering and environmental issues, which is done in the next sub-

sections.  
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1.2 Submerged Inclined-plate Breakwater 

 

Submerged plate structures, permeable structures from sea side to lee side 

direction which usually comprise of an impermeable plate supported by steal 

piles are widely proposed as a promising type of breakwaters in offshore zone.  

Submerged horizontal-plate structures are believed to have some good 

features and performance in harsh natural conditions with harmony to 

surroundings, reasonable construction cost due to free maintenance and its 

short construction period; practical experiences show that submerged horizontal 

plates are quite effective in fishing banking and shoreline restoration. In 1990s 

Nippon Steel Corporation developed a type of breakwater, an H-shaped slit plate 

jacket type breakwater which was called CALMOS, with the Public Works 

Research Institute of the Ministry of Construction Company for Kanbara Beach 

under the jurisdiction of the Japan Ministry of Construction. 

 

 

Figure 1-4 Sketch of submerged inclined-plate breakwater in offshore. 
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Submerged inclined-plate breakwater structure inherits features from 

horizontal breakwater, and be adopted in many sites to meet the fluctuation of 

tide variation. Due to the tidal change in realize situation, a fixed to bottom 

submerged inclined plate breakwater cannot ensure to work just beneath the 

water surface constantly. While some engineering examples which had 

completed or being constructed can give some perspective sights to discuss. As 

introduced before, Nippon Steel Corporation also developed a sloped-plate type 

breakwater, called the PSR which was built at the west wharf of Nippon Steel’s 

Kimitsu Works. A breakwater constructed at Yobito Fishery Harbor in Hokkaido 

by using the PSR technique considered environmental condition of fishery 

habitat conservation, soft ground and tranquility of waterway. Researches 

(Kimura et al., 1991; Okubo et al., 1994; Aoyama et al., 1997) showed submerged 

inclined plate breakwater worked with additional functions which are 

significant on coastal sand beach restoration, harbor and waterway protection 

and fishery resource recovery bank.  
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1.3 Literature Review 

 

The first research (Ijima et al., 1970) in Japan studied the transition and 

reflection coefficients of fixed surface plate and double horizontal plates with 

impermeable material between plates by integrate series of potential velocity 

equations on the plate boundaries. This research suggested that the longer plate 

obstruct or shorter wave fluctuate the more flux energy will dissipate in the 

model. 

It is also worth mentioning one of the following study (Yu, 2002) did not 

appreciate plate inclination as it is not clear how validity range; the assumed 

reason is that the submerged ratio is fixed to 0.3, which is not effective for wave 

control when regard plate as breakwater. He reviewed historical developments 

of submerged horizontal plate for offshore wave control and proposed his 

understanding on mechanism which plate divides flow into free surface and 

pressure flow to different the phase velocity; Wave motion over submerged plate 

is equivalent to propagating over a bottom seated block.; analytical, numerical 

and semi-empirical methods had compared; known results of kinds numerical 

and experimental are summarized in detail; he also gave discussions on some 

prospective researches. 

However, results of physical experiments (Rao et al., 2009; Yagci et al., 2014) 

reveals conclusions of wave transmission characteristics over a submerged plate 

breakwater. The plate oriented at an angle is more effective when the ratio of 

submergence is less; the transmission coefficient of submerged inclined plate 

varies significantly along the increasing of inclination; the energy dissipation 

performance of plate is increased with the inclination angle, since it is well 

known that wave reflection would certainly increase as the inclination angle 

increases over a certain value; inclined inclination reveals better performance 

on transmission than horizontal plate. 
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Kinds of methods are also researched in plate type wave generation. A 

numerical method was employed (Raichlen and Lee, 1978) for determining the 

characteristics of waves generated by a hinged inclined-plate wave generator 

operating in a constant depth channel.  A semi-analytical method discussed  (Wu, 

1988) for the same purpose claims simpler, more flexible than that numerical 

method, and this method is in good agreement with laboratory data. Wave 

control, somehow, reverse to wave generation. Methods are also surveyed 

comprehensively for inclined-plate wave control. A hyper singular-integral 

equation formulation of the problem is obtained (Midya et al., 2001) by an 

appropriate use of Green’s Integral Theorem followed by utilization of boundary 

condition on the plate. Researches inherit this framework with similarity. A 

method of eigenfunction expansion used (Wang and Shen, 1999) and (Meylan 

and Peter, 2009) for horizontal plate or plate group in two-dimensional velocity 

potential in mathematical analysis will be introduced and utilized in inclined 

plate. 

Practical engineering development approaches on submerged inclined plate 

breakwater for offshore wave control always come up the horizontal plate’s, as 

shifting from the horizontal plate to the inclined plate is also regarded as a 

configuration improvement. To provide an insight into the study of wave control 

research of a submerged inclined plate, historical developments of both 

horizontal and inclined plate breakwater are presented in the following sections: 

horizontal plates and inclined plates respectively in which main configurations 

and experiments details are included. Literatures are reviewed representatively 

and listed in Table 1-1. 

In previous experimental studies, a comparison (Aoyama et al., 1988) 

between the 0-degree and 10-degree submerged plate breakwater was conducted 

and it is found that slope plate decreases the transmission of wave; an upward 

and downward plate comparison (Murakami et al., 1995) found upward is 

effective in wave control; a study (Rao et al., 2009)  in a wider inclination range 

from 0-degree to 90-degree with a 15-degree interval found that only 60-degree  
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Table 1-1 Representative Configurations of Former Experiments. 

Sources Sketch  Sources Sketch 

Yu,  

2002 

 

 Yagci et al.,  

2014  

 

 Fujita et al.,  

1992  

Neelamani  

and Rajendran, 

2002 
 

 

Cho and Kim,  

2008  

Neelamani  

and Rajendran, 

2002 
 

 

Shirlal,  

2013  

Aoyama et al.,  

1988 

 

 Sundar et al.,  

2003  

Parsons  

and Martin, 1995 

 Teh and Ismail,  

2013  

Rao et al.,  

2009 

 Koraim,  

2013  

is effective (coefficient of transmission less than 0.6) for entire range of wave 

when submergence is quite small enough; A recent study (Yagci et al., 2014) 

shows the increase of inclination gain prominent wave energy dissipation, for 

instance, 15-degree. This discovery fits with Murakami’s experimental figures 

when the inclination increasing from 0 degree to 10 degree derives higher rate. 

Base on the previous study, an inclination of 0-degree is necessary and a common 

discussed 15-degree is recommended to test and contrast the improvement of 

breakwater. Research on step-type-breakwater (Fujita et al., 1992) in flume 

experiment revealed good engineering performance: the dissipation well as 

regular wave even for irregular waves. It can be ensured that transmittance and 

reflectance are less enough even tide change of 2 meter, comparing single 

horizontal plate, step-type-breakwater reduced wave force acting on plate. 
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1.4 Research Purpose 

 

More and more submerged inclined plate breakwaters are loading into offshore 

to protect nature shoreline and artificial structure. While compared to 

conventional breakwater depend on its gravity by solid structure, submerged 

inclined plate breakwater is limited to some extend on wave control performance 

to serve as a predominant prior option. Therefore, it is necessary to do research 

which aims to evaluate the wave deformation over the inclined plate breakwater, 

to discover the dissipation mechanisms and to propose improvement based on 

inclined plate breakwater. 

Methods had developed for revealing the interaction between wave and 

plate in a numerical way or semi analytical way. While the conventional 

numerical methods and techniques, such as the finite element method and 

boundary element method, cost much time and restoration on fluid region or 

structure discrete when calculating despite the accuracy. In this research, a 

step-like approximation method based on velocity potential theory was 

developed to estimate the refection and transmission coefficients which are 

effected by different submerged plate inclination and relative submergence 

mainly. A semi analytical solution is obtained by approximation rather than 

desecrating wave field or objects in water, which is faster than the method of 

finite element method and boundary element method. 

By studying the basic mechanisms of submerged inclined plate breakwater, 

by using semi-analytical and experiments, additional type of inclined plate 

schemes is proposed to improve the performance of breakwater by adding 

serrated blocks and digging gaps with slots on the plate. A two-dimensional 

wave experiment is conducted to measure their wave height and then calculate 

the reflection, transmission and wave energy dissipation coefficient.  
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1.5 Review of Chapters 

 

In this chapter, a general introduction to submerged inclined plate breakwater 

is made in the terms of breakwater historical evolution. Related researches on 

submerged horizontal and inclined plate breakwater are reviewed on both 

methodology and experiments. The initial motivation behind present research 

is to evaluate the wave deformation over a submerged inclined breakwater, to 

discover the dissipation mechanisms and to propose improvement based on the 

inclined plate breakwater. 

In chapter 2, an approximation method is developed based on linear velocity 

potential theory. Before developing the method, the application of eigenfunction 

matching method to a single submerged horizontal plate is well introduced in 

detail to make it easier to understand the submerged inclined-plate model. In 

the application of model, two previews numerical results are compared with 

corresponding variables which show prefect agreement; in addition, former 

results from wave flume is also compared. 

In chapter 3, several clues obtained from chapter 2 lead requirements to 

improve the submerged inclined breakwater with lower transmission coefficient 

and more wave breaking. Plate roughness and plate porosity are researched too 

with the consideration of inclination and incident wave characters, water depth 

to wave length ratio, wave steepness and wave height to submergence ratio are 

studied respectively and comprehensively. 

In chapter 4, conclusions are drawn with an outline map, to give a brief story 

of this research. 

The appendix part introduces several methods in numerical calculation with 

core coding presented. 
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Chapter 2  

Analytical Study 

 

In this chapter, a patching technique named eigenfunction matching method for 

the semi-analytical solution of wave deformation over the submerged inclined-

plate will be employed during approximating the inclined-plate model; as the 

Galerkin method is assumed to be most effective on accuracy and speed (Yu, 

1995), this method has been considered when dealing with the reflection, 

transmission and the fluid force acting on the plate comparing to the point 

collocation method or segment collocation method. For the need of minimizing 

the error along the patching boundaries based on linear potential wave theory, 

the weighted residual approximation was applied for the minimizing work: 

velocity potential and its normal derivative on each side of the inner boundaries 

should be continue; choose the eigenfunction terms in general solution of 

velocity potential in each fluid region as the weighing function because of their 

satisfaction to orthogonality condition. By properly choosing weighting function, 

a set of linear algebraic equation which contains unknown variables will be 

obtained and leads final solution of these unknown variables.  

Before developing the analytical model, the two-dimensional wave and plate 

problem is defined by boundary value problem and solved based on velocity 

potential theory and the eigenfunction matching method. The verification of 

model application shows this model works well with satisfaction on accuracy 

when tested by experimental results conducted by former researchers.   
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2.1 Eigenfunction Matching Method 

 

This part introduced the Eigenfunction Matching Method which is utilized to 

solving two-dimensional wave and signal horizontal-plate problem. The water 

consists of a region with a free surface from the left to right and a submerged 

plate through which no flow is possible. The solutions of problem, mainly 

discussed as reflection and transmission coefficients, were obtained based on the 

linear velocity potential theory. 

 

2.1.1 Problem Description 

 

At first, we simply it when the waves are normally incident, so that it is a truly 

two-dimensional case. The sketch and symbols definition of problem showed in 

Figure 2-1. 

 

 

Figure 2-1 Symbol Definition for Horizontal Plate Element in Regions. 
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2.1.2 Governing Equation and Boundary Condition 

 

A Cartesian coordinate system (𝑥, 𝑦, 𝑧)  is adopted with the 𝑧 -axis directed 

vertically upwards and within the plane of undisturbed free surface. For purely 

two-dimensional wave motion problem, the dependence on y will be omitted at 

first and, throughout, time is denoted by t. 

Conservation of mass requires 𝜙 satisfies Laplace's equation throughout the 

fluid, 

 ∇2𝜙 =
∂2𝜙

∂𝑥2
+
∂2𝜙

∂𝑧2
= 0 ( 2.1 ) 

where 𝜙 is velocity potential. 

The water depth is constant finite ℎ and the 𝑧 -direction points vertically upward 

with the water surface at 𝑧 = 0 and the sea floor at 𝑧 = −ℎ. 

 
∂2𝜙

∂𝑡2
+ 𝑔

∂𝜙

∂𝑧
= 0, on     𝑧 = 0 ( 2.2 ) 

 
∂𝜙

∂𝑧
= 0, on     𝑧 = −ℎ ( 2.3 ) 

The fixed plate surface boundary satisfies 

 
∂𝜙

∂𝑧
= 0, on     𝑧 = −𝑑 ( 2.4 ) 

We must also apply the Somerfield radiation condition as |𝑥| → ∞ , this 

implies the only wave at positive infinity is propagating away and the negative 

infinity there is a unit incident wave and a wave propagating away. 

 lim
|𝑥|→∞

√|𝑥| (
𝜕

𝜕𝑥
− 𝑖𝑘)𝜙(𝑥) = 0 ( 2.5 ) 
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2.1.3 General Solution to Boundary Value Problem 

 

Here introduces the conventional method for solving this Dinchlet boundary 

value problem called separation of variables. 

In free surface region, named Ω1, Ω2, and Ω4, the water and plate boundary 

gives a general solution for velocity potential and relation called linear 

dispersion relation.  

 
𝜔2

𝑔
+ 𝑘𝑛 tan 𝑘𝑛ℎ = 0     𝑛 = 0, 1, 2⋯ ( 2.6 ) 

 𝜙(𝑥, 𝑧) = ∑(𝒜𝑛𝑒
𝑘𝑛𝑥 + ℬ𝑛𝑒

−𝑘𝑛𝑥) cos 𝑘𝑛(𝑧 + ℎ)

∞

𝑛=0

 ( 2.7 ) 

where the 𝑘𝑛 is roots of dispersion relation equation, it is worth to note that the 

equation has an infinite sequence of positive real roots and negative roots which 

will be denoted as {±𝑘𝑛; 𝑛 = 1, 2, 3⋯ }, for convenience we can consider only 

positive because both positive and negative root lead same general solution for 

velocity potential, details about calculations are introduced in appendix. 

When 𝜔2 𝑔⁄  and ℎ  equal to 1, the intersection of f(𝑘𝑛) = −𝜔
2 𝑔⁄ 𝑘𝑛  and 

f(𝑘𝑛) =  tan 𝑘𝑛ℎ, it can be confirmed that 𝑘𝑛ℎ ∈ ((𝑛 − 1 2⁄ 𝜋), 𝑛𝜋), details about 

calculations are introduced in appendix A.  

In addition to the real roots, there is also a pair of imaginary roots which 

will similarly be denoted by {±𝑘0; 𝑘0 = −𝑖𝑘} , where 𝑘  is the positive root of 

another type dispersion relation equation. 

 
𝜔2

𝑔
= 𝑘 𝑡𝑎𝑛ℎ 𝑘ℎ ( 2.8 ) 

In the region beneath plate, named Ω3, the water and plate boundary gives 

a general solution for velocity potential.  
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𝜙(𝑥, 𝑧) = ∑(𝒢𝑛𝑒

𝜆𝑛𝑥 +ℋ𝑛𝑒
−𝜆𝑛𝑥) cos 𝜆𝑛(𝑧 + ℎ)

∞

𝑛=0

 
( 2.9 ) 

 𝜆𝑛 =
𝑛𝜋

ℎ − 𝑑
     𝑛 = 0, 1, 2⋯ ( 2.10 ) 

To make solution meaningful, the outer region boundary should be defined. 

It is convenient that we choose 𝒜𝑛, 𝒞𝑛,  ℰ𝑛,  𝒢𝑛, which are complex coefficients 

corresponding the wave from negative to positive direction.  

The Eq. (2.5) shows that in the left region only reflected wave, in the right 

region only transmitted wave propagate to outer region. Adding incident wave 

𝒜0𝑒
−𝑘0

ℎ(𝑥+𝑙) form the left region, we obtain the general expressions of the celocity 

potential, reflected and transmitted coefficients can be calculated as 𝒦𝑅 and 𝒦𝑇. 

 𝜙1(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[𝒜0𝑒

−𝑘0
ℎ(𝑥+𝑙)Ζ(𝑘0

ℎ𝑧) +∑ℬ𝑛𝑒
𝑘𝑛
ℎ(𝑥+𝑙)Ζ(𝑘𝑛

ℎ𝑧)

∞

𝑛=0

] 

( 2.11 ) 

 𝜙2(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[∑(𝒞𝑛𝑒

−𝑘𝑛
𝑑(𝑥+𝑙) +𝒟𝑛𝑒

𝑘𝑛
𝑑(𝑥−𝑙)) Ζ(𝑘𝑛

𝑑𝑧)

∞

𝑛=0

] 

 𝜙3(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[∑(ℰ𝑛𝑒

−𝜆𝑛(𝑥+𝑙) + ℱ𝑛𝑒
𝜆𝑛(𝑥−𝑙))Ζ(𝜆𝑛𝑧)

∞

𝑛=0

] 

 𝜙4(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[∑𝒢𝑛𝑒

−𝑘𝑛
ℎ(𝑥−𝑙)Ζ(𝑘𝑛

ℎ𝑧)

∞

𝑛=0

] 

where Ζ(𝑘𝑧) and Ζ(𝜆𝑧) are called eigenfunctions or vertical functions. 

