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Minimum Time Maneuvering of a Ship,
with Wind Disturbances

Kohei Ohtsu

Department of Marine Technology

Abstract.

A ship's minimum-time maneuvering problems in the face of wind disturbances are

formulated here as a nonlinear, two-point boundary-value problem in the calculus of variations,
where is solved using the conjugate gradient restoration method proposed by Micle et al.

Key Wozds. Ship's Minirmum-time Maneuvering , Two-Point Boundary-Value Problem, Conjugate

Gradient Restoration Method.

9 1. INTRODUCTION
e
It is very important for a ship’s master to

draw up a ship-handling plan before approaching
8 berth, leaving it, altering the heading and so on.
One possible way of finding a satisfactory plan in
advance is to use a ship-handling simulator, and
to choose the best method after various trials.
However, there are individual differences among
the ways chosen by those trials. Unlike this, a
mathematical method, using some optimal the-
ory, would be more reliable, if the mathematical
model representing a ship’s maneuvering motion
was accurate. However, it must be noted that the
model becomes highly nonlinear, especially at low
speeds and for large maneuvering motions such as
these used in berthing.

In order to take enough account of the nonlinear-
ity, the authors have formulated these problems
as a nonlinear, two-point boundary-value prob-
lem in the calculus of variations, This problem
has been solved, using the numerical method de-
veloped by Miele and his associates over the past
few years, called the conjugate gradient restora-
tion (CGR) method (Wu and Miele, 1980; Miele
and Iyer, 1970).

Unfortunately, though the solution does not yield
on-line control laws, it can be cohsidered that
the information or diagrams gained thereby are
useful for drawing up & maneuvering plan be-
fore the actual ship-handling is taken place. The
problems which have already been solved by us-

ing this method, can be listed as follows (Shoji,
1992; Ohtsu and Shoji, 1994):

1. The minimum-time course-alteration prob-
lem,

2. The minimum-time stopping problem,

3. The minimum-time parallel deviation prob-
lem .

However, all of these have previously been solved
under conditions with no disturbances.

The problems treated in this paper are two typ-
ical patterns in ship-handling with wind distur-
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bances. The ship chosen as the object of the study

is T.5.Shioji Maru (425 gross tonnage), which is
equipped with a bow and a stern thruster, besides
a rudder and a controllable-pitch propeller(CPP).

2. FORMULATION OF THE MINIMUM-TIME
MANEUVERING PROBLEM

2.1. Minimum-time Maneuvering Problem

Let the minimum-time maneuvering problem
treated here be defined as follows:

Assume that a ship is iravelling al a ceriain speed
in a given direction, at an initial approach point.
A ship’s master must make her alter course to
reach a destination point. Her bearing and speed
at the destination point are either free or given.
How should he steer her, and use her engine and
thrusters, in order to accomplish the work in the
mintmum time?
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2.2. The Formulation as @ Two-point Boundary-

value Problem
o

The problem stated above might be formulated as
two-point boundary-value problem in the calculus
of variations as follows:

Let = be defined as the n(= 4)-dimensional state
vector, whose elements are composed of the for-
ward speed u, the sideways speed v and the rate
of turn . u is the m(= 20r4)-dimensional control
vector, whose elements are rudder angle §, CPP
blade angle 8p and power of the bow and stern
thrusters, T} and T),, respectively. Furthermore, it
is assumed that the independent variable is repre-
sented by the actual time & but a time normaliza-
tion is used to simplify the computations. Thus, §
is replaced by the normalized time ¢ = 8 /7, which
is defined in such a way that the initial time is
t=0 and the final time is t=1. Since 7 is free in
the minimum-time maneuvering problem, this is
regarded as the parameter to be optimized.

Using the above notation, this type of minimum-
time maneuvering problem can be formulated as
follows (Shoji and Ohtsu, 1992):

Minimize the functional

I.-.*/olf(z,u,'r,t)dt=/°11dt=7' (1)

with respect to the state , the control « and the
7 which satisfy:
1) the differential constraints,

z — ¢(z,u,7,t) = 0, 0<t<1 (2)

where ¢ denotes a nonlinear hydrodynamic model
for representing ship’s motions, and
2) the boundary conditions:

i) The initial ship’s state,

z(0) = given. (3)

ii) The final state of the ship, specified by the
function
0

(#(=, 7)), = o, (4)

where the function # is 8 ¢ dimensional vee-
tor (0 < g < n).

