著者

<table>
<thead>
<tr>
<th>姓氏</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koiwai</td>
<td>Keiichiro</td>
</tr>
<tr>
<td>Kondo</td>
<td>Hidehiro</td>
</tr>
<tr>
<td>Hirono</td>
<td>Ikuo</td>
</tr>
</tbody>
</table>

権利

この著作の著作権は東京海洋大学にあります。この著作は個人的な目的のためにご利用いただけます。この著作をコピー・流通・再配布する場合は、出版社（https://doi.org/10.1007/s12562-019-01311-5）からの許諾が必要となります。

科学研究費研究課題

- 病原微生物の侵入・攻撃に対するクルマエビ類の免疫応答に関する研究

研究課題番号

- 15H02462

URL

http://id.nii.ac.jp/1342/00001928/

doi: https://doi.org/10.1007/s12562-019-01311-5
Isolation and molecular characterization of hemocyte sub-populations in kuruma shrimp

Marsupenaeus japonicus

Keiichiro Koiwai¹, Hidehiro Kondo¹, Ikuo Hirono¹

¹Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan

Correspondence

Ikuo Hirono, Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan

Email: hirono@kaiyodai.ac.jp; Tel: 81-3-5463-0683; Fax: 81-3-5463-0683
Abstract

Crustacean hemocytes, which have usually been classified morphologically based on dyeing methods such as Giemsa or May-Giemsa staining, have recently been categorized with monoclonal antibodies or marker genes. However, these techniques have not become widely used, resulting in the use of different classification methods for hemocytes among laboratories. Therefore, in this research, we aimed to develop a classification method that can be widely used. The method uses lectins and a magnetic-activated cell sorting (MACS) system to isolate sub-populations. Two lectins, wheat germ agglutinin (WGA) and tomato lectin (*Lycopersicon esculentum* lectin: LEL), characteristically bound to the hemocytes, which allowed them to be classified into three sub-populations. Furthermore, by using LEL and the MACS system, different sub-populations of hemocyte could be isolated. These sub-populations were characterized as non-granular and granular hemocytes, and the accumulation patterns of the gene transcripts were consistent with the results of a functional analysis reported previously. The lectin-based hemocyte isolation method developed in this study has good reproducibility.

Keywords

lectin staining; transcriptomics; hemocytes; magnetic-activated cell sorting system (MACS); shrimp; invertebrate
Introduction

Hemocytes of shrimp act as immune organs (Jiravanichpaisal et al. 2006; Tassanakajon et al. 2013; Söderhäll 2016). The classification of hemocytes is indispensable to analyze the biological defense mechanism in detail. So far, dyeing methods such as Giemsa or May-Giemsa staining, and antibody-based classification methods have been developed based on the leukocyte classification methods of mammals. The Giemsa or May-Giemsa staining method is excellent for staining the cytoplasmic granules of hemocytes, which contain anti-microbial peptides (Bachère et al. 2004; Rosa and Barracco 2010).

Hemocytes can be roughly divided into three types morphologically, hyaline hemocytes (HCs), semi-granular hemocytes (SGCs) and granular hemocytes (GCs) by Giemsa or May-Giemsa staining (Söderhäll and Smith 1983; Johansson et al. 2000). However, the results of Giemsa and May-Giemsa staining are not always the same, and can be affected by pH, dyeing time, humidity and worker’s degree of training. Therefore, these methods are not well-suited for quantitative experiments.