 Ζ(𝑘𝑛
ℎ𝑧) =

cos 𝑘𝑛
ℎ(𝑧 + ℎ)

cos 𝑘𝑛
ℎℎ

 

( 2.12 )  Ζ(𝑘𝑛
𝑑𝑧) =

cos 𝑘𝑛
𝑑(𝑧 + 𝑑)

cos 𝑘𝑛
𝑑ℎ

 

 Ζ(𝜆𝑛𝑧) = cos 𝜆𝑛(𝑧 + ℎ) 
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where 

 −
𝜔2

𝑔
= 𝑘𝑛

ℎ tan 𝑘𝑛
ℎℎ = 𝑘𝑛

𝑑 tan 𝑘𝑛
𝑑𝑑 

( 2.13 ) 

 𝜆𝑛 =
𝑛𝜋

ℎ − 𝑑
          𝑛 = 0, 1, 2⋯ 

and then the coefficients are derived. 

 𝒦𝑅 = |
ℬ0
𝒜0
| 

( 2.14 )  𝒦𝑇 = |
𝒢0
𝒜0
| 

 𝒦𝑅
2 +𝒦𝑇

2 = 1 
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2.1.4 Semi-analytical Solution to Horizontal Plate Problem 

 

Besides the boundary condition, we should consider matching boundary 

conditions at each end of plate. 

 𝜙1 = {
𝜙2
𝜙3
,     𝑥 = −𝑙; 

( 2.15 ) 

 𝜙4 = {
𝜙2
𝜙3
,     𝑥 = +𝑙; 

 
𝜕𝜙1
𝜕𝑥

= {

𝜕𝜙2
𝜕𝑥

    − 𝑑 < 𝑧 < 0,

𝜕𝜙3
𝜕𝑥

    − ℎ < 𝑧 < −𝑑,

     𝑥 = −𝑙; 

 
𝜕𝜙4
𝜕𝑥

= {

𝜕𝜙2
𝜕𝑥

    − 𝑑 < 𝑧 < 0,

𝜕𝜙3
𝜕𝑥

    − ℎ < 𝑧 < −𝑑,

     𝑥 = +𝑙. 

By taking the advantage of orthogonality of eigenfunctions (details refer to 

appendix B), an equation set consisted by four linear equations can be short for 

below, more details are introduced in appendix. For −ℎ < 𝑧 < 0  and 𝑚 =

0, 1, 2,⋯ ,𝑁. 

−∑ℬ𝑛𝒳𝑛

𝑁

𝑛=0

+∑𝒮𝑛
𝒞ℰ𝒴𝑛𝑚

𝑁

𝑛=0

+∑𝒯𝑛
𝒟ℱ𝑒−2𝜅𝑛𝑙𝒴𝑛𝑚

𝑁

𝑛=0

= 𝒜0𝒳0δ0𝑚 

( 2.16 ) 

−∑𝑘𝑛
ℎℬ𝑛𝒳𝑛

𝑁

𝑛=0

−∑𝜅𝑛𝒮𝑛
𝒞ℰ𝒴𝑛𝑚

𝑁

𝑛=0

+∑𝜅𝑛𝒯𝑛
𝒟ℱ𝑒−2𝜅𝑛𝑙𝒴𝑛𝑚

𝑁

𝑛=0

= −𝑘0
ℎ𝒜0𝒳0δ0𝑚 

∑𝒮𝑛
𝒞ℰ𝑒−2𝜅𝑛𝑙𝒴𝑛𝑚

𝑁

𝑛=0

+∑𝒯𝑛
𝒟ℱ𝒴𝑛𝑚

𝑁

𝑛=0

−∑𝒢𝑛𝒳𝑛

𝑁

𝑛=0

= 0 

−∑𝜅𝑛𝒮𝑛
𝒞ℰ𝑒−2𝜅𝑛𝑙𝒴𝑛𝑚

𝑁

𝑛=0

+∑𝜅𝑛𝒯𝑛
𝒟ℱ𝒴𝑛𝑚

𝑁

𝑛=0

+∑𝑘𝑛
ℎ𝒢𝑛𝒳𝑛

𝑁

𝑛=0

= 0 

It is a linear system equation, we can rewrite it into matrix form. 
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ۍێێێۏ
−
𝒳
𝑛

𝒴
𝑛
𝑚

𝒴
𝑛
𝑚
𝑒
−
2
𝜅
𝑛
𝑙

⬚

−
𝒳
𝑛
𝑘
𝑛ℎ

−
𝒴
𝑛
𝑚
𝜅
𝑛

𝒴
𝑛
𝑚
𝜅
𝑛
𝑒
−
2
𝜅
𝑛
𝑙

⬚

⬚
𝒴
𝑛
𝑚
𝑒
−
2
𝜅
𝑛
𝑙

𝒴
𝑛
𝑚

−
𝒳
𝑛

⬚
−
𝒴
𝑛
𝑚
𝜅
𝑛
𝑒
−
2
𝜅
𝑛
𝑙

𝒴
𝑛
𝑚
𝜅
𝑛

𝒳
𝑛
𝑘
𝑛ℎ
ېۑۑۑے ( 4

𝑁
+
4
) ×
( 4
𝑁
+
4
)
ۍێێۏ
ℬ
𝑛

𝒮
𝑛𝒞
ℰ

𝒯 𝑛
𝒟
ℱ

𝒢
𝑛
ېۑۑے ( 4

𝑁
+
4
) ×
1

=
൦

𝒜
0
𝒳
0
𝛿
0
𝑚

−
𝑘
0ℎ
𝒜
0
𝛿
0
𝑚

⬚ ⬚

൪ ( 4
𝑁
+
4
) ×
1

 

 

( 
2

.1
7

 )
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2.2 Model for Submerged Inclined Plate Breakwater 

 

The Eigenfunction Matching Method has been utilized to solve two-dimensional 

wave and signal horizontal-plate problem. However, a limitation of this method 

is that the boundary of regions should be rectangular in both horizontal and 

vertical directions though it is more efficient on either memory cost or accuracy 

than the Boundary Elements Method and Finite Elements Method that are 

widely used for plate boundary value problem. 

Based on the assumption that the horizontal step plates group is equivalent 

to an inclined plate which impediments wave and wave induced velocity along 

the plate length, the gap between method limitation and need mention above 

can be bridged. The total horizontal length of step equal to the projection of the 

inclined plate in horizontal axis; the total vertical height of step equal to the 

projection of the inclined plate in vertical axis. Another idea is also available 

that we disperse the inclined plate in Figure 2-2 to finite pieces of horizontal 

step plates as shown in Figure 2-3. The inference that the discrete approximates 

inclined plate after assumption seems rational when the discrete is fine enough. 

So, next we can formulate the problem in an analytical way. 

 

2.2.1 Formulation for an Inclined Plate Model 

 

Without loss of generality, a discrete model for inclined plate depicted below in 

Figure 2-3, which a similar was found in the research on step-type-breakwater 

by (Fujita et al., 1992) in flume experiment: three horizontal plate elements are 

submerged in wave fluid with a uniform water depth corresponding to 𝑧 = −ℎ; 

each of plates are described by denotes separately, 𝑗 represents the order of plate  
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Figure 2-2 Conception Sketch of the Inclined plate. 

 

Figure 2-3 Symbol Definition for Dispersed Inclined Plate. 

  

Figure 2-4 Symbol Definition for Horizontal Plate Element in Regions. 
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element, 𝑙𝑗 represents the plate element length, 𝛿𝑗 represents the plate element 

thickness, 𝑑𝑗 represents the plate submergence, 𝑥𝑗 represents the middle point 

coordinate value on horizontal axis, free water surface elevation is at 𝑧 = −ℎ. 

An arbitrary plate element which is denoted with 𝑗 can be analyzed like an 

independent horizontal plate. The fluid regions around plate element 𝑗  , 

𝜙1,𝑗  ,  𝜙2,𝑗  , 𝜙3,𝑗  and  𝜙1,𝑗+1 , are defined in Figure 2-4; region beneath plate 

element is compressed fluid and the others are free surface water regions; the 

dash lines on   𝑥𝑗 ± 𝑙𝑗 2⁄  are fancied boundaries clinging to both sides of vertical 

boundaries of plate element. 

Discretization of inclined plate is described by Eq. (2.18) to Eq. (2.20), 

 𝐵 =∑ 𝑙𝑗
𝐽

𝑗=1
 ( 2.18 ) 

 𝐷 =
1

𝐽
∑ 𝑑𝑗

𝐽

𝑗=1
 ( 2.19 ) 

 tan 𝜃 =
(𝑑𝐽 − 𝑑1)

𝐵
 ( 2.20 ) 

where, 𝐵  is the projection length of plate on 𝑥  axis; 𝐷  is the middle point 

submergence of plate; 𝜃 is the plate inclination. 

Upon assuming the fluid is inviscid and incompressible, the irrotational free 

surface flow on uniform water depth can be described by 

 ∇2𝜙 =
∂2𝜙𝑖,𝑗

∂𝑥2
+
∂2𝜙𝑖,𝑗

∂𝑧2
= 0, 𝑖 = 1,2,3 ( 2.21 ) 

 
𝜕𝜙𝑖,𝑗

𝜕𝑧
−
𝜔2

𝑔
𝜙𝑖,𝑗 = 0     𝑜𝑛     𝑧 = 0, 𝑖 = 1,2 ( 2.22 ) 

 
𝜕𝜙𝑖,𝑗

𝜕𝑧
= 0     𝑜𝑛     𝑧 = −ℎ, 𝑖 = 1,3 ( 2.23 ) 

where, 𝜙 is the time independent part of the velocity potential corresponding to 

different fluid regions. Eq. (2.21) is the governing equation, and Eqs. (2.22) and 

(2.23) are the boundary conditions on free surface and bottom respectively. 
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The velocity potential will be derived by separation of variable to get the 

general expression as Eqs. (2.24) 

 𝜙1,𝑗(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[∑(𝐴𝑗,𝑛𝑒

−𝑘0,𝑛𝑥 + 𝐵𝑗,𝑛𝑒
𝑘0,𝑛𝑥)Ε𝑛(𝑘0,𝑛𝑧)

∞

𝑛=0

] 

( 2.24 ) 

 𝜙2,𝑗(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[∑(𝐶𝑗,𝑛𝑒

−𝑘𝑗,𝑛𝑥 + 𝐷𝑗,𝑛𝑒
𝑘𝑗,𝑛𝑥)Ζ𝑛(𝑘𝑗,𝑛𝑧)

∞

𝑛=0

] 

in which, 𝑘0,𝑛 and 𝑘𝑗,𝑛 are complex root of dispersion relation in Eqs (2.25) 

 
𝜔2

𝑔
+ 𝑘0,𝑛 tan 𝑘0,𝑛ℎ = 0     𝑛 = 0, 1, 2⋯ 

( 2.25 ) 

 
𝜔2

𝑔
+ 𝑘𝑗,𝑛 tan 𝑘𝑗,𝑛𝑑𝑗 = 0     𝑛 = 0, 1, 2⋯ 

the complex equations are more efficient to be solved by using a numerical 

method such as the Newton-Raphson method which is detailed introduced 

(Linton and McIver, 2001) and appendix which briefly introduced the method of 

solving the linear dispersion relationship. 

 

While the additional boundaries of region beneath plate element are 

described in Eqs. (2.26) 

 
𝜕𝜙2,𝑗

𝜕𝑧
= 0     𝑜𝑛     𝑧 = −𝑑𝑗 , 𝑥𝑗 − 𝑙𝑗 2⁄ < 𝑥 < 𝑥𝑗 + 𝑙𝑗 2⁄  

( 2.26 ) 

 
𝜕𝜙3,𝑗

𝜕𝑧
= 0     𝑜𝑛     𝑧 = −𝑑𝑗 + 𝛿𝑗 , 𝑥𝑗 − 𝑙𝑗 2⁄ < 𝑥 < 𝑥𝑗 + 𝑙𝑗 2⁄  

 
𝜕𝜙1,𝑗

𝜕𝑥
= 0     𝑜𝑛     𝑥 = 𝑥𝑗 − 𝑙𝑗 2⁄ , −𝑑𝑗 − 𝛿𝑗 < 𝑧 < −𝑑𝑗 

 
𝜕𝜙1,𝑗+1

𝜕𝑥
= 0     𝑜𝑛     𝑥 = 𝑥𝑗 + 𝑙𝑗 2⁄ , −𝑑𝑗 − 𝛿𝑗 < 𝑧 < −𝑑𝑗 

and the general form of solution of velocity potential is represented below in Eq. 

(2.27), it is also a form of flow between plate and bottom. 
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 𝜙3,𝑗(𝑥, 𝑧) = −
𝑖𝑔

𝜔
[𝐸𝑗,0 + 𝐹𝑗,0𝑥 +∑(𝐸𝑗,𝑛𝑒

−𝜆𝑗,𝑛𝑥 + 𝐹𝑗,𝑛𝑒
𝜆𝑗,𝑛𝑥)Λ𝑛(𝜆𝑗,𝑛𝑧)

∞

𝑛=1

] ( 2.27 ) 

in which 𝜆j,𝑛 is describe in Eq. (2.28). 

 𝜆j,𝑛 = −
𝑛𝜋

ℎ − 𝑑𝑗 − 𝛿𝑗
     𝑛 = 0, 1, 2⋯ ( 2.28 ) 

In general solution of velocity potential listed in Eqs. (2.24) and (2.27), the 

eigenfunction can be designed as Ε𝑛(𝑘0,𝑛𝑧) , Ζ𝑛(𝑘𝑗,𝑛𝑧) and Λ𝑛(𝜆𝑗,𝑛𝑧) for short, 

and their formula equations are written as below in Eq. (2.29). 

 Ε𝑛(𝑘0,𝑛𝑧) =
cos 𝑘0,𝑛(𝑧 + ℎ)

cos 𝑘0,𝑛ℎ
 

( 2.29 )  Ζ𝑛(𝑘𝑗,𝑛𝑧) =
cos 𝑘𝑗,𝑛(𝑧 + 𝑑𝑗)

cos 𝑘𝑗,𝑛𝑑𝑗
 

 Λ𝑛(𝜆𝑗,𝑛𝑧) = cos 𝜆j,𝑛(𝑧 + ℎ) 

From the general solution of velocity potential, we can obtain the free 

surface elevation profile based on conventional linear potential wave theory. 

 𝜂1 𝑜𝑟 2,𝑗(𝑥) =
𝑖𝑔

𝜔
𝜙1 𝑜𝑟 2,𝑗(𝑥, 0) ( 2.30 ) 

 

Since the velocity potential, Ω1,1 , at 𝑥 = −∞  , and Ω1,𝐽 , at 𝑥 = +∞ , is 

bounded; and it is obvious that the water region in charge of radiation conditions, 

which means that in the general solution equations, the coefficients satisfy 

 𝐴1,0 = 1 
( 2.31 ) 

 𝐵𝐽+1,0 = 0 

 𝐴1,1 = 𝐴1,2 = 𝐴1,3 = ⋯ = 𝐴1,𝑛 = ⋯ = 0 
( 2.32 ) 

 𝐵𝐽+1,1 = 𝐵𝐽+1,2 = 𝐵𝐽+1,3 = ⋯ = 𝐵𝐽+1,𝑛 = ⋯ = 0 
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because we can confirm that in the infinite far away, the velocity potential decay 

in incident and transmission region. 