In order to increase reslity, the non-differential
constraints:

S(u,r,t) = o, 0<t<1, (5)
may be added, by which it is possible to set the
maximum limits of rudder angle, propeller blade
angle, and power of the bow and stern thrusters,
to be applied.

Remarks: In many cases, the constraints on the
control variables are given by inequality equa-
tions. For example, since the rudder angle, §,
must be restricted to the hard-over angle of émau,

_6mas S 5 S 5mau (6)

must hold. In order to obtain the equality given
by eq.(5), introducing a new independent variable
of §4, q.(6) is transformed to-

8§ = bpnas Sinby. (7)

3. MATHEMATICAL MANEUVERING
MODEL

3.1. Basic Equatiion of Motion

Table 1 shows T.5.Shioji Maru's principal dimen-
sions.

Table 1 Principal Dimensions of T.5.Shioji Meru

Length 49.93 m
Breadth 10.00 m
Tonnage 425.0 GT
Propeller CPP
Bow Thruster 2.4 tons
Stern Thruster 1.8 tons

This ship is equipped with bow and stern thrusters
for low-speed maneuvering, besides a single rud-
der and a single propeller. The propeller revo-
lution are regulated by a change of the propeller
pitch angle.

X

Fig.1 Coordinate System

Figure 1 depicts the ship’s fixed-coordinate sys-
tem. Referencing to this, the mathematical model
is written by

Xp+Xp+Xp+Xw
Yg +Yr+Yr +Yw (8)

il

(m+ mg)t ~ mur

il

(m+ my)o + mur
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(Ixz +J,,)T = NE +NR+NT+NW)

where m and I, are the mass and the turning
moment of inertis. m,, m, and J,, are the added
masses along the x and y axes and the added mo-
ment of inertia around the z axis. u,v and 7 are
the ship’s speed along the x and y axes, and the
rate of turn around the z axis, respectively. The
subscripts H, P, R, T and W denote the hydrody-
namic forces induced by the hull, propeller, rud-
der, thrusters and wind disturbances, respectively.

3.2. Hydrodynamic Forces

The concrete hydrodynamic forces are written by
polynomial representations as follows:

Xg = =Cuju|+X,Vo+ X,,vr
+ X, Vr+ X,,0° + X, r?

Y = Y, Vv+Y,vv]+Y,.Vr
+ Y.,r|r] + Y., 07

Ny = N,Vv+N..u]v|+N,Vr

+  Ny,r|r]+ Nypv|r)

where X,, for example, means 8.X/8v, etc., and
V, the ship’s ordinary speed.

The thrust force of the propeller at pitch angles
6, are as follows:

Xp (l—t)pnzD:;(Co-'l—Clgp-{-C)Jp
Cy8pJp + Ci3
CsJp + CsbbJp + Cr0pJ 5

Cy8% + CsJ3) (9)

I

+ + +

where t and wp denote the thrust deduction frac-
tion and the wake fraction. n, Dp and J, are
the propeller revolutions, its diameter and the ad-
vance coefficient. Cy ~ Cy are various empirical
coefficients.

The rudder forces at a rudder angle § are repre-
sented by

Xr = —(l-tR)FNsinb'
Yr = —(l1+ag)Fycosé
Nr = —(zr+apzg)Fy cosé,

where tg,ag and zg denote empirical coefficients
due to hull-propeller interactions. zp is the rud-
der position. The rudder normal force Fiy is sim-

plified by
1
Fy = EpARf,(U?z siné + yr(v + Ir7)UR cos §)

where Ap and f, denote the projected rudder ar;é
and its normal force coefficient. yg,/r are empir-

ical coefficients representing the fairing effects of
the stream behind the hull. The effective rudder

inflow,
Ugp = (C - k,)(l - IUp)‘u + k,(0.77ern)tan9p

where ¢ denotes the ratio of axial velocity at pro-
peller position to rudder position. k, denotes the
propeller acceleration fraction, simplified by

1

k” = keo(l + e_uar

)

using a sigmoid function to represent the discon-
tinuity of k,, where k,, means k, at §p > 0.
The last two variables, Ug and k,, were simplified
in order to facilitate partial differentiation by the
state or control variables. The actuator’s dynam-
ics are also considered in the model. For details
of the model, see (Shoji and Ohtsu, 1992).