Ten kinds of monoclonal antibodies were produced using whole hemocytes of kuruma shrimp Marsupenaeus japonicus as antigens (Rodriguez et al. 1995). Similarly, eight kinds of monoclonal antibodies were produced using hemocytes or hemocyte lysate as antigens against hemocytes of black tiger shrimp Penaeus monodon (Sung et al. 1999; van de Braak et al. 2000; Sung and Sun 2002;
Winotaphan et al. 2005). As a result of immunological staining using these monoclonal antibodies, even
the same morphologically classified cells such as HCs, SGCs and GCs showed differences in reactivity to
their cell surface antigens, and due to the reactivity difference of the monoclonal antibodies, hemocytes
have been defined in more detail. More recently, monoclonal antibodies reactive to whiteleg shrimp
Litopenaeus vannamei hemocytes were developed (Lin et al. 2007; Zhan et al. 2008). Using these
antibodies, the isolating two sub-populations of L. vannamei hemocytes: agranulocytes and granulocytes
were succeeded (Xing et al. 2017). However, these monoclonal antibodies are not widely used for
classifying shrimp hemocytes because it is difficult to prepare identical monoclonal antibody-producing
clones in different laboratories and because few suppliers are interested in developing products for
crustaceans due to the small number of researchers. Therefore, it is also important to classify specific
hemocytes without relying on antibodies.

In other organisms especially in human, cells are classified based on sugar chains present on
the cell surface. Lectins are proteins that bind to sugar chains, and are used for staining and classification
of various cells, such as cancer cells, based on their sugar chains such as glycans (Kobata 1992;
Christiansen et al. 2014; Gabius et al. 2015). Until now, hemocytes of bees Apis mellifera, fly Drosophila
melanogaster, mosquito Anopheles gambiae, Pacific oyster Crassostrea gigas and Europe mussel Mytilus
edulis have been classified by lectins (Pipe 1990; Tirouvanziam et al. 2004; Rodrigues et al. 2010; Marringa et al. 2014; Jiang et al. 2016). In addition, cytoplasmic granules of hemocytes of ridgeback prawn Sicyonia ingentis and American lobster Homarus americanus have been reported to be stained by wheat germ agglutinin (WGA) (Martin et al. 2003). Furthermore, WGA, tomato lectin (Lycopersicon esculentum lectin: LEL) and peanut agglutinin (PNA) were found to bind to some of the GCs, SGCs and HCs of L. vannamei (Estrada et al. 2016). However, few studies have stained shrimp hemocytes with lectins, and molecular biological analyses of lectin-positive hemocytes have not been conducted.

In this study, we isolated two hemocyte sub-populations using LEL and a magnetic-activated cell sorting (MACS) system, and then predicted their functions by measuring the accumulation of mRNA transcripts by RNA sequencing (RNA-seq) and quantitative RT-PCT (qRT-PCR) analyses.
Materials and Methods

Shrimp samples

Apparently healthy kuruma shrimp *M. japonicus* weighing 20–25 g were obtained from farms in Okinawa and Miyazaki prefecture, Japan. Shrimps were kept in tanks provided with a water recirculating system maintained at 25 °C and 30-35 ppt. Shrimps were acclimatized for at least 3 days before the experiment.

Lectin staining of hemocytes by LEL and WGA

Hemolymph was collected from each shrimp using a 23-gauge needle and syringe containing equal amount of anti-coagulant (0.45 mM NaCl, 0.1 M glucose, 30 mM trisodium citrate, 26 mM citric acid, 10 mM EDTA, pH 5.6) (Söderhäll and Smith 1983), and then centrifuged to obtain hemocytes. The hemocytes were fixed with 4% paraformaldehyde (PFA) in PBS (137 mM NaCl, 10 mM Na₂HPO₄, 2.7 mM KCl, 1.8 mM KH₂PO₄, pH 7.3) for 15 min at room temperature. One of two lectins, DyLight 488-conjugated LEL or FITC-conjugated WGA (both Vector Laboratories, Inc., USA), was added at a ratio of 2 μg to 10⁶ fixed cells and reacted for 15 minutes at 4 °C in reaction buffer (0.5% BSA, 2 mM EDTA in PBS). After washing twice, hemocytes were analyzed by flow cytometry and observed under a fluorescence microscope. For the observation of flow cytometry, the fluorescent intensities of at least
5,000 DyLight 488- or FITC-stained hemocytes were analyzed by FACSCalibur (Becton-Dickinson, USA) using an FL-1 filter with Cell Quest Pro software ver. 5.2.1 (Becton-Dickinson). Simultaneously relative cell size and relative cell complexity were determined by FACSCalibur and Cell Quest Pro software ver. 5.2.1 using a forward-scatter (FSC) filter and a side-scatter (SSC) filter, respectively. For the observation of fluorescence microscope, nucleolus of lectin-stained hemocytes were stained by 10 μg/mL of Hoechst 33258 (Invitrogen, USA) for 15 minutes in PBS. The stained hemocytes were examined by bright- and fluorescent-field using upright microscope ELIPSE Ci (Nikon Co., Japan), and the images were analyzed by NIS-Elements (Nikon Co.) and ImageJ ver. 2.0.0. (Schneider et al. 2012). The assay was performed three times from three individual shrimps.