 
𝜕

𝜕𝑥
(𝜙1,𝑗|𝑥=−∞) = −𝑘0,𝑛𝑒

−𝑘0,𝑛𝑥 + 𝑘0,𝑛𝐵1,0𝑒
𝑘0,𝑛𝑥 = 𝑖𝑘𝜙1,𝑗|𝑥=−∞ 

( 2.33 ) 

 
𝜕

𝜕𝑥
(𝜙1,𝐽+1|𝑥=+∞) = −𝑘0,𝑛𝐴𝐽+1,0𝑒

−𝑘0,𝑛𝑥 = 𝑖𝑘𝜙1,𝐽+1|𝑥=+∞ 

The matching boundary conditions, at 𝑥 = 𝑥𝑗 − 𝑙𝑗 2⁄ : 

 𝜙1,𝑗 = 𝜙2,𝑗 , −𝑑𝑗 < 𝑧 < 0 

( 2.34 ) 

 
𝜕𝜙1,𝑗

𝜕𝑥
=
𝜕𝜙2,𝑗

𝜕𝑥
, −𝑑𝑗 < 𝑧 < 0 

 
𝜕𝜙1,𝑗

𝜕𝑥
= 0, −𝑑𝑗 − 𝛿𝑗 < 𝑧 < −𝑑𝑗 

 𝜙1,𝑗 = 𝜙3,𝑗 , −ℎ < 𝑧 < −𝑑𝑗 − 𝛿𝑗 

 
𝜕𝜙1,𝑗

𝜕𝑥
=
𝜕𝜙3,𝑗

𝜕𝑥
, −ℎ < 𝑧 < −𝑑𝑗 − 𝛿𝑗 

and at 𝑥 = 𝑥𝑗 + 𝑙𝑗 2⁄ : 

 𝜙1,𝑗+1 = 𝜙2,𝑗 , −𝑑𝑗 < 𝑧 < 0 

( 2.35 ) 

 
𝜕𝜙1,𝑗+1

𝜕𝑥
=
𝜕𝜙2,𝑗

𝜕𝑥
, −𝑑𝑗 < 𝑧 < 0 

 
𝜕𝜙1,𝑗+1

𝜕𝑥
= 0, −𝑑𝑗 − 𝛿𝑗 < 𝑧 < −𝑑𝑗 

 𝜙1,𝑗+1 = 𝜙3,𝑗, −ℎ < 𝑧 < −𝑑𝑗 − 𝛿𝑗 

 
𝜕𝜙1,𝑗+1

𝜕𝑥
=
𝜕𝜙3,𝑗

𝜕𝑥
, −ℎ < 𝑧 < −𝑑𝑗 − 𝛿𝑗 

Substitute the general solution of velocity potential into Eqs. (2.34) and 

(2.35), take advantage of orthogonality relation (Lawrie and Abrahams, 1999) 

in Eqs. (2.36). 
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 ∫ 𝛦𝑗,𝑛𝛦𝑗,𝑚

0

−ℎ

𝑑𝑧 =
1

2
[
𝑠𝑖𝑛(2𝑘0,𝑛ℎ)

2𝑘0,𝑛
− (ℎ)] × 𝛿𝑛,𝑚 

( 2.36 ) 

 ∫ 𝛧𝑗,𝑛𝛧𝑗,𝑚

0

−𝑑𝑗

𝑑𝑧 =
1

2
[
𝑠𝑖𝑛(2𝑘𝑗,𝑛𝑑𝑗)

2𝑘𝑗,𝑛
− (𝑑𝑗)] × 𝛿𝑛,𝑚 

 ∫ 𝛬𝑗,𝑛𝛬𝑗,𝑚

−𝑑𝑗−𝛿𝑗

−ℎ

𝑑𝑧 = {
ℎ                                 𝑚 = 0
ℎ 2⁄                             𝑚 ≠ 0

 

∫ 𝑐𝑜𝑠[𝑢(𝑧 + ℎ)] 𝑐𝑜𝑠[𝑣(𝑧 + 𝑑)]
𝑏

𝑎

𝑑𝑧

=
𝑢[𝑠𝑖𝑛 𝑢(𝑏 + ℎ) 𝑐𝑜𝑠 𝑣(𝑏 + 𝑑) − 𝑠𝑖𝑛 𝑢(𝑎 + ℎ) 𝑐𝑜𝑠 𝑣(𝑎 + 𝑑)]

𝑢2 − 𝑣2

−
𝑣[𝑐𝑜𝑠 𝑢(𝑏 + ℎ) 𝑠𝑖𝑛 𝑣(𝑏 + 𝑑) − 𝑐𝑜𝑠 𝑢(𝑎 + ℎ) 𝑠𝑖𝑛 𝑣(𝑎 + 𝑑)]

𝑢2 − 𝑣2
 

Combining velocity continuity equations into unity and finally do integrals 

separately from its height range, an equation set can be obtained as below. 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛧𝑗,𝑚} − (𝐶𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐷𝑗,𝑛𝑋𝑗,𝐿

− ){𝛧𝑗,𝑛: 𝛧𝑗,𝑚} = 0 

( 2.37 ) 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛬𝑗,𝑚} − (𝐸𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐹𝑗,𝑛𝑋𝑗,𝐿

− ){𝛬𝑗,𝑛: 𝛬𝑗,𝑚} = 0 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛦𝑗,𝑚} − (𝐶𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐷𝑗,𝑛𝑋𝑗,𝐿

− ){𝛧𝑗,𝑛: 𝛦𝑗,𝑚}

− (𝐸𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐹𝑗,𝑛𝑋𝑗,𝐿

− ){𝛬𝑗,𝑛: 𝛦𝑗,𝑚} = 0 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛧𝑗,𝑚} − (𝐶𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐷𝑗,𝑛𝑋𝑗,𝐿

− ){𝛧𝑗,𝑛: 𝛧𝑗,𝑚} = 0 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛬𝑗,𝑚} − (𝐸𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐹𝑗,𝑛𝑋𝑗,𝐿

− ){𝛬𝑗,𝑛: 𝛬𝑗,𝑚} = 0 

(𝐴𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐵𝑗,𝑛𝑋𝑗,𝐿

− ){𝛦𝑗,𝑛: 𝛦𝑗,𝑚} − (𝐶𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐷𝑗,𝑛𝑋𝑗,𝐿

− ){𝛧𝑗,𝑛: 𝛦𝑗,𝑚}

− (𝐸𝑗,𝑛𝑋𝑗,𝐿
+ + 𝐹𝑗,𝑛𝑋𝑗,𝐿

− ){𝛬𝑗,𝑛: 𝛦𝑗,𝑚} = 0 
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And some explanations are worth discussed on both symbolic annotations 

in Eq. (2.38), 

 

{𝛦𝑗,𝑛: Ζ𝑗,𝑚} = ∫ 𝛦𝑗,𝑛Ζ𝑗,𝑚

0

−𝑑𝑗

𝑑𝑧; 

{𝛧𝑗,𝑛: 𝛧𝑗,𝑚} = ∫ 𝛧𝑗,𝑛𝛧𝑗,𝑚

0

−𝑑𝑗

𝑑𝑧 

( 2.38 ) 

 

{𝛦𝑗,𝑛: 𝛬𝑗,𝑚} = ∫ 𝛦𝑗,𝑛𝛬𝑗,𝑚

−𝑑𝑗−𝛿𝑗

−ℎ

𝑑𝑧; 

{𝛬𝑗,𝑛: 𝛬𝑗,𝑚} = ∫ 𝛬𝑗,𝑛𝛬𝑗,𝑚

−𝑑𝑗−𝛿𝑗

−ℎ

𝑑𝑧 

 

{𝛦𝑗,𝑛: 𝛦𝑗,𝑚} = ∫ 𝛦𝑗,𝑛𝛦𝑗,𝑚

0

−ℎ

𝑑𝑧; 

{Ζ𝑗,𝑚: 𝛦𝑗,𝑛} = ∫ Ζ𝑗,𝑚𝛦𝑗,𝑛

0

−𝑑𝑗

𝑑𝑧; 

{𝛬𝑗,𝑚: 𝛦𝑗,𝑛} = ∫ 𝛬𝑗,𝑚𝛦𝑗,𝑛

−𝑑𝑗−𝛿𝑗

−ℎ

𝑑𝑧 
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and symbol shortage simplify in Eq. (2.37). 

 

𝑒−𝑘0,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋𝑗,𝐿
−𝑘0,𝑛, 

 𝑒+𝑘0,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋𝑗,𝐿
+𝑘0,𝑛; 

( 2.39 ) 

 

𝑒−𝑘𝑗,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝐿

−𝑘𝑗,𝑛
, 

 𝑒+𝑘𝑗,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝐿

+𝑘𝑗,𝑛
; 

 

𝑒−𝜆𝑗,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝐿

−𝜆𝑗,𝑛
, 

 𝑒+𝜆𝑗,𝑛(𝑥𝑗−𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝐿

+𝜆𝑗,𝑛
; 

 

𝑒−𝑘0,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋𝑗,𝑅
−𝑘0,𝑛, 

 𝑒+𝑘0,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋𝑗,𝑅
+𝑘0,𝑛; 

 

𝑒−𝑘𝑗,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝑅

−𝑘𝑗,𝑛
, 

 𝑒+𝑘𝑗,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝑅

+𝑘𝑗,𝑛
; 

 

𝑒−𝜆𝑗,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝑅

−𝜆𝑗,𝑛
, 

 𝑒+𝜆𝑗,𝑛(𝑥𝑗+𝑙𝑗 2⁄ ) ⟺ 𝑋
𝑗,𝑅

+𝜆𝑗,𝑛
; 

The Eqs. (2.37) consist a group of equation set which contain 8(𝑁 + 1) 

variables in 8(𝑁 + 1)  linear equations. And considering we have 𝑗  elements 

dispersed by inclined plate, so we have (6𝐽 + 2)(𝑁 + 1) variables in (6𝐽 + 2)(𝑁 +

1) linear equations, it is more convenient we consider it in a matrix equation 

form.  



 
- 28 - 

2.2.2 Matrix Equations and Its Resolution 

 

For the sake of convenience, we introduce a series of matrix equation for 

variables, not only for the convenience of analysis, but also for the convenience 

of computational operation which is attached in appendix C. 

The complex root of dispersion relation for free surface water regions and 

meaningless wave number for compressed flow, 

 {𝑘0,𝑛} ≡ {−𝑖𝑘0, 𝑘0,1, 𝑘0,2, 𝑘0,3, … , 𝑘0,𝑛, … } 

( 2.40 )  {𝑘𝑗,𝑛} ≡ {−𝑖𝑘𝑗 , 𝑘𝑗,1, 𝑘𝑗,2, 𝑘𝑗,3, … , 𝑘𝑗,𝑛, …  } 

 {𝜆𝑗,𝑛} ≡ {0, 𝜆𝑗,1, 𝜆𝑗,2, 𝜆𝑗,3, … , 𝜆𝑗,𝑛, … } 

and eigenfunctions are speared in matrix form in Eq. (2.41). 

 {Ε𝑛(𝑘0,𝑛𝑧)} ≡ {
cos𝑘0,0(𝑧 + ℎ)

cos𝑘0,0ℎ
,
cos 𝑘0,1(𝑧 + ℎ)

cos 𝑘0,1ℎ
,… ,

cos𝑘0,𝑛(𝑧 + ℎ)

cos 𝑘0,𝑛ℎ
, … } 

( 2.41 )  {Ζ𝑛(𝑘𝑗,𝑛𝑧)} ≡ {
cos𝑘𝑗,0(𝑧 + 𝑑𝑗)

cos𝑘𝑗,0𝑑𝑗
,
cos 𝑘𝑗1(𝑧 + 𝑑𝑗)

cos 𝑘𝑗,1𝑑𝑗
, … ,

cos 𝑘𝑗,𝑛(𝑧 + 𝑑𝑗)

cos 𝑘𝑗,𝑛𝑑𝑗
, … } 

 {Λ𝑛(𝜆𝑗,𝑛𝑧)} ≡ {1, cos 𝜆j,1(𝑧 + ℎ), … , cos 𝜆j,𝑛(𝑧 + ℎ),… } 

The final equation for one horizontal-plate element is obtained that, 

 [𝑀𝑗]8(𝑁+1)×8(𝑁+1) ∙ [𝐴𝑗, 𝐵𝑗 , 𝐶𝑗 , 𝐷𝑗 , 𝐸𝑗 , 𝐹𝑗, 𝐴𝑗+1, 𝐵𝑗+1]8(𝑁+1)×1
𝑇

= [𝑅]8(𝑁+1)×1 ( 2.42 ) 

where, the coefficient matrix of 𝑗 elements is present below in Eq. (2.43). 
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The influence of the selected horizontal plate elements and the other 

horizontal plate elements is mutual: the transmitted waves of the first sea side 

horizontal plate will propagate into the second horizontal plate element area as 

the incident wave; the reflected wave of the second horizontal plate element 

region will reflected waves into the first horizontal plate element area in the 

equivalent way. In terms of the velocity potential, generally is, the mutual effect 

onto coefficient: as shown in Figure 2-5, the incident wave height coefficient 

𝐴1,𝑛 (𝑛 = 0,1,2,3… ) is affected by the first horizontal plate element, and this 

influence will propagate over the first plate element by the help of coefficient 

𝐶1,𝑛 (𝑛 = 0,1,2,3… ), then the transmission of the coefficient, 𝐴2,𝑛 (𝑛 = 0,1,2,3… ), 

will propagate into the second horizontal plate element region, the transmitted 

wave height coefficient 𝐴𝐽+1,𝑛 (𝑛 = 0,1,2,3… )  will inherit the final effect, the 

reflect effect is also vice versa. 

If the gap between the horizontal plate element is gradually reduced, the 

transfer effect of wave height coefficient will be more continuous connection; 

with the gradually fine discrete distance, the effect of wave height coefficient 

transmission will be closer to the real inclined plate wave deformation. This 

interaction is mirrored in the calculation of all the horizontal plate elements at 

the same time, that is: the horizontal plate elements cannot be separated or 

calculated one by one. For the above reasons, the matrix assembly is intuitively 

shown in Figure 2-6. 

For the model, the coefficient matrix is consisted of two parts: the coefficient 

matrix of each horizontal element, the radiation boundary conditions of the 

transmitted wave and the initial incident wave condition. Figure 2-6 shows an 

inclined plate model which is consisted of or, in another word, discrete 𝐽 = 3 

horizontal plate elements, the mode of evanescent wave is 𝑁 = 1.  

Matrix of the three horizontal plate element denote by 𝑀𝑗  (𝑗 = 1,2,3)  is 

arranged downwardly from the top, and final rows is the matrix for radiation 

boundary condition; the dimension of horizontal plate element matrix 𝑀𝑗  is 
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6(𝑁 + 1) × (6𝐽 + 2)(𝑁 + 1) , the dimension of radiation boundary condition 

matrix 𝑀𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦  is 2(𝑁 + 1) × (6𝐽 + 2)(𝑁 + 1) , as shown in Figure 2-6, total 

dimension is (6𝐽 + 2)(𝑁 + 1) × (6𝐽 + 2)(𝑁 + 1). 

The matrix is Eq. (2.44). 

 [𝑀](6𝐽+2)(𝑁+1)×(6𝐽+2)(𝑁+1) ∙ [𝑋](6𝐽+2)(𝑁+1)×1 = [𝑅](6𝐽+2)(𝑁+1)×1 ( 2.44 ) 

After the linear set of algebraic equations solved uniquely, the 𝒦𝑅 and 𝒦𝑇 

can be calculated form reflection and transmission coefficient in general solution 

of velocity potential. 

 𝒦𝑅 = |
𝐵1,0
𝐴1,0

| 

( 2.45 ) 

 𝒦𝑇 = |
𝐴𝐽+1,0
𝐴1,0

| 

The transmission coefficients and the reflection coefficients were calculated 

from Eq. (2.45) and this solution follows energy conservation equation. 

 𝒦𝑅
2 +𝒦𝑇

2 = 1 ( 2.46 ) 
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Figure 2-5 Transmission Effect over Plates Elements ( n = 0, 1, 2 … N ). 

 

 

Figure 2-6 Diagram of Matrix Structure (J=3，N=1).   
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2.3 Applications of Analytical Model 

 

The computed results by model are compared and verified with both numerical 

and experimental results of preview researchers consequently. A test shows the 

difference when J, the number of horizontal elements, is increase from 10 to 25 

gradually. As the model is developed for submerged inclined-plate based on the 

linear potential theory with considering the evanescent wave mode, the 

horizontal-plate element number J is of importance. Gap between each line 

when increasing J is smaller which indicates J = 25 is satisfactory. 

 

Figure 2-7 𝒦𝑅 and 𝒦𝑇 against kh (N=20, θ=15°). 

It is known that a reasonable value of evanescent wave mode number N is 

negligible and should satisfy a certain condition for a certain accuracy. And 

preview study and comparison show N = 20 is a quite satisfactory computational 

condition.  
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2.3.1 Verification by Previews Numerical Study 

 

The primary computed results are verified by compared to preview numerical 

researches which show agreement quite closely with the numerical method of 

Liu (Liu et al., 2011) and Yu (Yu, 1990) as seen in Figure 2-8 and Figure 2-9.  

A boundary element method was used to analyze the submerged inclined 

plate breakwater, and discussed the influence of the inclination on the reflection 

coefficient and the transmission coefficient in his research. Figure 2-8 shows the 

results of present research (finite depth of 30.0 meters, the average water depth 

of 2.0 meters, plate thickness of 3.0 meters, plate length of 30.0 meters; the 

horizontal plate number is J = 25, the evanescent wave mode number is N = 20 

and the inclination of submerged plate is 15 degree.) and Liu’s inclination plate 

breakwater model based on potential wave theory (plate thickness a = 0.1h, 

average water depth s = 0.15h, plate length and water depth ratio B / h = 1.0); 

the results are obvious which curves and dots fit to each other to almost same. 

Figure 2-9 shows the results of present calculation (excluding plate 

thickness; the horizontal plate number is J = 1, the evanescent wave mode 

number is N = 20 and the inclination of submerged plate is 0 degree.) and results 

from former research which is based on potential wave theory. The results are 

almost identical. The same conditions are: depth ratio h / L = 0.5, relative 

submerged ratio d / h = 0.3. In Figure 2-9, the x axis is the ratio of horizontal 

plate length to wavelength; due to the depth and wavelength of the fixed, with 

the increase on x axis, which means of the horizontal plate is gradually 

increased gradually by the physical meaning: when the wavelength is about 3 

to 4 times of horizontal plate length, the reflection coefficient in a higher range, 

indicates that the plate breakwater can effectively obstruct the waves. 

  



 

 
- 35 - 

 

 

Figure 2-8 𝒦𝑅 and 𝒦𝑇 against Relative Water Depth (case Liu). 

 

Figure 2-9 𝒦𝑅 and 𝒦𝑇 against Relative Plate Length (case Yu).  
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2.3.2 Comparison with Previews Experimental Study 

 

Comparison between the analytical model results and experimental results 

(Aoyama et al., 1988) indicates that shallow submergence wave breaking is a 

significant factor for water wave control (Figure 2-10 and Figure 2-11): the 

disparity between computed curves and measured stars is smaller when the 

plate submergence is deeper (Case A). It is the reason that shallow submerged 

plate plays a critical role on wave breaking. It is found from that wave steepness 

is another principal factor for wave control: red circles, corresponding to lower 

wave steepness, are close to curve, while blue circles are not (Case B) which 

gives a brief conclusion that analytical model based velocity potential theory can 

well describe the wave deformation to a certain content without considering 

wave breaking. 

 

Table 2-1 Conditions for Comparison (case Aoyama). 