3.3, Wind Disturbances

Wind loads on the ship’s superstructure can be
represented as follows:

1

Xw = §p¢AofU%,Cx (10)
1

Yw = 'ipaAo:UszCY (11)
1

Nw = 5‘paAo,LpPU3VCN (12)

where Cx,Cy and Cy denote the experimental
coeflicients’ of wind force and moment acting on
the ship's superstructure. p, is the density of air.
Aof and Aos are the lateral and transverse pro-
jected sreas of the superstructure, respectively.
Since the coefficients Cx,Cy and Cy are func-
tions of the wind direction relative to the ship,
they can be approximated by (Fossen, 1994):

Cx = C'x cos a (13)
Cy = C'y sin a (14)
CN = éN sin 2, - (15)

4. OPTIMIZATION TECHNIQUE
4.1. Optimal Conditions

The above problem can be solved using the the-
ory of calculus of variations. This is referred to
as an example of the Bolza type of problem, and
it can be recast as a problem of minimizing the
augmented functional

1
J = /(f+AT(é—¢)+pTS)dt
[

+ (uTyh

(121)
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= /l(f—AT¢+pTS—A.Tz)dt
0

+ (ATz 4 uTy) = (AT2)g (16)
subject to equations (2) — (5), where A, p sre
variable Lagrange multipliers and s is 8 constant
Lagrange multiplier. The second equation arises
after the customary integration by parts is per-
formed. The functions z(t), u(t) and 7 and the
multipliers A(2), p(t) and p must satisfy equations

(2) = (5) end the following optimality conditions -

17
18

fu—-@ A+ Sup=0,0<t<1
A-fz+dA=00<t<1

1
[ (= 83+ Sep)at s (o =0
0

(A+¢,[l)1 =0 20

(17)
(18)
(19)
(20)

4.2. Sequential Gradient Restoraiion Method

Since the differential systems (2)-(5) have nonlin-
ear properties, it is impossible to find an analytical
solution. Thus, approximate and iterative numer-
ical methods are employed to find it. The numer-
ical method used in this paper is the conjugate
gradient-restoration method developed by Miele
et al.(Wu and Miele, 1980; Miele and Iyer, 1970).
In this method, the constraint error,

P= /0l N(& - ¢)dt + /l N(S)dt + N(%); (21)

and the error in the optimality conditions,

1 .
Q / N(A = fo + duA)dt
]

1
+ / N(fu ~ du) + S.p)dt
0

-+

1
N[ (= 8.3+ Sp)dt+ (9]
N(A+ Y1) (22)

are defined, where V(r) denotes the squared norm
of 8 vector v, i.e.

+

N{y)=vTv. (23)

For the exact, optimal solution,

P =0, Q =0.

(24),
However, as approximation to the optimal solu-
tion, the numerical method aims at

P<51y Q<52)

(25)

where £; and ¢; are small, prescribed numbers.
More details about the CGS technique are de-
scribed in, for example, (Wu and Miele, 1980) and

(Miele and Iyer, 1970).

The calculations described below will be imple-
mented under the convergent conditions of €3 <
0.17%% and e; < 0.17%.
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Fig.2 Wind Effects,Cx,Cy and Cn

5. MINIMUM-TIME DEVIATIONS WITH
WIND DISTURBANCES

5.1. Wind Effects on the Ship

Figure 2 shows the effects of wind pressures on the
ship in the fore-and-aft and athwart directions,
and its turning moment in the Shioji Maru. The
small circles in each figure denote the empirical re-
sults, and the solid lines, the first approximations
of them in eq. (13)-eq. (15). As can be seen from
these, the bow falls off the wind, when the ship
encounters the wind forward of the beam, while
it turns away {from the wind, when it encounters
the wind aft of the beam. These characteristics
of the ship’s behaviour are important effects that
a ship’s master must take proper account of in
ship-handling with wind disturbances.
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5.2. The Problems and The Optimal Solutions

The first examples are minimum-time deviation
problems with wind disturbances. The ship must
deviate 500 m away from the initial approach line
in a minimum maneuvering time, using the rud-
der. The winds blow from the starboard bow and
the port stern quaters at relative wind velocities
of 20 m/sec and 30m/sec, respectively. The ship's
initial approach speed is 12 knots, and the side-
ways speed must disapear and the head must be
redirected on the original course after ending the
deviation.