Double lectin staining

PFA-fixed hemocytes were prepared as described above. Both biotin-conjugated LEL (Vector Laboratories, Inc.) and FITC-conjugated WGA were added at a ratio of 2 μg each to 10^6 fixed cells and reacted for 15 minutes at 4°C in reaction buffer. After the hemocytes were washed twice, DyLight 550-conjugated natural streptavidin protein (Abcam plc., U.K.) was added at a ratio of 0.4 μg to 10^6 fixed cells and reacted for 15 minutes at 4°C in reaction buffer. After washing twice, the stained hemocytes were examined by bright- and fluorescent-field as described above. The assay was performed three times from
three individual shrimps.

Isolation of LEL^Dim and LEL^Strong hemocytes by MACS system

PFA-fixed hemocytes were prepared as described above. From the flow cytometry results,

LEL- or WGA-stained hemocytes were classified into two sub-populations; stained weakly as $\text{WGA}^\text{Dim}/\text{LEL}^\text{Dim}$ and stained strongly as $\text{WGA}^\text{Strong}/\text{LEL}^\text{Strong}$. For isolation of LEL^Dim hemocytes, PFA-fixed hemocytes were stained with biotin-conjugated LEL (Vector Laboratories, Inc.) at a ratio 1 μg to 10^6 fixed cells for 15 minutes at 4°C in reaction buffer. After washing once, hemocytes were reacted with 10 μl of streptavidin microbeads (Miltenyi Biotec, Germany) in 90 μl of reaction buffer for 15 min at 4°C. After washing once, hemocytes were separated by MACS using MS column (Miltenyi Biotec) and MiniMACS separator (Miltenyi Biotec) following the manufacturer’s protocol. The negative fraction was collected as LEL^Dim hemocytes. For isolation of LEL^Strong hemocytes, PFA-fixed hemocytes were stained with biotin-conjugated LEL at a ratio 0.1 μg to 10^6 fixed cells for 15 minutes at 4°C in reaction buffer. After washing once, hemocytes were reacted with 1 μl of streptavidin microbeads in 99 μl of reaction buffer for 15 min at 4°C. After washing once, hemocytes were separated by MACS. The positive fraction was collected as LEL^Strong hemocytes. Total, LEL^Dim and LEL^Strong hemocytes were analyzed by flow cytometry. Five thousand (5,000) events of each sample were collected and then FSC and SSC analyses
were conducted by FACSCalibur with Cell Quest Pro software ver. 5.2.1 as described above. Two gates, R1 and R2, were established based on the FSC and SSC, and the percentage of dot plots in each gate were analyzed by Cell Quest Pro software. The assay was performed six times from six individual shrimps. Since the hemocytes stained with WGA could not be separated by MACS system, this isolation experiment could not be carried out on WGA-stained hemocytes.