Case h/L D/h 𝜃 

A 0.15 0.40 10° 

B 0.30 0.20 10° 

 

In addition, these results show the inclined plate breakwater should be quite 

long (usually 0.25 times wave length, general 20~30 meters long) if this 

breakwater works effective. So, it is worth trying to improve the submerged 

inclined plate as a breakwater, and test the validity of breakwater wave 

controlling performance based on the mechanism which derived from 

comparison. This become the secondary purpose of research. 
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Figure 2-10 Results Comparison of Submerged Inclined Plate (case A). 

 

Figure 2-11 Results Comparison of Submerged Inclined Plate (case B).  



 
- 38 - 

2.3.3 Study on Several Variables 

 

As relative plate length and plate thickness are researched which also showed 

influence on wave deformation, the interest of variable study focuses on the 

plate inclination of submerged plate and relative submergence. The conditions 

for computational study are listed as below. 

 

Table 2-2 Conditions for Computational Study. 

Case D/h δ/h B/h 𝜃 

IN 0.15 0.10 1.00 -- 

SU -- 0.10 1.00 15° 

 

Figure 2-12 and Figure 2-13 show the effect of the plate inclination and 

relative plate submergence on the wave-control performance of the submerged 

inclined plate breakwater (the horizontal plate number is J = 25, the evanescent 

wave mode number is N = 20.). The curves in Figure 2-12 shows the variation of 

transmission coeeficient with respect to relative plate length B/L for different 

plate inclination, respectively. The transmission coefficient of the submerged 

inclined plate breakwater decreases with the increase of the submerged plate 

inclination, and the increasing and decreasing trend are similar in the variation 

of inclination. From the curves’ change tendency, the optimal relative plate 

length for lowest transmission is about 0.15 to 0.30. The curves in Figure 2-12 

shows the variation of transmission coefficient with respect to relative plate 

length B/L for different submergence. The transmission coefficient decreases 

with the increase of the submergence. The smaller the plate submergence is, the 

better the barrier effect is, the best effect is less than 0.20 on relative plate 

length.  
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Figure 2-12 Variation of 𝒦𝑇 with Respect to B/L for 𝜃 (case IN). 

 

Figure 2-13 Variation of 𝒦𝑇 with Respect to B/L for D/h (case SU). 
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Chapter 3  

Experimental Study 

 

Comparisons between computed and experimental results above inclined plate 

in last chapter indicate that wave breaking and wave steepness over plate are 

significant components to water wave controlling. Computed results based on 

velocity potential theory is almost identical to measured results from wave 

flume experiments when plate submergence is relative deep and wave steepness 

is relative low which lead wave propagation over plate in flume is more alike to 

velocity potential theory. By studying the plate inclination of submerged plate 

and relative submergence, the transmission coefficient of the submerged 

inclined plate breakwater decreases with the increase in the submerged plate 

inclination, and decreases with the increase in the plate submergence which 

demonstrate that the inclination and submergence are interesting to further 

study by experiment. 

The model experiment described in this chapter was carried out in the wave 

flume of hydraulic experimental laboratory in Tokyo University of Marine and 

Science Technology. Two proposals are set for the model experiment, the first 

proposal is to verify computational results by developed approximation model; 

the second proposal is to test improved submerged inclined breakwater on their 

performance of wave deformation, wave transmission and wave reflection. The 

results are shown in Figure 3-18 to 3-63 in the latter sections. 
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3.1 Background and Physical Model 

 

In addition to verify computational results, the improvement of submerged 

inclined plate controlling performance has become to a new mission which aims 

to enhance the capacity of wave energy dissipation caused by stronger wave 

breaking.  

 

3.1.1 Background 

 

Rough (serrated) plate breakwater is a less researched topic, the wave 

transmission of submerged inclined rough plate as a breakwater (Shirlal, 2013) 

was studied and the research gave innovative idea to improvement. Rectangular 

and square shapes of roughness is mounted onto inclined plate with zigzag and 

parallel configurations and experimental comparison shows the zigzag 

configuration and square shape is more effective in reducing wave transmission.  

In terms of fluid mechanics, flow around a submerged object is depended by 

object shape and fluid Reynolds number. A recumbent short cylinder and a cube 

has high drag coefficient in fluids with Reynolds number approximately 104, 

while, a recumbent short cylinder is difficult to mount lying or machining on the 

plate surface; a cube is, in a consequence, appropriate for serrated shape. In this 

study, the regulation of dimension and distribution of cube is not the proposal, 

for the sake of convenient, a similar arrangement in scale could refer to Shirlal’s 

case, details see Figure 3-1-b, the side length of cube is 𝑎 = 0.4 𝑐𝑚, and the 

interspace is 𝑏 = 0.5 𝑐𝑚. 

Perforated plate breakwater is more researched as a popular topic,  a wave 

absorbing system using inclined perforated plates was studied (Cho and Kim, 

2008), research selected the optimal porosity parameter 𝑃 = 0.1  for the 
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absorption system. It is also difficulty to clarify the different among perforated 

type which made holes on plate, slitted type which made bar shape space along 

vertical direction and slotted plate in same porosity parameter without a test. 

While in this study, the aim is to improve the plate’s wave deformation 

performance. For the sake of convenient, a slotted plate scheme shown in Figure 

3-2 is chosen with different porosity rate which the area rate of space to plate 

ranging from 0 to 0.3. 

 
a Cylinder Shape Serrated Plate 

 
b Cube Shape Serrated Plate 

Figure 3-1 Candidate for improvement of breakwater (Roughness). 

 

Figure 3-2 Candidate for Improvement of Breakwater (Porosity).  
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3.1.2 Physical Model 

 

Therefore, a combination improvement scheme is proposed as shown in Figure 

3-3 and Figure 3-4. This scheme can be categorized into smooth plate, plate with 

slots and plate with roughness, each feature can be regarded as a factor to 

influence the wave deformation over the plate and tested respectively as shown 

in Table 3-1. Considering the real scale in next wave experiment in flume, the 

dimension is set to 0.95m × 0.50m. Serrated blocks are arranged in row on the 

surface of plate, the side length of cube is 𝑎 = 0.4 𝑐𝑚, and the inter space is 𝑏 =

0.5 𝑐𝑚 . The slotted rate of plate change from 0 to 30 percentage with 10 

percentage intervals.  

 

Figure 3-3 Solution Scheme in Front View. 

 

Figure 3-4 Solution Scheme in Vertical View. 
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Table 3-1 Conditions for Experiment of Plate Arrangement. 

Case Inclination Roughness Porosity Fig. 

IN 

1* 30° 

 

× 0.0 

 

2 15° 

 

3 0° 

 

PO 

4 

15° 

 

√ 

0.0 

 

5 0.1 

 

6 0.2 

 

7 0.3 

 

RO 8 15° 

 

× 0.1 

 

√: plate with roughness. 

×: plate without roughness. 

*: slightly water surface piercing.   
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3.2 Equipment and Physical Model Preparation 

3.2.1 Wave Flume and Wave Generator 

 

The wave flume, see Figure 3-5 below, is 29.0 meters long by 1.0-meter-wide; it 

consists of two 1.5 meters high glass walls on both sides which allow visual 

observation of experimental phenomenon and equips with a piston-type wave 

maker at one end and wave energy absorber at the other end. The x-axis is taken 

positive to the wave energy absorber ward direction with 𝑥 = 0 at the original of 

the wave paddle. The stainless steel made wave paddle is controlled by a AC 

servomotor which its output capacity is 3.3 kw with 2000 revolutions per minute 

(rpm) and the paddle vibrates back and forth along a linear rail. A KENEK Co., 

Ltd. made CHT4-100BNC 2-line capacitance type wave gauge for detecting wave 

height is mounted on the wave paddle, it is for controlling the feedback signal 

when the paddle is making wave with a consideration to absorb the reflected 

wave (Kawaguchi, 1986), the wave generator is controlled by digital signals from 

MATLAB software, those signals are then converted to analog format by an ADC, 

detail can be found in Figure 3-6. The wave energy absorber is fixed by a 

trapezium shape frame and screw bolts and made of high porous material (ヘチ 

マロン, in Japanese), a polypropylene material molded fibrous net shape plastic 

block, which permit continuous wave energy dissipation. 

After two modifications which show in Figure 3-7, the reflection from wave 

energy absorber can be controlled by a relative low ratio to incident wave in 

front of the wave energy absorber. As illustrated, an about 55-centimeter 

vertical step stands in front of the original absorber which leads significant wave 

reflection when wave comes; the first-time modification built an arc in front of 

absorber whose back just connect to original slope part of absorber where the 

transition corner also reflect wave obviously; the second-time modification 

extended absorber block to a mild slop with a 1:2 gradient to flume bottom which 

leads a good regulation to wave reflection ratio shows in Figure 3-8. 
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Figure 3-7 2 Times Wave Absorber Modification for Low Reflection. 

 

Figure 3-8 Absorber Reflection Ratio in Irregular Wave Conditions.   
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3.2.2 Wave Gauge and Data Recording 

 

The measurement of water surface elevation is CHT6-50E 2-line capacitance 

type wave gauges made by the KENEK Co., Ltd., see Figure 3-9. The sensor part 

of wave gauge consists a pair of thin Teflon insulation wires tensioned by a thin 

C-shape round stainless supporting frame. The change of sensor submergence 

into fluctuating water surface will be detected trough the change of electric 

capacity which can be described by a linear relation of different electric 

capacities of insulated wire in water and air. The change of capacity is responded 

by a change of voltage as output after amplified. The dynamic responsibility 

frequency of wave gauge is 10 Hz which is accurate enough to measure water 

wave elevation within 0.3 percentage linearity error. 4 wave gauges mentioned 

above are used for measure wave surface, and they are aligned along the 

centerline of the flume. 

 

Figure 3-9 CHT6-50E 2-line Capacitance Type Wave Gauges. 

Generation of regular and irregular wave height data is executed by 

applying MATLAB software and compatible PCI Express board interface with 
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software “ML-DAQ” released by CONTEC Co., Ltd. “ML-DAQ” has a library 

software for using analog input-output board with MATLAB, and each function 

is provided according to the unified interface of MATLAB's Data Acquisition 

Toolbox. To compose the regular wave height data, the sinusoidal curve function 

is given with target wave height and period, while for irregular wave height data 

composing, a famous Mitsuyasu-Bretschneider Spectrum (Bretschneider, 1968; 

Mitsuyasu, 1970) is used to generate power spectral density, in which significant 

wave height, significant wave period and frequency is defined. The mean wave 

height and period of regular wave and H1/3 , T1/3 of irregular wave are obtained 

respectively in Table 3-2. 

Table 3-2 Measured Experimental Wave Conditions. 

Case Hi (Hmean) T (Tmean)   Case Hi (H1/3) T (T1/3) 

RE1 

2.0cm 1.0s   

IR1 

1.8cm 1.3s 

2.0cm 1.5s   2.0cm 1.8s 

1.8cm 2.0s   2.1cm 2.4s 

RE2 

8.2cm 1.0s   

IR2 

6.9cm 1.4s 

7.8cm 1.5s   8.1cm 1.9s 

7.3cm 2.0s   7.6cm 2.4s 

RE3 

15.9cm 1.0s   

IR3 

11.8cm 1.5s 

16.0cm 1.5s   15.2cm 2.0s 

15.2cm 2.0s   16.2cm 2.5s 

Wave heights are measured and recorded by a wave-logger software named 

C-LOGGER released by CONTEC Co., Ltd. simultaneously, the analog data 

from wave gauges is amplified and converted by wave height meter panel and 

an Analog-to-digital converter (short for ADC). The converted digitalized signals 

are shown on monitor and written to hard disk, which can be directly used in 

further analysis.  

Wave gauge calibration should be applied in different still water surface 

levels before formal making wave. Practical experience indicates that the 
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voltage responded by change of capacity is not only decided by water surface 

elevation, and it is believed temperature and environmental conditions also 

attribute to slightly error. Usually, calibration is applied before each case of 

experiment during a certain period of work time. An example of calibration 

curve is shown in Figure 3-10, the calibration procedure is performed manually 

in the -8 ~ +8 cm location range. which implies that the linearity of the device is 

quite satisfactory.  

 

Figure 3-10 Example of Calibration Curve and Coefficients.  

  



 

 
- 53 - 

3.2.3 Physical Model Preparation 

 

As introduced, models are categorized into smooth plate, plate with slots and 

plate with serrated blocks. For the convenient of adjustment and installation, 

the wood plate and steel frame are chosen to assemble the model. 

Plate models are machined, drilled, painted and repainted as shown in 

Figure 3-11., finally made into 500×15×990mm size plate model with or without 

slots or serrated blocks. 4 large white pine wood plates with a 300×15×1820mm 

size are cut into 20 wood bars with a 50×15×990mm size and 4 pieces of 

300×15×800mm offcuts. 5 spruce-pine-fir (SPF) wood square columns with a 

40×40×910mm size are cut into cubes as serrated blocks on plate. 8 to 10 pieces 

of wood bars with or without serrated blocks are lined as a group and assembled 

by steel angles and steel bars to make a plate model; as shown in Figure 3-12, 

the models are comprised of different pieces of wood bar with serrated blocks to 

make different slots. 

A plate model with changeable inclination and fixed submergence will be 

mounted on a steel frame system which consists of steel angles above water and 

flat bars below water for regular and irregular wave tests. Steel frame system 

is fixed on its head and toe, fix points locations as shown in Figure 3-13 by red 

and blue cycles. Upside fix points where red cycles noted are fixed by clip screws 

and bottom fix points are fixed by U-bolts to anchored rings on flume bottom. 

Plate fixed on the steel frame can be firm with no concussion under wave 

induced force as shown in Figure 3-14.  
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Figure 3-11 Physical Model Making Process. 

 

Figure 3-12 Physical Model of Plate with both Roughness and Porosity  
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Figure 3-13 Steel Frame System for Physical Model Arrangement. 

 

 

Figure 3-14 Fixed Oil Painted Wood Plate Mounted on Steel Frame. 
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3.3 Measurement and Data Processing 

3.3.1 Wave Height Measurement 

 

Measurement of wave transformation in terms of wave height means to measure 

how the plate breakwater in the center of flume influence incident wave and the 

transmission wave which deformed by the interaction of wave and plate during 

the propagating of wave over plate. While, the water surface elevation measured 

directly by wave gauges are superposed by incident wave and multiple reflection 

wave which much differ from that wave propagates in wave flume without an 

obstacle.  

To decompose the measured waves including the components propagating 

in the two directions, two wave gauges are located 0.4 meter apart in front of 

plate where in the reflection region and in behind of pate at the far end of wave 

flume. 

The location of the wave gauges is decided on the two-following 

consideration except spacing distance between 2 wave gauges: the wave gauges 

in front of plate where in the reflection region are as far as possible from paddle 

so that the wave may well developed to a steady state and the wave gauges in 

behind on plate where in the transmission region are as far as possible from 

plate to avoid influence from the end of plate. 

The sampling frequency is selected by 20Hz whose frequency is higher 2 

times than gravity wave and differ from local power supply in Kanto region to 

avoid influence. Since the test wave periods vary from 1.0 second to 2.0 second, 

we have more than 20-point values to determine the wave profile in a period. To 

make more reliable data, a record is taken for 300 seconds to include at least 

150 periods. 
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3.3.2 Decomposition of Incident and Reflected Wave 

 

Different methods have been developed for separating the incident and reflected 

waves. A method (Healy, 1952; Horikawa et al., 1988) by moving wave gauges to 

measuring the maximum and minimum wave heights of superposed partial 

repetitive waves in regular wave condition. In the present case, regular wave 

profiles are recorded by fixed wave gauges, which the method is introduced 

below; for the irregular wave condition, since the measurement of instantaneous 

water level elevation simultaneously at different stations is possible, the method 

(Goda and Suzuki, 1987) based on the principle is utilized. 

When analysis experiment data in regular wave cases, a method by fitting 

the measurement curves manually was used. Specifically speaking, the 

measured wave profile was assumed as 𝜂, and the fitted wave profile function 

was described by 𝜂∗ which shows in equation below. 

 𝜂∗ =
1

2
𝐻̅∗ 𝑐𝑜𝑠 (

2𝜋

𝑇̅∗
× 𝑡 + 𝜑∗) + 𝑀∗ ( 3.1 ) 

where, 𝐻̅∗  and 𝑇̅∗  are obtained by using zero crossing method,  𝑀∗  is average 

water level of measured profile, 𝜑∗ is measured and calculated by phase lag, for 

the sake of convenience in coding, a trying method is used for the convenient of 

computational calculation. 

 𝑓: 𝜑∗ → ∫|𝜂 − 𝜂∗| 

( 3.2 ) 

 𝜑∗ = 𝜑 [𝑚𝑖𝑛 (∫|𝜂 − 𝜂∗|)] 

As the function relation show between the assumed initial phase 𝜑∗ and the 

relative error of wave profiles show, the minimum relative error corresponding 

the approximate initial phase which can be coded by trying the initial phase in 

0 to 2𝜋 to examine the minimum relative error. 
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In the wave flume where regular wave is generated, the free surface 

elevation superposed by the incident and reflected waves which follow the linear 

superposition and dispersion relation. 