:E: + . »
* 45deg.
§ -lJSdig. ;G? . i
i
8 — : 7
g DG R
@ Absolute wind velocity is zero.
@ U, =20m/s, o=45deg.
g ‘@ Uo=30mfs, a=45 deg.
® U, =20m/s, a=-135deg.
12 ® Uo=30m/s, a=-135deg.
[~ A

0 100 200 300 400 500 Y (m)

Fig.3 The Calculated Paths of Minimum
Devistions with Winds
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Fig.4 The Calculated Time Histories of Rudder
Angles and Heading Angles

Figure 3 shows the optimal paths and ship’s head-
ings in each case, solved by the CGR method. Fig-
ure 4 shows the corresponding time histories of the
rudder angles and the heading angles. It should
be noted that the time histories of the heading
angles have slmost the same patterns, whereas
those of the rudder angles are different in each
case. Thus, it is generally concluded to be suf-
ficient that a ship’s master should pay attention
only to maintaining the ship’s heading along the

minimum time solution with no wind, in order to
accomplish the minimum-time deviation maneu-
vering.

300m
Deviation
€ 200m - VR s
> Deviation R set
Wind
8 *{lams
6.3ms §
Wind Velocity
§ - Absolute

..........

Ship's Path
Measured

............... Optimal Solution

0
10 seconds
—

0 ' 100 200 300 Y (m)

Fig.5 The Paths of the Actual Automatic
Deviation Tests
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20 404

0

Time Historles
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Rudder Angle (deg.) Rate of Tum (deg/s) Heading

""""""""" Optimal Solution
0 20 40 é 0160
Time (x)
Fig.6 The Time Histories of Heading, Rates of
Turn, Rudder Angles, Speeds and CPP
Angles

5.3. The Actual Sea Test

In order to evaluate the reliability on the formula-
tions and calculations, the following actual devi-
ation tests were carried out at sea, using the Sh-
10ji Maru. In these trials, the distances between
the first approach course and the final one were
set up as distances of 200m and 300m. The con-
trol law implementing the calculated steering or-
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der was constituted in the following simple form:

8o(t) + K1(¥o(t) - ¥(1))
+EK;(ro(t) — r(t)), (26)
where 6g(t), ¥o(t) and 7o(t) denote the optimsl

solutions of the steering order, the heading angle
and the rate of turn.

() =

Figure 5 shows the ship’s actual paths, measured
through a Doppler type of speed log (solid line),
and the calculated ones (dotted line).The latter
were calculated under conditions with no wind.
It is of interest that slthough the intermediate
paths differ slightly between the calculations and
the actual tests, there are no large differences in
the final positions in each case. Figure 6 shows
the comparisons between the measured and calcu-
lated heading angles, rates of turn, the rudder an-
gles and the forward speeds. The last two figures
clearly demonstrate that the actual rudder angles
and CPP blade angles faithfully follow the signals
of the steering and pitch angles of the CPP or-
dered by the computer, and thus the actual head-
ing angles and forward speed also coincide with
the intended ones.

6. MINIMUM TIME INWARD STOPPING
PROBLEMS WITH WIND DISTURBANCES

6.1. Setting up the Problems

As a second example of minimum-time maneuver-
ing with wind disturbances, minimum-time stop-
ping problems are considered.

Stopping Point

—> @ Blowling on Sm/set
~————— @ Blowing on 16m/sec

~#—— @ Blowing off Sm/sec
~4———— @ Dlowing off 10m/sec

>
>

Y

Fig.7 Minimum Stopping Problem with Wind

The problems treated here are set up as follows:

1. At the initial time, the ship is traveling at a
position located 12 times her length (600m)
from the final stopping point, whose b;arin_g
from her head is « degrees to the starboard

side (Figure 7). Her speed is the normal sail-
ing speed, namely 12 knots. ]

2. The winds blow on or blow off the final stop-
ping point with a relative wind velocity of 5
or 10 m/sec.

3. The ship’s head at the final stopping point
must be redirected to the original course, in
the attitude of the so-called "inward stop-

B 9

pmg

2l

110.0

"
~ J‘ ’

200.0 ~
190.0
180.0

110.0 9

Minimum manocuvring tinie

180, ¢

) 200 isle 60,0 180 .9
Initial apptoaching angle (Det

Fig.8 The Minimum Inward Stopping Times with
the Wind Blowing On
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L=49.9M