May-Giemsa staining of total, LELDim and LELStrong hemocytes

Total, LELDim and LELStrong hemocytes were collected as described above. Each hemocyte suspension was spread on a glass slide in a cell collection bucket SC-2 (TOMY, Japan) at 100 g for 1 min. Glass slides were dried, stained for 3 min with 20% May-Grunwald stain solution (Wako, Japan) in 0.67 mM phosphate buffer (pH 6.6), washed with phosphate buffer, stained for 15 min with 4% Giemsa stain solution (Wako) in 0.67 mM phosphate buffer (pH 6.6), washed with tap water, dried, mounted with Malinol (Muto Pure Chemicals, Japan) and visualized with NIS-Elements software.

cDNA Library construction and RNA sequencing by Illumina MiSeq

Total, LELDim and LELStrong hemocytes were collected from six shrimps as described above. The PFA-fixed hemocytes were digested with proteinase K (Masuda et al. 1999). Total RNA was then extracted with a NucleoSpin RNA XS kit (Takara Bio Inc., Japan) following the manufacturer’s protocol.
The total RNAs of each type of hemocyte were pooled. The concentration and purity of total RNA were measured using a Qubit RNA HS Assay Kit and NanoDrop Lite (both Thermo Fisher Scientific Inc., USA). cDNA libraries were prepared with total RNA using a TruSeq stranded mRNA sample preparation kit (Illumina Inc., USA) following the manufacturer’s protocol. The libraries were amplified with 20 cycles of PCR and contained indexes within the adapters. The yields in the amplified libraries were measured with a Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific Inc.) and D1000 ScreenTape System (Agilent Technologies, USA). The yields of LELDim, LELStrong and total hemocytes were 1.9, 0.184 and 14.5 ng/μl, respectively, with average lengths of 293, 286 and 297 bp, respectively, indicating concentrations 10.3, 1.05 and 77.5 nM, respectively. Six (6) pmol of each library was sequenced using MiSeq (Illumina Inc.) and MiSeq reagent kit version 2 (Illumina Inc.) with 75 nt paired end reads.

De novo assembly and identification of differentially expressed transcripts

The reads were assembled by Trinity v2.5.1 (Grabherr et al. 2011) using default parameters (minimum assembled transcripts length 200) to obtain trinity-assembled transcripts. The sequenced libraries were mapped back to the reference trinity-assembled transcripts using RSEM (Li and Dewey 2011) to quantify the read counts. Read counts were normalized by trimmed mean of M-values (TMM) to account for differences in library size (Robinson and Oshlack 2010) and then normalized by transcripts.
per million (TPM) to account for differences in transcript length. The differentially expressed transcripts
between total, \(\text{LEL}^{\text{Dim}} \) and \(\text{LEL}^{\text{Strong}} \) hemocytes libraries were identified using EdgeR (Robinson and
Oshlack 2010) including a p-value cutoff for false discovery rate of 0.001 and a minimum 16-fold change
in expression. Blastx program (Altschul et al. 1997) was then used for homologous gene searching with

Quantification of transcripts of immune-related genes by qRT-PCR

Total, \(\text{LEL}^{\text{Dim}} \) and \(\text{LEL}^{\text{Strong}} \) hemocytes were extracted from three shrimps, then total RNAs
were extracted as described above. cDNAs were synthesized from RNA of each sample using a High
capacity cDNA reverse transcription kit (Thermo Fisher Scientific Inc.). After synthesis, cDNA samples
were diluted five times with distilled water and 2 μl of samples were used for qRT-PCR. The set of
primers were designed based on registered sequences or trinity-transcripts (Table 1). Elongation factor \(1\alpha \)
(\(\text{EF-}1\alpha \): as an internal control) for qRT-PCR (Table 1). qRT-PCR was conducted using THUNDERBIRD
SYBR qPCR Mix (TOYOBO Co. Ltd., Japan) and condition was 95°C for 1 min, 40 cycles of 95°C for
15 secs and 60°C for 1 min followed by dissociation analysis step. mRNA accumulation of each gene was
calculated as \(\Delta \text{CT} \) by comparing with CT value of \(\text{EF-}1\alpha \) (as a reference gene). The statistical
significance between total, LEL_Dim and LEL_Strong hemocytes respectively was analyzed using t-test.