 𝜂𝐼 = 𝑎𝐼 cos(𝑘𝑥 − 𝜎𝑡 + 𝜀𝐼) ( 3.3 ) 

 𝜂𝑅 = 𝑎𝑅 cos(𝑘𝑥 + 𝜎𝑡 + 𝜀𝑅) ( 3.4 ) 

where 𝑎  is the wave amplitude, 𝑘  is the wave number, 𝜎  is the angular 

frequency and the phase lag; the subscripts 𝐼 and 𝑅 denote the incident and 

reflected waves respectively. Thus, the superposed water surface elevation is 

 𝜂 = 𝜂𝐼 + 𝜂𝑅  ( 3.5 ) 

At two measuring points 1 and 2, we use Eq. (4.5) to express the water 

surface elevation. 

 𝜂1 = (𝜂𝐼 + 𝜂𝑅)𝑥=𝑥1 = 𝐴1 cos 𝜎𝑡 + 𝐵1 sin 𝜎𝑡 ( 3.6 ) 

 𝜂2 = (𝜂𝐼 + 𝜂𝑅)𝑥=𝑥2 = 𝐴2 cos 𝜎𝑡 + 𝐵2 sin 𝜎𝑡 ( 3.7 ) 

in which 

 𝐴1 = 𝑎𝐼 cos𝜑𝐼 + 𝑎𝑅 cos𝜑𝑅 ( 3.8 ) 

 𝐵1 = 𝑎𝐼 sin𝜑𝐼 + 𝑎𝑅 sin𝜑𝑅 ( 3.9 ) 

 𝐴2 = 𝑎𝐼 cos(𝜑𝐼 + 𝑘Δ𝑙) + 𝑎𝑅 cos(𝜑𝑅 + 𝑘Δ𝑙) ( 3.10 ) 

 𝐵2 = 𝑎𝐼 sin(𝜑𝐼 + 𝑘Δ𝑙) + 𝑎𝑅 sin(𝜑𝑅 + 𝑘Δ𝑙) ( 3.11 ) 

and 𝜑 denotes the phase and Δ𝑙  denotes the distance between the two wave 

gauges. Therefore, the incident and reflected wave parameters can be obtained. 

𝑎𝐼 =
√(𝐴2 − 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙)2 + (𝐵2 + 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙)2

2|sin 𝑘Δ𝑙|
 ( 3.12 ) 

𝑎𝑅 =
√(𝐴2 − 𝐴1 cos 𝑘Δ𝑙 + 𝐵1 sin 𝑘Δ𝑙)2 + (𝐵2 − 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙)2

2|sin 𝑘Δ𝑙|
 ( 3.13 ) 
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tan𝜑𝐼 = −
𝐴2 − 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙

𝐵2 + 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙
 ( 3.14 ) 

tan𝜑𝑅 =
𝐴2 − 𝐴1 cos 𝑘Δ𝑙 + 𝐵1 sin 𝑘Δ𝑙

𝐵2 − 𝐴1 cos 𝑘Δ𝑙 − 𝐵1 sin 𝑘Δ𝑙
 ( 3.15 ) 

in which 𝐴1, 𝐴2, 𝐵1and 𝐵2 are determined by the fitting wave surface profile 𝜂1
∗ 

and 𝜂2
∗  at the measuring points 1 and 2, detail process is explained in the 

appendix D. 

 𝐴1 =
2

𝑛𝜋
∫ 𝜂1

∗ cos 𝜎𝑡
𝑛𝑇

0

𝑑𝑡 ( 3.16 ) 

 𝐵1 =
2

𝑛𝜋
∫ 𝜂1

∗ sin 𝜎𝑡
𝑛𝑇

0

𝑑𝑡 ( 3.17 ) 

 𝐴2 =
2

𝑛𝜋
∫ 𝜂2

∗ cos 𝜎𝑡
𝑛𝑇

0

𝑑𝑡 ( 3.18 ) 

 𝐵2 =
2

𝑛𝜋
∫ 𝜂2

∗ sin 𝜎𝑡
𝑛𝑇

0

𝑑𝑡 ( 3.19 ) 

The wave energy dissipation of submerged inclined plate 𝒦𝐷 is quantified by 

the separated wave characteristics, reflection coefficient 𝒦𝑅 and transmission 

coefficient 𝒦𝑇, which are defined by Eq. (3-20) to Eq. (3-22). 

 𝒦𝑅 =
𝐻𝑟
𝐻𝑖

 ( 3.20 ) 

 𝒦𝑇 =
𝐻𝑡
𝐻𝑖

 ( 3.21 ) 

 𝒦𝑅
2 +𝒦𝑇

2 +𝒦𝐷
2 = 1 ( 3.22 ) 

𝐻𝑖,  𝐻𝑟, and 𝐻𝑡 denote the height of incident, reflected and transmitted of 

regular wave. For irregular wave 𝒦𝑅 can be obtained in a separate way, while 

for regular wave, 𝒦𝑅 and 𝒦𝑇 are calculated from Eq. (3.20) and Eq. (3.21). 
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3.4 Results and Discussion 

 

To demonstrate the validity of model and to investigate the relationship among 

plate inclination degree, plate roughness and plate porosity, the variation of 

transmission and reflection coefficients against relative plate length are 

discussed by the semi-analytical method model and by conducting wave flume 

experiments, results are plotted by lines and dots from Figure 3-18 to Figure 3-

25.  

 

3.4.1 Wave Breaking over Plate 

 

To verify the effect of wave breaking over plate to wave deformation in regular 

wave experiments, video under various wave condition and plate cases for 

overtopping, breaking and none breaking is recorded. As we found in each case 

of experiment, the results are listed in Table 3-3. Wave keeps continuity over 

various kinds of plate without any break when the wave height is small. For all 

the cases with 0.02-meter wave height (case RE1), wave propagates over plate 

expect in the case 1 due to the penetration water surface of inclined plate.  

Non-wave breaking phenomenon is observed in case 5, case 6 and case 7 

when wave height is 0.08 meters (case RE2) which corresponds different 

porosities rate of plate range from 0.10 to 0.30. It is obvious that bigger rate of 

plate porosity obstructs wave propagation in weaker way, which shows that the 

experimental result is reasonable. The comparison of regular wave experiments 

in case 4 to case 7 indicates that slots on plate help water mass exchange from 

the region beneath plate to the region above plate before wave crest travelling 

to plate; in other words, solid plate attributes to prevent water particles to 

orbiting by its original way which cause phase lag of wave on both side of plate 
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and wave breaking over plate, see Figure 3-15. 

In addition, controlling the horizontal component of velocity is studied and 

compared by case 2 and case 4 shown in Figure 3-16, whose difference is serrated 

cube blocks on the surface of plate. Plate with surface roughness causes more 

disturbance of water wave to generate more chaos which does not allow 

movement or propagation of wave profile, in other words, roughness attributes 

to cause wave propagation lag above plate, which makes it easy to break over 

plate, this effect will significant when incident wave height become higher and 

vice versa. 

Horizontal plate test which corresponds to case 3 shows different tendency 

with case 1 and case 2 when incident wave height is 0.08 meters (case RE2), as 

the wave breaking position is quite uniform at the end of number 1 plate bar. 

Propagation process over submerged horizontal plate is consist of two 

interactions: at the beginning edge of plate, wave profile deformed because of 

sudden water depth change with a visible wave reflection transmit to incident 

direction; and the deformed wave crest travels without breaking to the end edge 

of plate and finally broken until wave over topping to the region behind plate, 

wave reflection also takes place when wave broken. This reflection phenomenon 

is obviously observed in experiments when incident wave height is 0.16 meters 

(case RE3), and a supernumerary wave break by reflected wave may also take 

place above plate.  

This phenomenon was researched in some former studies (Yu et al., 1995) 

and  it is believed the wave breaking is caused by disturbance on water surface 

due to water mass exchange between two layers of water above and beneath 

plate and the wave surface deformation is a presence of flow phase dis-

synchronized which leads to a significant vertical velocity component, even the 

wave height is quite small. 
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Figure 3-15 Water Mass Exchange Effect on Wave Breaking. 

 

Figure 3-16 Disturbance Effect on Wave Breaking.  
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3.4.2 Inclination 𝜽 

 

To conduct the investigation of inclination influence with the purpose of validity, 

computational and wave conditions for comparing the wave flume experiment 

IN case is listed in Table 3-5 and Table 3-6.  

Table 3-4 Computational Conditions for Comparison (case IN). 

Case B/h D/h 𝛿/h 𝜃 roughness porosity 

1 0.83 

1/6 1/30 

30° × 0.00 

2 0.80 15° × 0.00 

3 0.72 0° × 0.00 

Table 3-5 Experimental Conditions for Comparison (case IN). 

Case 𝐻𝑖 𝜃 roughness porosity 

1 

RE1 (0.02) 

30° 

× 0.00 

RE2 (0.08) 

RE3 (0.16) 

2 

RE1 (0.02) 

15° RE2 (0.08) 

RE3 (0.16) 

3 

RE1 (0.02) 

0° RE2 (0.08) 

RE3 (0.16) 
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Figure 3-17 Water splash Caused by Water Dash on Inclined Plate.  

As following Figure 3-18 to Figure 3-20 show, the computed transmission 

and reflection coefficients described by solid line is independent on incident 

wave height, while dots plotted from measurement of experiment are influenced 

by variety incident wave height. It can be found that the influence of the plate 

inclination become a significant variable both in computed and measured result. 

The transmission coefficient tends to increase remarkably when the plate 

inclination decrease, and the scattering dots which fluctuate around solid lines 

also shift upward with the plate inclination decrease. It is believed that inclined 

plate breakwater makes wave break more easily when climb the plate as we can 

image, and the observation also give a clue that inclined plate obstruct wave to 

move back when wave crest is going to climb the plate and the water particle 

transmitting waveform, from the Figure 3-17 large mass of water dash back 

side of inclined plate which cause big splash periodically, and backward flow 

will cause visible wave breaking and reflection towards incident wave direction. 
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Solid curves of case 1 and case 2 in Figures 3-18 and 3-19 show that 

reflection and transmission coefficients of different inclinations appear to be 

identical both analytically and experimentally, this implies submerged plate 

inclination affects transmission to a little extend when relative plate length is 

smaller than 0.2. For instance, 30-degree inclined plate is more effective than 

15-degree which shows lower transmission coefficient just when relative plate 

length larger than 0.2. On the contrary, analytical curves of horizontal plate does 

not show better performance due to its height transmission and relative 

identical reflection compared to inclined plate, experimental dots also proof it. 

In addition, in Figures 3-18 and 3-19, 2-cm incident wave height is 

significant obstructed which corresponds dots of case 1-1 and case 2-1 both 

regular and irregular, their transmission curves are lower than 8-cm and 16-cm 

and reflection curves are higher than 8-cm and 16-cm case in general. What’s 

more, transmission and reflection of 8-cm and 16-cm wave height seem to be 

identical which corresponds dots of case 1-2, 1-3 and case 2-2, 2-3. By surveying 

experimental video record in Table 3-4, it is found that the phenomenon is 

consequence by wave overtopping which is heavily depending on incident wave 

height, plate in case 1 is a slightly water surface piercing case which prevent 

wave propagation, lower reflection dots in case 2 and case 3 also confirm this 

fact.  

A brief discussion on steeper plate inclination give a clear conclusion that 

plate inclination attributes to lower wave transmission meanwhile higher 

reflection as Figure 3-22 shows; it is worth to note that reflection from horizontal 

is different on mechanism to inclined plate, which is caused by back flow and 

plate obstruction respectively; higher incident wave height can propagate over 

submerged inclined plate easier to a certain extent, because of amount of wave 

overtopping, while no evidence shows higher incident wave height leads to 

higher reflection coefficient. Figures 3-23 and 3-24 show that inclined plate 

cause larger wave energy dissipation.  
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Figure 3-18 𝒦𝑅 and 𝒦𝑇 against B/L (case 1). 
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Figure 3-19 𝒦𝑅 and 𝒦𝑇 against B/L (case 2). 
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Figure 3-20 𝒦𝑅 and 𝒦𝑇 against B/L (case 3). 
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Figure 3-21 𝒦𝑅 and 𝒦𝑇 against Plate Inclination (case RE). 

 

 

Figure 3-22 𝒦𝑅 and 𝒦𝑇 against Plate Inclination (case IR).
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Figure 3-23 𝒦𝐷 against Porosity Ratio (case RE). 

 

 

Figure 3-24 𝒦𝐷 against Porosity Ratio (case IR). 
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3.4.3 Roughness and Porosity 

 

In roughness and porosity influence investigation, experimental conditions for 

RO case and PO case are listed in Table 3-7 and Table 3-8. For the sake of 

convenience, only when the wave height is 0.08 m case is presented. 

Comparisons between case 4, case 7 and case 2, case 8 investigate the 

porosity influence which correspond plate conditions as Table 3-7 shows, their 

results are presented below, which illustrated as the following Figure 3-25 to 

Figure 3-26, it can be found that the influence of the plate porosity is significant. 

The transmission coefficient tends to increase remarkably when the plate 

porosity increasing from 0.0 to 0.3, and the reflection coefficient tends to 

decrease remarkably when the plate porosity increasing. It can be expected from 

where discussing the wave breaking over plate in wave breaking section and 

Table 3-4, with the increasing of slots on plate, water mass exchange across plate 

can be regarded as kind of transmission when wave propagating as Figure 3-15 

illustrated. Another case, showed in Figure 3-26, also tells identical tendency 

that 0.1 porosity slot plate is slightly weak on the transmission, and weak on 

reflection. While it is worth to mention that, due to relative small porosity rate, 

wave in case 8 is broken over plate, this lead a result that the transmission 

coefficient is closed to solid plate but a lower reflection. 

Comparisons between case 2, case 4 and case 5, case 8 investigates the 

roughness influence which correspond solid plate with and without roughness 

situation, slotted plate with and without roughness situation. It is found in 

Figure 3-27 and 3-28 that the roughness decreases both the transmission 

coefficient and the reflection coefficient which implies plate with roughness lead 

more wave energy dissipation. It also can be expected once when discussing the 

wave breaking over plate in wave breaking section and Table 3-4, with the 

adding roughness on plate, roughness attributes to cause wave propagation lag 

above plate, which makes it easy to break over plate as Figure 3-16 illustrated.  
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Table 3-6 Experimental Conditions Detail (case PO). 

Case 𝐻𝑖 𝜃 roughness porosity 

4 RE2 (0.08) 
15° 

√ 0.00 

7 RE2 (0.08) √ 0.30 

2 RE2 (0.08) 
15° 

× 0.00 

8 RE2 (0.08) × 0.10 

 

 

 

Table 3-7 Experimental Conditions Detail (case RO). 

Case 𝐻𝑖 𝜃 roughness porosity 

2 RE2 (0.08) 
15° 

× 0.00 

4 RE2 (0.08) √ 0.00 

8 RE2 (0.08) 
15° 

× 0.10 

5 RE2 (0.08) √ 0.10 
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Figure 3-25 𝒦𝑅 and 𝒦𝑇 against B/L (case 4+7). 

 

Figure 3-26 𝒦𝑅 and 𝒦𝑇 against B/L (case 2+8). 
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Figure 3-27 𝒦𝑅 and 𝒦𝑇 against B/L (case 2+4). 

 

Figure 3-28 𝒦𝑅 and 𝒦𝑇 against B/L (case 5+8). 
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Combining the transmission coefficient, reflection coefficient comparison 

with the wave breaking phenomenon analysis introduces an abstract impression 

that cube roughness on plate promotes wave breaking over plate, while on the 

contrary, slot gap on plate promotes wave flow exchange, which lead high wave 

transmission and low reflection that weaken the performance of submerged 

inclined plate breakwater. 

To further ensure the wave flow exchange promoting property, variation of 

reflection, transmission and energy dissipation with respect to plate porosity 

ratio are illustrated from Figure 3-29 to 3-32, in which case 4, case 5 case 6 and 

case 7 are surveyed in different wave conditions of both regular and irregular. 

Reflection and transmission values are dyed in red and blue, wave energy 

dissipation remains to be black; wave conditions are presented in groups, types 

of line and dot represent types of wave condition.  

Start with the irregular cases, dots and curves show high degree uniform 

distribution, indicating that porosity ratio affects wave in different contend. 

Generally speaking, wave transmission 𝒦𝑇  and wave energy dissipation 𝒦𝐷 

change significant against plate porosity changing, wave reflection 𝒦𝑅  keeps 

relative stable around 0.2. Small wave height wave seems sensitive to plate 

porosity changing, the reason may be that small wave is prone to prevented by 

obstruction while big wave is easily transmitted over plate. Wave period is 

relative not sensitive to porosity changing, longer wave is easily transmitted and 

enery maintaned when propogating over submerged inclined plate breakwater. 

As for regular cases which phenomenon and results show more extreme, 

differences among periods are active, short period wave is deeply affected 

especially when plate porosity is small which wave may be absolutly absorbed 

by plate, and long period wave is more affected when porosity approximate to 

0.2 which may be special geometric relation that cause wave concentration. 
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Figure 3-29 𝒦𝑅 and𝒦𝑇  against Porosity Ratio (case RE). 

 

 

Figure 3-30 𝒦𝑅 and 𝒦𝑇 against Porosity Ratio (case IR). 
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Figure 3-31 𝒦𝐷  against Porosity Ratio (case RE). 