Fig.9 Paths of The Minimum-time Inward
Stopping with Wind Blowing on

6.2. Minimum Time Inward Stopping with Wind
Blowing on

Figure 8 shows the maneuvering time until stop-
ping at the given point in the minimum inward
stopping with the wind blowing on. It is noticed
that the time differences between the minimum
stopping with wind velocity 5 m/sec and with
wind of 10 m/sec are longer than those between
the minimum stopping with no wind and that with
wind of 5 m/sec. -
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In order to understand the reason for this, the
paths and other related mancuvering elements

should be examined in detail. (xe) STERN THRUSTER
1000.0
—
{Der) RELATIYE ¥IKD DIRECTION eeeaiin/see bt
200.0 e 100/5¢ . "i i
——o:NON N ¢
caeeaiSWseC il !
———:10n/3ee 0.0 . ‘i T &
TN N |
/'/ N v l i
o N [ X
100.0 e o~ . L 00 N T
e ? e
e : ~1000. 0 R
-------- 0.0 100.0 200.0
[See)
0.0 T o ) . o
0.0 100.0 [2500;3 Fig.14 The Time Histories of Stern Thruster
ec
Forces

Fig.10 The Relative Wind Directions . . .
Figure 9 shows the ship’s paths. From this figure,

it is found that the paths when the wind velocity is

(R~} e 10 m/sec, swell out in the outside directions. Fig-
20000.0 oot ures 10 and 11 show the time histories of the wind
ceepiSR/seC directions relative to her head, and the yaw mo-
10000, 04 ~’\‘:"°’:l°'/”° . ments when the initial bearing to the final point is
LR 15 degrees. It is clearly recognized that when the
‘‘‘‘‘‘‘‘‘‘‘ N wind velocity is 10 m/sec, the relative wind to her
0.0 \\~ """"""""" o—8 head changes to aftward from the abeam direction
"\.\ '/' after 100 sec, due to her swelling out path.

——— 4

~10000.0 As the result, the yaw moment in the last stage,

0.0 100.0 100.0
[Sec) approaching the final point, changes from a star-

Fig.11 The Yaw Moments board moment to a port one. It is clear that the
minimum inward stopping maneuvers with a wind
speed of 10 m/sec take account of this wind effect.

Pet) RUDDER ANGLE Figures 12, 13 and 14 are the time histories of
‘ : the rudder angles, and the bow and stern thruster
20,0 forces, respectively. It is noticed that the ship
is turned under full power at the last stage just
0.0 » before the terminal, utilizing starboard steering,
[ ——eitoN and the starboard bow and port stern thrusting ,
| ----aiSW/sec . e . .
-20. 0 [ =i/ in addition to the wind effect described above.
-10.0 T .
0.0 100.0 st:c; 6.3. Minimum Time Inwerd Stopping with Wind

Blowing off
Fig.12 The Time Histories of Rudder Angles .
As a final example, the minimum-time inward

stopping problem with wind blowing off the final

{Xe} BOY TRRUSTER point is discussed.
1000. 0
:T_:i::;m Figure 15 shows the maneuvering time before
— - i 10n/see stopping at the final point in minimum time. Also,
Figure 16 shows the paths taken. It is noted that
0.0 differing from the last problem, all the inward-
stopping maneuvers with wind blowing off the fi-
nal point almost coincide with the paths with no
00,0 wind disturbances. The reason for these coinci-

o0 100.0 2000  dences is that a yawing moment to the port side
{seeJ  is gained naturally, at the last approaching stage,

Fig.13 The Time Histories of Bow Thruster Forces due to the wind effects described above,
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Fig.16 Paths of the Minimum-Time Inward
Stopping with Wind Blowing Off

7. CONCLUSIONS

This paper has given the minimum-time ma-
neuvering methods in two kinds of typical ship-
handling problems under conditions with wind
disturbances, for a small training ship with a rud-
der, a controllable pitch propeller, and bow and
stern thrusters,

In the minimum-time deviation problem, it was
concluded to be sufficient for a ship’s master
to pay attention only to maintaining the ship's
course along the minimum solution with no wind,
irrespective of how the winds are blowing. In
this problem, furthermore, actual sea trials were
implemented. As an interesting result, it was
found that despite the intermediate paths in the
tests being slightly different from the optimal so-
lutions, there are no large differences at the final
point in each case. In the problem of minimum-
time inward stopping at a given position with the
winds blowing on and blowing off, it was con-
firmed that from the viewpoint of shiphandling
practice, the optimal solutions are reasonable ma-
neuvering methods that make maximum use of
the effects of the wind, especially in the minimum
inward stopping problems with the winds blowing
on.
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