Lectin staining on hemocytes phagocyted micro beads

Shrimps were injected with 200 μl of 10% suspension of fluorescent beads (Fluoresbrite YO Cartoxylate Microspheres 1.0 μm: Polysciences, Inc., USA) in artificial seawater. Three (3) hours post injection, PFA-fixed hemocytes were prepared and stained by DyLight 488- conjugated LEL or FITC-conjugated WGA, respectively as described above. The stained hemocytes were examined by bright-field and fluorescent-field as described above. The assay was performed three times from three individual shrimps.
Results

Lectin staining of total hemocytes

Both WGA and LEL showed reactivity to all hemocytes, however there were a difference in reactivity, and they could be classified into two subpopulations, \(\text{WGA}^{\text{Dim}}/\text{WGA}^{\text{Strong}} \) and \(\text{LEL}^{\text{Dim}}/\text{LEL}^{\text{Strong}} \), respectively (Fig. 1). WGA reacted strongly with cells with relatively large and complex intracellular structure (Fig. 1d), whereas LEL reacted strongly with cells with relatively small and simple intracellular structure (Fig. 1h). WGA and LEL strongly reacted with the intracellular structure and the cell surface of hemocytes, respectively (Fig. 2). Dim-positive and strong-positive of each lectin hemocytes were also observed under fluorescent-field (Fig. 2).

Double lectin staining

Double lectin staining of total hemocytes by LEL and WGA was able to divide hemocytes into three sub-populations: LEL-positive, WGA-positive and LEL/WGA-positive hemocytes (Fig. 3). The ratio of LEL/WGA-positive hemocytes was 19% (n=3), and the fluorescent intensity of LEL/WGA-positive hemocytes was weaker than the other sub-populations. As with single staining, LEL well stained the cell surface and WGA well stained the intracellular structure of hemocytes.

Isolation of \(\text{LEL}^{\text{Dim}} \) and \(\text{LEL}^{\text{Strong}} \) hemocytes by MACS system

13
Using the MACS system and biotin-conjugated LEL, LELDim and LELStrong hemocytes were isolated, respectively. May-Giemsa staining showed that LELDim hemocytes (Fig. 4c) were relatively larger than LELStrong hemocytes (Fig. 4d), and unlike the latter, contained intracellular granules and a large cytoplasm compared to the nucleus. The granules of LELDim hemocytes showed round shape, 0.4-0.6 µm in diameter and stained eosinophilic as purplish red (Fig. 4c). On both LELDim and LELStrong hemocytes, cytoplasm were stained pale purple and had condensed chromatin (Fig. 4c, d). Regions 1 and 2 before separation of hemocytes were 45.8 ± 12.4% and 51.9 ± 12.0%, respectively, whereas after separation of LELDim hemocytes, they were 11.0 ± 3.2% and 83.8 ± 6.0%, and after separation of LELStrong hemocytes, they were 86.7 ± 7.2% and 10.9 ± 6.6% (n=6). Fig. 5 showed an example dot plot analyses of total, LELDim and LELStrong hemocytes from a shrimp.

Differentially expressed transcripts by RNA sequencing

All the sequences from total, LELDim and LELStrong hemocytes with raw data archived at the DDBJ Sequence Read Archive under Accession DRA007926. The assembled transcripts contained 11,870 trinity-genes. The median trinity-gene length was 339 bp and the N50 (weighted median) was 539 bp. We identified 2,630 differentially expressed transcripts based on a p-value cut-off for FDR of 0.001 and a minimum 16-fold change in expression. In blastx searches, 163 trinity-genes matched Penaeidae proteins.
with e-values less than 0.05 (Online Resource), 31 of which were immune-related (Fig. 6). The immune-related trinity-genes fell into four clusters that were highly expressed in (1) only LEL$_{\text{Strong}}$ hemocytes, (2) both total and LEL$_{\text{Dim}}$ hemocytes, (3) only total hemocytes and (4) only LEL$_{\text{Dim}}$ hemocytes (Fig. 6).