 

 

Figure 3-32 𝒦𝐷 against Porosity Ratio (case IR). 
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3.4.4 Water Depth to Wave Length Ratio 𝒉/𝑳 

 

As informed wave length is an important variable may affect transmission and 

dissipation performance especially when wave length is longer, wave length L 

will be discussed. Because in the present research, water depth, submergence 

and plate length are constant, it is an appropriate choice to dimensionless wave 

length L by using an incident wave parameter, water depth d. From Figure 3-33 

to 3-50 the wave length L represents mean wave length for regular wave and 

represents significant wave length for irregular wave which we can regard L as 

representative wave length. Solid curves are fitted manually. As concluded in 

section 3.4.2 that reflection from horizontal is different on mechanism to 

inclined plate, which is caused by back flow and plate obstruction respectively. 

It is no wonder that reflection horizontal plate which corresponds case 3 in 

Figure 3-33 is relative small.  

 

Figure 3-33 Variation of 𝒦𝑅 with Respect to 𝑑/𝐿 (case 1, 2, 3). 
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Figure 3-34 Variation of 𝒦𝑇 with Respect to 𝑑/𝐿 (case 1, 2, 3). 

 

Figure 3-35 Variation of 𝒦𝐷 with Respect to 𝑑/𝐿 (case 1, 2, 3). 
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Figure 3-36 to 3-38 illustrate variation of coefficients with respect to d/L for 

different cases correspond to different plate porosity, these Figures fit well with 

preview conclusions. Additional discovery is that solid plate of case 4 remains 

higher reflection coefficient and reflection among cases. 

Dots and curves scatter in a satisfy pattern, in other words, variation with 

respect to 𝑑/𝐿 screen each case off so that it is clear to make a speculation that 

water depth to wave length ratio is an important parameter to performance of 

submerged inclined plate water. Specifically speaking, in experiment which 

water depth is constant, we can give an inference that wave length is of critical 

variable may affect breakwater performance. 

Additional discovery on case 4 which corresponds solid plate with cubes 

roughness shows it is a good improvement scheme because it transmit wave and 

reflect wave in low contend but keep relative high wave energy dissipation in 

both regular and irregular wave condition. It is an appreciating feature.  

 

Figure 3-36 Variation of 𝒦𝑅 with Respect to 𝑑/𝐿 (case 4, 5, 6, 7). 
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Figure 3-37 Variation of 𝒦𝑇 with Respect to 𝑑/𝐿 (case 4, 5, 6, 7). 

 

Figure 3-38 Variation of 𝒦𝐷 with Respect to 𝑑/𝐿 (case 4, 5, 6, 7). 
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Figure 3-39 to 3-41 make parallel contrast on plate roughness between 

plates with and without slot gap. It is found that plate with cubes roughness 

shows roughness on plate make performance better with lower wave reflection, 

lower transmission and higher wave energy dissipation. 

In conclusion, reflection with respect to d/L keep a stable range from 0.1 to 

0.5 averagely in all cases of plate model, the fact can lead a clue that the 

reflection of submerged inclined plate breakwater is not sensitive to d/L, in other 

words, they keep low correlation to each other. All Figures about transmission 

and dissipation coefficient show a relationship of a certain function, so it is a 

promise attempt developing a multi-parameter model for transmission or 

dissipation coefficient. The tentative model for transmission coefficient will be 

discussed in the next part. 

 

 

Figure 3-39 Variation of 𝒦𝑅 with Respect to 𝑑/𝐿 (case 2, 4, 8, 5). 
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Figure 3-40 Variation of 𝒦𝑇 with Respect to 𝑑/𝐿 (case 2, 4, 8, 5). 

 

Figure 3-41 Variation of 𝒦𝐷 with Respect to 𝑑/𝐿 (case 2, 4, 8, 5). 
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3.4.5 Wave Steepness 𝑯𝒊/𝑳 

 

Wave breaking over plate observation in last section and comparison study 

above indicate that incident wave height plays a critical role in influencing the 

wave controlling performance. The former comparison between computed result 

and experiment results of Aoyama also points to wave breaking due to wave 

steepness. In this section, wave energy dissipation is estimated with respect to 

wave steepness, both regular and irregular wave. 

With additional purposes considering comparison of different configurations. 

In the dissipation analysis which shows, the coefficient become convergence 

when wave steepness become lager. Compared with results in last section which 

discuss variation of coefficients with respect to d/L, the dissipation of each case 

in Figure 3-47 shows that wave breaking is enhanced by increasing wave 

steepness. Fully wave breaking observation in 0.08m and 0.16m incident wave 

height conditions are scattering in region where wave steepness bigger than the 

fully-broken red line. 

 

Figure 3-42 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐿 (case 1, 2, 3). 
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Figure 3-43 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐿 (case 4, 5, 6, 7). 

 

 

Figure 3-44 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐿 (case 2, 4, 8, 5). 
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3.4.6 Wave Height to Submergence Ratio 𝑯𝒊/𝑫 

 

It is believed that both incident wave height Hi and plate submergence D are 

important parameters to performance of submerged inclined plate breakwater. 

Coupled effect of these two parameters is studied below. As plate submergence 

is constant, wave propagation and their deformation on plate should governed 

by incident wave height. 

While results from Figure 3-45 to 3-47 scatters without a clear pattern, 

further manually plotted curves show litter information neither. Conclusion is 

that wave height to submergence ratio Hi /D affect submerged inclined plate 

breakwater in a very little contend. 

 

 

Figure 3-45 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐷 (case 1, 2, 3). 
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Figure 3-46 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐷 (case 4, 5, 6, 7). 

 

Figure 3-47 Variation of 𝒦𝐷 with Respect to 𝐻𝑖/𝐷 (case 2, 4, 8, 5). 
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3.5 A Tentative Model for Qualitative Analysis 

 

As discussed in preview sections, the wave control performance of submerged 

inclined plate breakwater is affected by variety of factors, among which, plate 

inclination 𝜃, roughness 𝐶𝑜𝑒𝑓.𝑅 and porosity 𝐶𝑜𝑒𝑓.𝑃 are discussed as present of 

configuration of plate; 𝐵/𝐿, 𝑑/𝐿, 𝐻𝑖/𝐿 and 𝐻𝑖/𝐷 are also discussed which mainly 

focus on wave height, wave length and submergence influence. These 

parameters are, generally speaking, dependent on incident wave and plate 

geometry. Based on variation tendency with respect to those parameters, a 

regression analysis of transmission coefficient 𝒦𝑇  and dissipation coefficient 

𝒦𝐷 with six non-dimensional parameters was obtained as below formulations 

in Eq. (3.23). 

This regression analysis is based on 72 groups measured data out of total 

144 cases, in which all the irregular wave data are utilized as they show good 

stability for an estimation model. As can be found in Figure 3-22, 3-24, 3-27, 3-

30 and 3-32, change of variables will cause predictable changes on transmission 

and dissipation coefficient, also found on reflection. Meanwhile, circumstance 

also apply to incident wave characters, especially when discussing the wave 

steepness and wave depth to wave length ratio.  

The estimation orientation formulas which we can call them tentative 

models for transmission and dissipation estimation show perfect agreement 

with the measured 𝒦𝑇 and 𝒦𝐷, plots are presented in Figure 3-48 and 3-49. The 

R squared are 0.82 and 0.66 which mean the square of correlation coefficient 

between the measured and estimated values, and the absolute root mean square 

error in the estimation regression analysis are ±6.43% and ±9.69%.  

There some points worth mentioning for the application of the tentative 

models.  Constant coefficients of variables tell that wave height and wave length 

are predominant factors to wave control performance of a submerged inclined  
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Figure 3-48 Measured 𝒦𝑇 versus Estimated 𝒦𝑇.  

 

 

Figure 3-49 Measured 𝒦𝐷 versus Estimated 𝒦𝐷.  
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plate breakwater when water depth is uniform, it is obvious that the submerged 

inclined plate breakwater will be more popular in a higher incident wave height 

and shorter wave length condition. Comparing with incident wave characters, 

plate geometry is minor on influnence, among variables the plate inclination is 

dominated variable when plate is solid, as higher porosity does not attribute 

lower transmission. Plate roughness is helpful on decreasing the transmission 

coefficient but just in a limit contend, on the contrary roughness will cause more 

wave breaking so that it can be assumed that plate roughness is more helpful 

on increasing wave energy dissipation. 

The tentative model shows valuable property, coefficients in regression 

formulas can mirror significant parameters. The most significant is water depth 

to wave length ratio d/L, the second is the wave steepness Hi /L , as their 

corresponding coefficients are far bigger than the other one, the wave height to 

submergence ratio Hi/D. The coefficients in formulas verify experimental results 

well. 
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Chapter 4  

Conclusion 

 

To evaluate the wave deformation over the inclined plate breakwater, analytical 

model is established and employed for the analysis and the experiment was 

carried out. 

Because the eigenfuction matching method can merely resolve horizontal 

plate with horizontal and vertical transboundaries, a step-like approximate 

method is integrated and the reflection and transmission coefficients were 

obtained to describe wave deformation over plate. 

Main results from application of analytical show some conculsions. 

• The analytical model shows good agreement on accuracy camparing 

to the boundary element method and the finite element method, in 

addition this model also calculate less elements with efficiency. 

• Analytical result show inclination and plate submergence dominate 

performance of submerged inclined plate. Transmission coefficient of 

the submerged inclined plate breakwater decreases with  increase of 

the submerged plate inclination, and the increasing and decreasing 

trend are similar in the variation of inclination. And the smaller the 

plate submergence is, the better the plate deforme incident wave. 

• Primery comparisons indicated wave steepness may be another 

importance vatiable which is important to wave control.  
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For purpose of discovering dissipation mechanisms, submerged inclined 

plate breakwater with different cinlination were studied with wave breaking 

analysis.  

• Plate inclination attributes to lower wave transmission meanwhile 

higher reflection which fits the results of analytical model. 

• Propagation process over submerged horizontal plate is consist of two 

interactions: at the beginning edge of plate, wave profile deformed 

because of sudden water depth change with a visible wave reflection 

transmit to incident direction; and the deformed wave crest travels 

without breaking to the end edge of plate and finally broken until 

wave over topping to the region behind plate, wave reflection also 

takes place when wave broken. 

• Reflection from the submerged horizontal plateis is different on 

mechanism compared with the submerged inclined plate, as reflection 

from horizontal plate is mainly due to partial obstruction of plate 

foreward edge and the back flow from backward edge.  

For purpose of improving submerged inclined plate breakwater, roughness 

and pososity were studied to increase wave energy dissipation. 

• Slots on plate help water mass exchange from the region beneath 

plate to the region above plate before wave crest travelling to plate; 

in other words, solid plate attributes to prevent water particles to 

orbiting by its original way which cause phase lag of wave on both 

side of plate and wave breaking over plate. 

• Plate with roughness causes more disturbance of water wave to 

generate more chaos which does not allow movement or propagation 

of wave profile, in other words, roughness attributes to cause wave 

propagation lag above plate, which makes it easy to break over plate, 

this effect will significant when incident wave height become higher.  
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Appendix 

 

Appendix A  The Solution to Complex Linear Dispersion 

 

In free surface water regions, the linear dispersion relation can be described as 

below in Eq. A.1. 

 𝛼 + 𝑘𝑛 tan 𝑘𝑛ℎ = 0     𝑛 = 0, 1, 2⋯ (A.1 ) 

where the 𝑘𝑛  is roots of dispersion relation equation; {±𝑘0; }  are a pair of 

imaginary roots; {±𝑘𝑛; 𝑛 = 1, 2, 3⋯ } are positive real roots and negative roots. 

In addition, the real root of linear dispersion relation distribution can be 

confirmed that 𝑘𝑛ℎ ∈ ((𝑛 − 1 2⁄ 𝜋), 𝑛𝜋), which means the real roots uniformly lie 

on the x-axis in nearly each 1 2⁄ 𝜋 distance. 

For convenience, we give a form of a function as 

 𝒟(𝛼, 𝑘𝑛, ℎ) = (𝛼ℎ) + (𝑘𝑛ℎ) tan(𝑘𝑛ℎ)      𝑛 = 0, 1, 2⋯ (A.2 ) 

where 𝑘𝑛ℎ can be regarded as a dimensionless wavenumber. 

Then Eq. A.2 becomes a none dimensional equation. 

 𝒟(𝛼̂, 𝑘̂𝑛) = (𝛼̂) + (𝑘̂𝑛) tan(𝑘̂𝑛)      0, 1, 2⋯ (A.3 ) 

It is a circumstance of roots approximations, and the Newton-Raphson method 

are a successively tool to the approach.  
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The idea of method is starting an initial guess which is close enough to the root, 

then by re-approximating the x-intercepts of tangent line of the function, the value of x 

when then tangent line cross to x-axis, and the new x-intercept is then used as the new 

guess. 

Solving for 𝑘̂𝑛+1 , when 𝑘̂1 is an initial guess, then gives one root approximately. 

 𝑘̂𝑛+1 = 𝑘̂𝑛 −
𝑘̂𝑛 tan 𝑘̂𝑛 + 𝛼̂

tan 𝑘̂𝑛 + 𝑘̂𝑛 sec2 𝑘̂𝑛
 (A.4 ) 

While it is worth to say that finding a good initial guess value is another very 

important issue and the dispersion relation tells that 𝑘𝑛ℎ ∈ ((𝑛 − 1 2⁄ 𝜋), 𝑛𝜋)  are 

reasonable guess for this method. It is very worth to note that the value of 𝛼̂ affect the 

difficulty of approximate when processing on computer, as when 𝛼̂  is enough, for 

example, the roots 𝑘𝑛ℎ lie much closer to 𝑛𝜋 when 𝛼̂ is 0.01 than 1.00.  

 

 

Figure A-1 Locations of Dispersion Real Roots for Different 𝜶̂ 
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Appendix B  The Application of Eigenfunctions Orthogonality 

 

Substituting the matching boundary conditions into general expressions of 

velocity potential and replace the infinity of the upper limits of summation by a 

finite number 𝑁, which means the amount of evanescent wave we chose and 

follows to  𝑁 = 𝑁𝐴 + 𝑁𝐵 + 1 , and one should notice that  𝑁𝐴 𝑁𝐵⁄ = 𝑑 (ℎ − 𝑑)⁄  , 

then we have Eq. (A. 5), 

𝒜0Ζ(𝑘0
ℎ𝑧) +∑ℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

=

{
  
 

  
 
∑(𝒞𝑛 + 𝒟𝑛𝑒

−2𝑘𝑛
𝑑𝐿) Ζ(𝑘𝑛

𝑑𝑧) ,    − 𝑑 < 𝑧 < 0

𝑁𝐴

𝑛=0

∑(ℰ𝑛 + ℱ𝑛𝑒
−2𝜆𝑛𝐿)Ζ(𝜆𝑛𝑧),

𝑁𝐵

𝑛=0

    − ℎ < 𝑧 < −𝑑

 

(A.5 ) 

−𝑘0
ℎ𝒜0Ζ(𝑘0

ℎ𝑧) +∑𝑘𝑛
ℎℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

=

{
  
 

  
 
∑𝑘𝑛

𝑑 (−𝒞𝑛 + 𝒟𝑛𝑒
−2𝑘𝑛

𝑑𝐿) Ζ(𝑘𝑛
𝑑𝑧) ,    − 𝑑 < 𝑧 < 0

𝑁𝐴

𝑛=0

∑𝜆𝑛(−ℰ𝑛 + ℱ𝑛𝑒
−2𝜆𝑛𝐿)Ζ(𝜆𝑛𝑧) ,    − ℎ < 𝑧 < −𝑑

𝑁𝐵

𝑛=0

 

∑𝒢𝑛Ζ(𝑘𝑛
ℎ𝑧)

𝑁

𝑛=0

=

{
  
 

  
 
∑(𝒞𝑛𝑒

−2𝑘𝑛
𝑑𝐿 + 𝒟𝑛) Ζ(𝑘𝑛

𝑑𝑧) ,    − 𝑑 < 𝑧 < 0

𝑁𝐴

𝑛=0

∑(ℰ𝑛𝑒
−2𝜆𝑛𝐿 + ℱ𝑛)Ζ(𝜆𝑛𝑧) ,    − ℎ < 𝑧 < −𝑑

𝑁𝐵

𝑛=0

 

∑−𝑘𝑛
ℎ𝒢𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

=

{
  
 

  
 
∑𝑘𝑛

𝑑 (−𝒞𝑛𝑒
−2𝑘𝑛

𝑑𝐿 + 𝒟𝑛) Ζ(𝑘𝑛
𝑑𝑧) ,    − 𝑑 < 𝑧 < 0

𝑁𝐴

𝑛=0

∑𝑘𝑛
𝑑(−ℰ𝑛𝑒

−2𝜆𝑛𝐿 + ℱ𝑛)Ζ(𝜆𝑛𝑧) ,    − ℎ < 𝑧 < −𝑑

𝑁𝐵

𝑛=0

 

Expanding all expressions, we can multiply each equation by Ζ(𝑘𝑚
ℎ 𝑧) and 

integrate them from  −𝑑 to 0 or  −ℎ to  −𝑑 separately, and 𝑚 is a coefficient of 

height mode.  
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for −𝑑 < 𝑧 < 0 and 𝑚 = 0, 1, 2,⋯ ,𝑁𝐴, 

∫[𝒜0Ζ(𝑘0
ℎ𝑧) +∑ℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐴

𝑛=0

]

0

−𝑑

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫ [∑(𝒞𝑛 + 𝒟𝑛𝑒

−2𝑘𝑛
𝑑𝐿)Ζ(𝑘𝑛

𝑑𝑧)

𝑁𝐴

𝑛=0

]

0

−𝑑

Ζ(𝑘𝑚
ℎ 𝑧)dz 

(A.6 ) 

∫[−𝑘0
ℎ𝒜0Ζ(𝑘0

ℎ𝑧) +∑𝑘𝑛
ℎℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐴

𝑛=0

]

0

−𝑑

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫ [∑𝑘𝑛

𝑑(−𝒞𝑛 + 𝒟𝑛𝑒
−2𝑘𝑛

𝑑𝐿)Ζ(𝑘𝑛
𝑑𝑧)

𝑁𝐴

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−𝑑

 

∫[∑𝒢𝑛Ζ(𝑘𝑛
ℎ𝑧)

𝑁𝐴

𝑛=0

]

0

−𝑑

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫ [∑(𝒞𝑛𝑒

−2𝑘𝑛
𝑑𝐿 + 𝒟𝑛)Ζ(𝑘𝑛

𝑑𝑧)

𝑁𝐴

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−𝑑

 

∫[∑−𝑘𝑛
ℎ𝒢𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐴

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)dz

0

−𝑑

= ∫ [∑𝑘𝑛
𝑑(−𝒞𝑛𝑒

−2𝑘𝑛
𝑑𝐿 + 𝒟𝑛)Ζ(𝑘𝑛

𝑑𝑧)

𝑁𝐴

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−𝑑

 

and for −ℎ < 𝑧 < −𝑑 and 𝑚 = 𝑁𝐴 + 1,𝑁𝐴 + 2, 𝑁𝐴 + 3,⋯ , 𝑁. 