Differentially expressed transcripts by qRT-PCR

In the qRT-PCR results, the ΔCT values of transcripts of two major anti-microbial peptides (AMPs) (crustin and penaeidin-II) and c-type lysozyme were significantly lower in LEL$_{\text{Strong}}$ hemocytes than in total and LEL$_{\text{Dim}}$ hemocytes, while the ΔCT values of transcripts of hemocyte transglutaminase and prophenoloxidase (proPO) activation enzyme were significantly lower in LEL$_{\text{Dim}}$ hemocytes than in total and LEL$_{\text{Strong}}$ hemocytes (Fig. 7). The trend was also seen in that the ΔCT values of transcripts of Toll and integrin were lower in LEL$_{\text{Strong}}$ hemocytes than in total and LEL$_{\text{Dim}}$ hemocytes.

Lectin staining of hemocytes phagocyted micro beads

The fraction of hemocytes phagocyted micro beads was 5.6% (n=3). Both LEL-positive and -negative hemocytes phagocyted micro beads (Fig. 8b, d), whereas only WGA-positive hemocytes phagocyted micro beads (Fig. 8f, h). In addition, the fluorescent intensity of WGA-positive beads phagocyted hemocytes tended to be weaker than other WGA-positive hemocytes.
Discussion

The stainability of hemocytes by two lectins, WGA and LEL, were different. This suggests that sugar chains on hemocytes are different depending on the type of hemocytes. Like the reports on the other crustacean (Martin et al. 2003; Estrada et al. 2016), WGA strongly stained the granules of hemocytes of kuruma shrimp *M. japonicus*. The flow cytometry data also showed a strong WGA signal in hemocytes with high SSC values, suggesting that WGA stains granules of hemocytes. The investigation of the existence of granules on hemocytes is important for characterization of hemocytes. However, it was unclear which hemocytes contained granules on dyeing methods such as Giemsa or May-Giemsa staining.

Combination of WGA staining, microscopic observation and FCM analysis, it became easier to prove the existence of granules on hemocytes. In contrast to WGA, LEL appeared to bind to the cell surface and not cytoplasmic granules. Since LEL stained the cell surface, MACS system could be used. May-Giemsa staining showed that LEL$_{\text{Dim}}$ hemocytes contained a lot of cytoplasmic granules, while LEL$_{\text{Strong}}$ hemocytes contained little or no granules. The flow cytometry data also showed that LEL$_{\text{Strong}}$ hemocytes was smaller and had lower SSC value than LEL$_{\text{Dim}}$ hemocytes. These results indicate that hemocytes could be divided into two sub-populations by LEL: LEL$_{\text{Strong}}$ hemocytes that were agranulocytic and LEL$_{\text{Dim}}$ hemocytes that were granulocytic. Kuruma shrimp hemocytes were classified
into 3 types (Kondo et al. 1992; Kondo et al. 1998) or 8 types (Kondo et al. 2014) by electron microscopy observation or May-Grunwald staining. Since we used different sampling methods or anticoagulant solution in this study, we could not observe the reported detailed granule structure, cytoplasmic structure and dyeability. In addition, morphological changing especially degranulation were easily occurred even when collected using anticoagulant (Kondo et al. 2012). The development of the optimal sampling method and comparison with the existing report are future tasks.