∫ [𝒜0Ζ(𝑘0
ℎ𝑧) +∑ℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐵

𝑛=0

]

−𝑑

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫ [∑(ℰ𝑛 + ℱ𝑛𝑒

−2𝜆𝑛𝐿)Ζ(𝜆𝑛𝑧)

𝑁𝐵

𝑛=0

]

−𝑑

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧 

(A.7 ) 

∫ [−𝑘0
ℎ𝒜0Ζ(𝑘0

ℎ𝑧) +∑𝑘𝑛
ℎℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐵

𝑛=0

]

−𝑑

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫[∑𝜆𝑛(−ℰ𝑛 + ℱ𝑛𝑒

−2𝜆𝑛𝐿)Ζ(𝜆𝑛𝑧)

𝑁𝐵

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−𝑑

 

∫ [∑𝒢𝑛Ζ(𝑘𝑛
ℎ𝑧)

𝑁𝐵

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)dz

−𝑑

−ℎ

= ∫ [∑(ℰ𝑛𝑒
−2𝜆𝑛𝐿 +ℱ𝑛)Ζ(𝜆𝑛𝑧)

𝑁𝐵

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

−𝑑

−ℎ

 

∫ [∑−𝑘𝑛
ℎ𝒢𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁𝐵

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)dz

−𝑑

−ℎ

= ∫ [∑𝑘𝑛
𝑑(−ℰ𝑛𝑒

−2𝜆𝑛𝐿 +ℱ𝑛)Ζ(𝜆𝑛𝑧)

𝑁𝐵

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

−𝑑

−ℎ

 

We can combine the Eq. (A. 6) and Eq. (A. 7), which have similar forms in 

two different ranges, into a new equation by defining the eigenfunctions as the 

Eq. (A. 8) shows, 

 Ε(𝜅𝑛𝑧) = {
Ζ(𝑘𝑛

𝑑𝑧) ,      − 𝑑 < 𝑧 < 0

Ζ(𝜆𝑛𝑧) ,      − ℎ < 𝑧 ≤ 𝑑

 (A.8 ) 

where, 



 
- 104 - 

 𝜅𝑛 = {
𝑘𝑛
𝑑 ,      − 𝑑 < 𝑧 < 0

𝜆𝑛 ,      − ℎ < 𝑧 ≤ 𝑑

 (A.9 ) 

the equation set can be rewrite as Eq. (A. 10), 

∫[𝒜0Ζ(𝑘0
ℎ𝑧) +∑ℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

]

0

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫ [∑(𝒮𝑛

𝒞ℰ + 𝒯𝑛
𝒟ℱ𝑒−2𝜅𝑛𝐿)Ε(𝜅𝑛𝑧)

𝑁

𝑛=0

]

0

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz 

(A.10 ) 

∫[−𝑘0
ℎ𝒜0Ζ(𝑘0

ℎ𝑧) +∑𝑘𝑛
ℎℬ𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

]

0

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫[∑𝜅𝑛(−𝒮𝑛

𝒞ℰ + 𝒯𝑛
𝒟ℱ𝑒−2𝜅𝑛𝐿)Ε(𝜅𝑛𝑧)

𝑁

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−ℎ

 

∫ [∑𝒢𝑛Ζ(𝑘𝑛
ℎ𝑧)

𝑁

𝑛=0

]

0

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = ∫[∑(𝒮𝑛

𝒞ℰ𝑒−2𝜅𝑛𝐿 + 𝒯𝑛
𝒟ℱ)Ε(𝜅𝑛𝑧)

𝑁

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−ℎ

 

∫[∑−𝑘𝑛
ℎ𝒢𝑛Ζ(𝑘𝑛

ℎ𝑧)

𝑁

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)dz

0

−ℎ

= ∫ [∑𝜅𝑛(−𝒮𝑛
𝒞ℰ𝑒−2𝜅𝑛𝐿 + 𝒯𝑛

𝒟ℱ)Ε(𝜅𝑛𝑧)

𝑁

𝑛=0

] Ζ(𝑘𝑚
ℎ 𝑧)𝑑𝑧

0

−ℎ

 

where, 

 ∑𝒮𝑛
𝒞ℰ

𝑁

𝑛=0

=

{
  
 

  
 
∑𝒞𝑛

𝑁𝐴

𝑛=0

,      − 𝑑 < 𝑧 < 0

∑ℰ𝑛

𝑁𝐵

𝑛=0

,      − ℎ < 𝑧 ≤ 𝑑

 

(A.11 ) 
 

∑𝒯𝑛
𝒟ℱ

𝑁

𝑛=0

=

{
  
 

  
 
∑𝒟𝑛

𝑁𝐴

𝑛=0

,      − 𝑑 < 𝑧 < 0

∑ℱ𝑛

𝑁𝐵

𝑛=0

,      − ℎ < 𝑧 ≤ 𝑑
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Here one key point should note that the eigenfunctions are orthogonal, this 

can be used to simplify the result of integration. 

 ∫Ζ(𝑘𝑛𝑧)

0

−ℎ

Ζ(𝑘𝑚𝑧)dz = 𝒳𝑛δ𝑛𝑚 

(A.12 ) 

 ∫ Ζ(𝜆𝑛𝑧)

−𝑑

−ℎ

Ζ(𝜆𝑚𝑧)dz = 𝒵𝑛δ𝑛𝑚 

∫Ε(𝜅𝑛𝑧)

0

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz = 𝒴𝑛𝑚 =

{
 
 
 

 
 
 
∫Ζ(𝑘𝑚

𝑑 𝑧)

0

−𝑑

Ζ(𝑘𝑚
ℎ 𝑧)dz,      − 𝑑 < 𝑧 < 0

∫ Ζ(𝜆𝑛𝑧)

−𝑑

−ℎ

Ζ(𝑘𝑚
ℎ 𝑧)dz,      − ℎ < 𝑧 ≤ 𝑑

 

where, 

 𝒳𝑛 =
ℎ

2 cos2 𝑘𝑛ℎ
(
sin 2𝑘𝑛ℎ

2𝑘𝑛ℎ
+ 1) 

(A.13 ) 

 𝒵𝑛 = {
ℎ − 𝑑,            𝑛 = 0
1

2
(ℎ − 𝑑),     𝑛 ≠ 0

 

and δ𝑚𝑛 is called ‘Kronecker delta’ defined by δ𝑛𝑚 = 1 if 𝑛 = 𝑚, and  δ𝑛𝑚 = 0 if 

𝑛 ≠ 𝑚. 
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Appendix C  General Approach to Submerged Inclined Plate Model 

 

Process of computation based on frequency domain analysis of wave and plate 

interaction in the assumption of linear wave potential theory can be explained 

through several initial variables definition which refer to plate state conditions, 

wave state conditions and the discrete number of inclined plate. In addition to 

the normal signal horizontal plate modelling problem, coupled consideration for 

inclined plate is applied in model and accomplished for further observation of 

velocity and wave profile deformation. 

 

Figure A-3 Schematic Diagram of Modelling Processes. 

The codes for computational comprise several main modules and the logical 

relation for variables and their results are shown in diagram in Figure A-3. 
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decreat.m 

 
function P = decreat(L,hm,th,in,J,r) 

 

% By Y. WANG @TUMSAT Jan.2017. 

 

% INPUTs 

% L: The total length of plate. 

% hm: The submergence of the middle point of plate. 

% th: The thickness of each part of plates, assuming uniform. 

% in: The slope of the plate, denote by %% in = tan alpha %%. 

% J: The number of plate. 

% r: Mean Porosity when considering gap between plates. 

% q: (length of 1st gap)/(length of 1st plate). 

% q=(r/(J-1))*(J/(1-r)) 

% r=(q*(J-1))/(J+q*(J-1)) 

 

% OUTPUTs 

% P:  The patameters of plates. 

% P = [submergence, plate length, plate thickness, midpoint coordinate] 

 

if nargin == 5 

    r = 0; 

end 

counts = J - 1;  

hestep = L * in / J; 

if counts == 0; 

    lestep = 0; 

else 

    lestep = L * (1-r) / J + L * r / counts; 

end 

leinit = L * (1-r) / J /2; 

if (mod(counts,2) == 0) 

    heinit = hm - hestep * (counts / 2); 

    else 

        heinit = hm - hestep * ((J / 2 - 1) + 0.5); 

end 

dj = zeros(J,1);  

xj = zeros(J,1); 

for i=1:J; 

    dj(i,1) = heinit + (i-1) * hestep; 

    xj(i,1) = leinit + (i-1) * lestep; 

end 

lj = ones(J,1) * L * (1-r) / J;  

tj = ones(J,1) *th; 

P(:,1) = dj;  

P(:,2) = lj;  

P(:,3) = tj;  

P(:,4) = xj; 
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dispersion_free_surface.m 

 
function mroots = dispersion_free_surface(alpha,N,h) 

 

% calculates positive imaginary and N first positive real solutions of 

alpha = k*tanh(k h) 

% Modified by Y. WANG @TUMSAT @June, 2016. 

% Codes from 

https://www.math.auckland.ac.nz/~meylan/code/dispersion/dispersion_free_s

urface.m 

% guess with linear expansion and a linear expansion. 

% The first roots are positive imaginary and the next are the first N 

positive real ordered from smallest. 

 

% maincode 

% If the value for h is not given the default value is h = 1; it would be 

easy to write a much faster program for only real alpha 

if nargin == 2 

    h = 1; 

else 

    alpha = h*alpha;  

end 

mroots = zeros(1,N+1); 

if N ==0;  

    count = 0; 

    mroots(count+1) = homotopy(alpha,count); 

else 

    count = 0; 

    mroots(count+1) = homotopy(alpha,count); 

    count = count + 1; 

    while 0 <= 1 

        mroots(count+1) = homotopy(alpha,count); 

        if abs(mroots(count + 1) - (1i*count*pi + alpha/(1i*count*pi))) < 

0.01 

            while 0 <=1 

                mroots(count + 1) = oneroot(alpha,1i*count*pi + 

alpha/(1i*count*pi)); 

                if abs(mroots(count + 1) - (1i*count*pi + 

alpha/(1i*count*pi))) < 1e-8 

                    mroots(count+1:N+1) = 1i*(count:N)*pi + 

alpha./(1i*(count:N)*pi); 

                    count = N; 

                    break 

                end 

                if count ==N 

                    break 

                end 

                count = count + 1; 

            end 

        end 

        if count == N 

            break 

        end 

        count = count +1; 

    end 

     

end 

mroots = -1i/h*mroots; 

 



 

 
- 109 - 

% subcode 01 

function mroot = homotopy(alpha,N) 

if N == 0; 

   mroot = oneroot(1,1); 

else 

   mroot = oneroot(1,1i*N*pi); 

end 

step =0.05; 

if abs(alpha) < 1 

    alphastep = ([1:-step:abs(alpha),abs(alpha)]); 

else 

    alphastep = ([1:step:abs(alpha),abs(alpha)]); 

end 

  

for k=2:length(alphastep) 

        mroot = oneroot(alphastep(k),mroot); 

end 

  

if angle(alpha) > 0 

    alphastep = abs(alpha)*exp(1i*[0:pi/30:angle(alpha),angle(alpha)]); 

else 

    alphastep = abs(alpha)*exp(1i*[0:-pi/30:angle(alpha),angle(alpha)]); 

end 

  

for k=2:length(alphastep) 

   mroot = oneroot(alphastep(k),mroot); 

end 

   

% subcode 02 

function out = oneroot(alpha,guess) 

 

ans1 = guess+1; 

out = guess; 

while abs(ans1 - out) > 1e-9 

    ans1 = out; 

    out = ans1 - f(ans1,alpha)/difff(ans1); 

end 

  

% subcode 03 

function out = f(z,alpha) 

out = z*tanh(z) - alpha; 

  

% subcode 04 

function out = difff(z) 

out = tanh(z) + z*sech(z).^2; 
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big_matrix.m 

 
function M = big_matrix(J,N,ka0,kaj,laj,xl,xr,iz,il,ie,ez,el,ze,le) 

 

% By Y. WANG @TUMSAT Oct.2016. 

  

% INPUTs 

% J:     The number of plate. 

% N:     The number of evanescent wave modes. 

% ka0:   Wavenumber for free water which depth is h. 

% kaj:   Wavenumber for free water which depth is dj. 

% laj:   Wavenumber for water beneath plate. 

% xl:    Boundary calculate coordinate in left side of plate. 

% xr:    Boundary calculate coordinate in right side of plate. 

 

% OUTPUTs 

% M: Matrix for Aj_n, Bj_n, Cj_n, Dj_n, Ej_n, Fj_n, Aj+1_n and Bj_n+1. 

 

kayser0 = ka0; 

kayserj = kaj; 

lambdaj = laj; 

xjl = xl; 

xjr = xr; 

IZ = iz; 

IL = il; 

IE = ie; 

EZ = ez; 

EL = el; 

ZE = ze; 

LE = le; 

M = zeros((6*J+2)*(N+1),(6*J+2)*(N+1)+1); 

  

% In M, values are arranged below, for example J = 1. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Aj_0-N  Bj_0-N  Cj_0-N  Dj_0-N  Ej_0-N  Fj_0-N  Aj+1_0-N  Bj+1_0-N 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Eqs 1   M21     M22     M23     M24     0.0     0.0      0.0      0.0 

% Eqs 2   M31     M32     0.0     0.0     M35     M36      0.0      0.0 

% Eqs 3   M11     M12     M13     M14     M15     M16      0.0      0.0 

% Eqs 4   0.0     0.0     M43     M44     0.0     0.0      M47      M48   

% Eqs 5   0.0     0.0     0.0     0.0     M55     M56      M67      M58   

% Eqs 6   0.0     0.0     M63     M64     M65     M66      M67      M68 

% incid   M71     0.0     0.0     0.0     0.0     0.0      0.0      0.0 

% refle   0.0     0.0     0.0     0.0     0.0     0.0      0.0      M88 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

zero = zeros(N+1,N+1,J); 

% In matrix Mxx values are in this table. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%        n=0  n=1  n=2  n=3   ...   n=N 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  m=0 

%  m=1 

%  m=2 

%  m=3 

%  ... 

%  m=M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Mxx is consist of R, S or T which are consist of r, s or t. 

% rr, ss or tt are eigenfunctions results which is decided by j, m and n. 
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R1 = zero;  R2 = zero;  R3 = zero; 

S1 = zero;  S2 = zero; 

T1 = zero;  T3 = zero; 

for j = 1:J; 

    for n =1:N+1; 

        R1(:,n,j) = IE(:,n,j)*kayser0(1,n); 

        R2(:,n,j) = ZE(:,n,j)*kayserj(j,n); 

        R3(:,n,j) = LE(:,n,j)*lambdaj(j,n); 

         

        S1(:,n,j) = EZ(:,n,j); 

        S2(:,n,j) = IZ(:,n,j); 

         

        T1(:,n,j) = EL(:,n,j); 

        T3(:,n,j) = IL(:,n,j); 

    end 

end 

 

for j = 1:J; 

    for m = 0:N; 

        for n = 0:N; 

            % For left potential matching equation in region 1 2. 

            % They will in the 1st row. 

            M((6*j-6)*(N+1)+(m+1),(6*j-6)*(N+1)+(n+1)) = 

S1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjl(j)))                   *(-1);%A 

            M((6*j-6)*(N+1)+(m+1),(6*j-5)*(N+1)+(n+1)) = 

S1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjl(j)))                   *(-1);%B 

            M((6*j-6)*(N+1)+(m+1),(6*j-4)*(N+1)+(n+1)) = 

S2(m+1,n+1,j)*(exp(-1*kayserj(j,n+1)*xjl(j))) *(-1)             *(-1);%C 

            M((6*j-6)*(N+1)+(m+1),(6*j-3)*(N+1)+(n+1)) = 

S2(m+1,n+1,j)*(exp(+1*kayserj(j,n+1)*xjl(j))) *(-1)             *(-1);%D 

  

            % For left potential matching equation in region 1 3. 

            % They will in the 2nd row. 

            M((6*j-5)*(N+1)+(m+1),(6*j-6)*(N+1)+(n+1)) = 

T1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjl(j)));                         %A 

            M((6*j-5)*(N+1)+(m+1),(6*j-5)*(N+1)+(n+1)) = 

T1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjl(j)));                         %B 

            M((6*j-5)*(N+1)+(m+1),(6*j-2)*(N+1)+(n+1)) = 

T3(m+1,n+1,j)*(exp(-1*lambdaj(j,n+1)*xjl(j))) *(-1);                   %E 

            M((6*j-5)*(N+1)+(m+1),(6*j-1)*(N+1)+(n+1)) = 

T3(m+1,n+1,j)*(exp(+1*lambdaj(j,n+1)*xjl(j))) *(-1);                   %F 

            M((6*j-5)*(N+1)+(m+1),(6*j-1)*(N+1)+(0+1)) = 

T3(m+1,0+1,j)*(exp(+1*lambdaj(j,0+1)*xjl(j)))* xjl(j)*(-

1);            %F0  A SPECIAL PLACE 

             

            % For left velocity matching equation in region 1 2 3. 

            % They will in the 3rd row. 

            M((6*j-4)*(N+1)+(m+1),(6*j-6)*(N+1)+(n+1)) = 

R1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjl(j)))         *(-1);           %A 

            M((6*j-4)*(N+1)+(m+1),(6*j-5)*(N+1)+(n+1)) = 

R1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjl(j)));                         %B 

            M((6*j-4)*(N+1)+(m+1),(6*j-4)*(N+1)+(n+1)) = 

R2(m+1,n+1,j)*(exp(-1*kayserj(j,n+1)*xjl(j))) *(-1)   *(-1);           %C 

            M((6*j-4)*(N+1)+(m+1),(6*j-3)*(N+1)+(n+1)) = 

R2(m+1,n+1,j)*(exp(+1*kayserj(j,n+1)*xjl(j))) *(-1);                   %D 

            M((6*j-4)*(N+1)+(m+1),(6*j-2)*(N+1)+(n+1)) = 

R3(m+1,n+1,j)*(exp(-1*lambdaj(j,n+1)*xjl(j))) *(-1)   *(-1);           %E 

            M((6*j-4)*(N+1)+(m+1),(6*j-1)*(N+1)+(n+1)) = 

R3(m+1,n+1,j)*(exp(+1*lambdaj(j,n+1)*xjl(j))) *(-1);                   %F 
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            M((6*j-4)*(N+1)+(m+1),(6*j-1)*(N+1)+(0+1)) = 

LE(m+1,0+1,j)*(exp(+1*lambdaj(j,0+1)*xjl(j))) *(-

1);                   %F0  A SPECIAL PLACE 

             

            % For right potential matching equation in region 1 2. 

            % They will in the 4th row. 

            M((6*j-3)*(N+1)+(m+1),(6*j-4)*(N+1)+(n+1)) = 

S2(m+1,n+1,j)*(exp(-1*kayserj(j,n+1)*xjr(j))) *(-1)              *(-1);%C 

            M((6*j-3)*(N+1)+(m+1),(6*j-3)*(N+1)+(n+1)) = 

S2(m+1,n+1,j)*(exp(+1*kayserj(j,n+1)*xjr(j))) *(-1)              *(-1);%D 

            M((6*j-3)*(N+1)+(m+1),(6*j-0)*(N+1)+(n+1)) = 

S1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjr(j)))                    *(-1);%A 

            M((6*j-3)*(N+1)+(m+1),(6*j+1)*(N+1)+(n+1)) = 

S1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjr(j)))                    *(-1);%B 

             

            % For right potential matching equation in region 1 3. 

            % They will in the 5th row. 

            M((6*j-2)*(N+1)+(m+1),(6*j-2)*(N+1)+(n+1)) = 

T3(m+1,n+1,j)*(exp(-1*lambdaj(j,n+1)*xjr(j))) *(-1);                   %E 

            M((6*j-2)*(N+1)+(m+1),(6*j-1)*(N+1)+(n+1)) = 

T3(m+1,n+1,j)*(exp(+1*lambdaj(j,n+1)*xjr(j))) *(-1);                   %F 

            M((6*j-2)*(N+1)+(m+1),(6*j-0)*(N+1)+(n+1)) = 

T1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjr(j)));                         %A 

            M((6*j-2)*(N+1)+(m+1),(6*j+1)*(N+1)+(n+1)) = 

T1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjr(j)));                         %B 

            M((6*j-2)*(N+1)+(m+1),(6*j-1)*(N+1)+(0+1)) = 

T3(m+1,0+1,j)*(exp(+1*lambdaj(j,0+1)*xjr(j))) *xjr(j)*(-

1);            %F0  A SPECIAL PLACE 

             

            % For right velocity matching equation in region 1 2 3. 

            % They will in the 6th row. 

            M((6*j-1)*(N+1)+(m+1),(6*j-4)*(N+1)+(n+1)) = 

R2(m+1,n+1,j)*(exp(-1*kayserj(j,n+1)*xjr(j))) *(-1)    *(-1);          %C 

            M((6*j-1)*(N+1)+(m+1),(6*j-3)*(N+1)+(n+1)) = 

R2(m+1,n+1,j)*(exp(+1*kayserj(j,n+1)*xjr(j))) *(-1);                   %D 

            M((6*j-1)*(N+1)+(m+1),(6*j-2)*(N+1)+(n+1)) = 

R3(m+1,n+1,j)*(exp(-1*lambdaj(j,n+1)*xjr(j))) *(-1)    *(-1);          %E 

            M((6*j-1)*(N+1)+(m+1),(6*j-1)*(N+1)+(n+1)) = 

R3(m+1,n+1,j)*(exp(+1*lambdaj(j,n+1)*xjr(j))) *(-1);                   %F 

            M((6*j-1)*(N+1)+(m+1),(6*j-0)*(N+1)+(n+1)) = 

R1(m+1,n+1,j)*(exp(-1*kayser0(1,n+1)*xjr(j)))          *(-1);          %A 

            M((6*j-1)*(N+1)+(m+1),(6*j+1)*(N+1)+(n+1)) = 

R1(m+1,n+1,j)*(exp(+1*kayser0(1,n+1)*xjr(j)));                         %B 

            M((6*j-1)*(N+1)+(m+1),(6*j-1)*(N+1)+(0+1)) = 

LE(m+1,0+1,j)*(exp(+1*lambdaj(j,0+1)*xjr(j))) *(-

1);                   %F0  A SPECIAL PLACE 

  

            % For incident wave condition. 

            % They will in the 7th row. 

            M((6*J-0)*(N+1)+(m+1),(6*1-6)*(N+1)+(m+1)) = 1; 

            M((6*J-0)*(N+1)+(0+1),(6*J+2)*(N+1)+(0+1)) = 1; 

             

            % For reflect wave condition. 

            % They will in the 8th row. 

            M((6*J+1)*(N+1)+(m+1),(6*J+1)*(N+1)+(m+1)) = 1; 

        end 

    end 

end 
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submerged_plate.m 

 
function [An,Bn,Cn,Dn,En,Fn,Cr,Ct] = submerged_plate(alpha,h,N,J,P) 

 

% By Y. WANG @TUMSAT Oct.2016. 

% INPUTs 

% alpha: The radian frequency squared over g, omiga^2/g. 

% h:     The water depth.  

% N:     The number of evanescent wave modes. 

% J:     The number of plate. 

% P:     The parameters of plates. 

% P = [submergence,plate length,plate thickness,midpoint coordinate] 

% OUTPUTs 

% Bj_n,Cj_n,Dj_n,Ej_n,Fj_n,Aj+1_n are complex values in wave potential. 

 

% Step01 

% Get water and plate parameters from matrix P. 

% In matrix P values are in this table. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%          dj       lj       tj       xj 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  j = 1 

%  j = 2 

%  j = 3 

%   ... 

%  j = J 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

dj = P(:,1); 

lj = P(:,2); 

tj = P(:,3); 

xj = P(:,4); 

xjl = xj - 0.5*lj; 

xjr = xj + 0.5*lj; 

  

% Step02 

% Calculate the roots of the dispersion equation for the water. 

% In wavenumber matrix, values are arranged below. 

% For kayser0, 1st row is denoting with j =0 is wavenumber for depth h. 

% For kayserj, 1st row is denoting with j =1 is wavenumber for depth dj. 

% For example. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   n     0       1       2       3   ... N 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  j =1 

%  j =2 

%  j =3 

%   ... 

%  j =J 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

kayser0 = zeros(1,N+1); 

kayserj = zeros(J,N+1); 

lambdaj = zeros(J,N+1); 

kayser0(1,:) = dispersion_free_surface(alpha,N,h);  

for j = 1:J; 

    kayserj(j,:) = dispersion_free_surface(alpha,N,dj(j)); 

    for n = 0:N; 

        lambdaj(j,n+1) = -1*pi*n/(h - dj(j) - tj(j)); 

    end 

end 
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% Step03 

% Resemble the eigenfunction. 

% In eigenfunction matrix, values are arranged below. 

% For EPSI, 1st row is denoting with j =0 is eigenfunction for depth h. 

% For ZETA, 1st row is denoting with j =1 is eigenfunction for depth dj. 

% For LAMB, 1st row is denoting with j =1 is eigenfunction for depth dj. 

% For example. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   n     0       1       2       3   ... N 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  j =1 

%  j =2 

%  j =3 

%   ... 

%  j =J 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% EPSI = cos(kayser0*(z+ h))/cos(kayser0* h); 

% ZETA = cos(kayserj*(z+dj))/cos(kayser0*dj); 

% LAMB = cos(lambdaj*(z+ h)). 

  

% Step04 

% Taking advantage of the Orthogonality of eigenfunction. 

% A(alph)={EPSI0n;EPSI0m},{ZETAjn;ZETAjm} or {LAMBjn;LAMBjm}; 

% B(beta)={EPSI0n;ZETAjm},{EPSI0n;LAMBjm},{ZETAjn;EPSIjm} or 

{LAMBjn;EPSIjm}; 

zero = zeros(N+1,N+1,J); 

IE = zero;  IZ = zero;  IL = zero; 

EZ = zero;  EL = zero;  ZE = zero;  LE = zero; 

for j = 1:J; 

    for m = 0:N; 

        IE(m+1,m+1,j) = alph(-1*h,                0,kayser0(1,m+1),    

h)/(cos(kayser0(1,m+1)*h))^2; 

        IZ(m+1,m+1,j) = alph(-1*dj(j),            

0,kayserj(j,m+1),dj(j))/(cos(kayserj(j,m+1)*h))^2; 

        IL(m+1,m+1,j) = alph(-1*h, -1*(dj(j)+tj(j)),lambdaj(j,m+1),    

h); 

        for n = 0:N; 

            EZ(m+1,n+1,j) = beta(-1*dj(j),            

0,kayser0(1,n+1),kayserj(j,m+1),    

h,dj(j))/(cos(kayser0(1,n+1)*h)*cos(kayserj(j,m+1)*dj(j))); 

            EL(m+1,n+1,j) = beta(-1*h, -

1*(dj(j)+tj(j)),kayser0(1,n+1),lambdaj(j,m+1),    h,    h)/ 

cos(kayser0(1,n+1)*h); 

            ZE(m+1,n+1,j) = beta(-1*dj(j),            

0,kayserj(j,n+1),kayser0(1,m+1),dj(j),    

h)/(cos(kayserj(j,n+1)*dj(j))*cos(kayser0(1,m+1)*h)); 

            LE(m+1,n+1,j) = beta(-1*h, -

1*(dj(j)+tj(j)),lambdaj(j,n+1),kayser0(1,m+1),    h,    h)/ 

cos(kayser0(1,m+1)*h); 

        end 

    end 

end 

% A comparing part to the eigenfunction formulation, this part can be set 

as a note. 

IE0 = zero;  IZ0 = zero;  IL0 = zero; 

EZ0 = zero;  EL0 = zero;  ZE0 = zero;  LE0 = zero; 

for j = 1:J; 

    for m = 0:N; 
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        IE0(m+1,m+1,j) = 0.5    *h*(((sin(2*kayser0(1,m+1)      

*h))/(2*kayser0(1,m+1)    *h))+1)   /cos(kayser0(1,m+1)*h);   %r1 

        IZ0(m+1,m+1,j) = 

0.5*dj(j)*(((sin(2*kayserj(j,m+1)*(dj(j))))/(2*kayserj(j,m+1)*dj(j)))+1)   

/cos(kayserj(j,m+1)*dj(j));   %s2 

        IL0(m+1,m+1,j) = 0.5*(h-

(dj(j)+tj(j)));                                                                   

                %t3 

        IL0(  1,  1,j) = 1.0*(h-(dj(j)+tj(j))); 

        for n = 0:N; 

            EZ0(m+1,n+1,j) = ((kayser0(1,n+1)*sin(kayser0(1,n+1)*(h-

dj(j))))/((kayser0(1,n+1))^2-(kayserj(j,m+1))^2)*(-1))              

/cos(kayser0(1,n+1)*h); %s1 

            EL0(m+1,n+1,j) = ((kayser0(1,n+1)*sin(kayser0(1,n+1)*(h-

dj(j)-tj(j))))/((kayser0(1,n+1))^2-(lambdaj(j,m+1))^2)*(-1)^(m))    

/cos(kayser0(1,n+1)*h);  %t1 

            ZE0(m+1,n+1,j) = ((kayser0(1,m+1)*sin(kayser0(1,m+1)*(h-

dj(j))))/((kayserj(j,n+1))^2-(kayser0(1,m+1))^2))                   

/cos(kayserj(j,n+1)*dj(j)); %r2 

            LE0(m+1,n+1,j) = ((kayser0(1,m+1)*sin(kayser0(1,m+1)*(h-

dj(j)-tj(j))))/((kayser0(1,m+1))^2-(lambdaj(j,n+1))^2)*(-

1)^(n))    ;                             %r3 

        end 

    end 

end 

 

% Step05 

% Paraments matrix Mp and Results matrix. 

M = 

big_matrix(J,N,kayser0,kayserj,lambdaj,xjl,xjr,IZ0,IL0,IE0,EZ0,EL0,ZE0,LE

0); 

Mp = M(1:(6*J+2)*(N+1),1:(6*J+2)*(N+1)); 

Re = M(:,(6*J+2)*(N+1)+1); 

SOL = Mp\Re; 

  

% Step06 

An = zeros(J+1,(N+1)); 

Bn = zeros(J+1,(N+1)); 

Cn = zeros(J,(N+1)); 

Dn = zeros(J,(N+1)); 

En = zeros(J,(N+1)); 

Fn = zeros(J,(N+1)); 

for j = 1:J; 

    for n = 1:N+1; 

        An(j,n) = SOL((6*j-6)*(N+1)+n); 

        Bn(j,n) = SOL((6*j-5)*(N+1)+n); 

        Cn(j,n) = SOL((6*j-4)*(N+1)+n); 

        Dn(j,n) = SOL((6*j-3)*(N+1)+n); 

        En(j,n) = SOL((6*j-2)*(N+1)+n); 

        Fn(j,n) = SOL((6*j-1)*(N+1)+n); 

    end 

end 

for n = 1:N+1; 

    An(J+1,n) = SOL((6*J+0)*(N+1)+n); 

    Bn(J+1,n) = SOL((6*J+1)*(N+1)+n); 

end 

Cr = abs(Bn(1,1)); 

Ct = abs(An(J+1,1));   
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Appendix D  Incident and Reflection Separation for Regular Wave 

 

A flume experiment case with 2.00 cm wave height and 1.50 sec period as target 

parameters is introduced in detail. Profiles in two adjacent positions can be 

measured by two wave gauges, see Figure A-4. 

From the Eq. (3.1), the 𝐻̅∗  and 𝑇̅∗  are obtained by using zero crossing 

method,  𝑀∗  is average water level of measured profile, 𝜑∗  is measured and 

calculated by phase lag, for the sake of convenience in coding, a trying method 

is used for the convenient of computational calculation, which the results show 

in Eq. (A.14). The Figure A-5 illustrates how the program finds the most 

accurate initial phases of fitting curves; the error between measured and fitting 

wave profile can be observed in Figure A-6; and the final fitting result of wave 

profile shows in Figure A-7. 

 

 𝜂1
∗ =  

1

2
× 2.7369 × 𝑐𝑜𝑠(2𝜋 1.5⁄ + 2.1817) + (−0.0701) 

(A.14 ) 

 𝜂2
∗ =  

1

2
× 0.6956 × 𝑐𝑜𝑠(2𝜋 1.5⁄ + 1.5359) + (−0.0423) 

 

By utilizing the method mentioned in chapter 3, the sine and cosine values 

of composed wave at the first wave gauge location can be derived, and the results 

are: 𝐴1 = −0.7849, 𝐵1 = −1.1210, 𝐴2 = 0.0121 and 𝐴2 = −0.3476.  

The amplitude of incident and reflected wave and the corresponding phase 

are obtained, which the conclusive results are: 𝑎𝐼 = 0.9278, 𝑎𝑅 = 0.6904, 𝜑𝐼 =

−1.7055, 𝜑𝑅 = −3.4380 and the 𝒦𝑅 = 0.7411. 
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Figure A-5 Assumed Initial Phase at the Minimum Profile Error. 

 

 

Figure A-6 Magnified Measured Profiles and Fitting Profiles. 
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Figure A-7 Measured Profiles and Fitting Profiles. 

 

 

Figure A-8 Separated Wave Profiles of Gauges. 