The two populations, LEL^{Dim} and $\text{LEL}^{\text{Strong}}$, were associated with specific transcripts. Transcripts of hemocyte transglutaminase, which is related to clotting of hemolymph (Maningas et al. 2013), were highly accumulated in $\text{LEL}^{\text{Strong}}$ hemocytes in both the RNA-seq and qRT-PCR analyses. Abundant transglutaminase transcripts were also reported on HCs (also called agranular hemocytes) in $L.\text{vannamei}$ (Yang et al. 2015). The transglutamase results also strongly suggest that $\text{LEL}^{\text{Strong}}$ (i.e., agranular) hemocytes contribute to blood coagulation in kuruma shrimp. On the other hand, total and LEL^{Dim} hemocytes highly accumulated transcripts of crustin, crustin-like, penaeidin-II and c-type lysozyme, as shown by the RNA-seq and qRT-PCR analyses. AMPs and c-type lysozyme are also present in cytoplasmic granules of hemocytes (Bachère et al. 2004; Rosa and Barracco 2010). Our RNA-seq analysis also showed that LEL^{Dim} hemocytes had abundant transcripts of proPO activation enzymes and
serine proteases, which are also proPO-related enzymes (Hernández-López et al. 1996; Cerenius and Söderhäll 2004). In many crustaceans, the proPO system is carried by granular hemocytes (Sung et al. 1998; Yang et al. 2015; Söderhäll 2016). Based on these previous reports and the present results, LEL$^{\text{Dim}}$ hemocytes (i.e. granulocytes) are responsible for the production of AMPs and c-type lysozyme, and contribute to the proPO system, as reported previously.

The hemocytes which have the phagocytic activity vary greatly from species to species in crustacean. In kuruma shrimp, strong phagocytic activity was observed in SGCs and GCs (Kondo et al. 1992). LEL$^{\text{Dim}}$ hemocytes accumulate transcripts involved in foreign object recognition, such as integrin, lectins, Toll and scavenger receptor (Arts et al. 2007; Yang et al. 2007; Han-Ching Wang et al. 2010; Zhang et al. 2012; Lin et al. 2013; Wang and Wang 2013; Wang et al. 2014; Bi et al. 2015). Furthermore, there was a correlation between WGA-positive hemocytes and phagocytosis, not LEL-positive hemocytes (Fig. 8f, h), in this study. Together, these results indicate that kuruma shrimp granular hemocytes are the main players in phagocytosis. Interestingly, LEL-positive not WGA-positive cells were reported to be phagocytotic in Pacific oyster $C.\ gigas$ (Jiang et al. 2016), which suggests that the composition and function of cell surface glycans can differ in the same invertebrates.

Some hemocytes stained with both WGA and LEL. Lin and Söderhäll (2011) argue that GCs
and SGCs differentiate from HCs. In this study, both LEL- and WGA-positive hemocytes were present, but we were unable to analyze their functions. For example, both LEL- and WGA-positive hemocytes may be in transition from HCs to GCs or SGCs. By using a combination of LEL and WGA, it is now possible to more accurately classify the types, functions and life cycles of hemocytes.

Since our lectin-based hemocyte isolation method requires cell fixation, functional analysis was impossible. Therefore, further studies are needed to identify buffers that can make it possible to stain living hemocytes with lectins to conduct functional analysis or extract high quality RNAs. It is also necessary to identify the antigens of LEL and WGA to clarify how hemocytes are classified. Despite these problems, lectin-based hemocyte isolation uses easily available lectins and a relatively inexpensive MACS system, which should make it useful in many laboratories.
Acknowledgements

This work was supported by JSPS Grant-in-Aid for JSPS Research Fellow Grant Number 16J08185 (to K. Koiwai) and Grant-in-Aid for Scientific Research (A) Grant Number 15H02462 (to I. Hirono). All the sequences from total, LEL$^{\text{Dim}}$ and LEL$^{\text{Strong}}$ hemocytes with raw data archived at the DDBJ Sequence Read Archive under Accession DRA007926.

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.
References

Reviews 198: 116–126

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323

Maningas MBB, Kondo H, Hirono I (2013) Molecular mechanisms of the shrimp clotting system. Fish Shellfish Immunol 34: 968–972

against pathogen infections. Fish Shellfish Immunol 34: 981–989

vannamei mediated microbial agglutination and cell proliferation. PLoS ONE 7: e40615
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5'-3')</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF-1α F</td>
<td>ATT GCC ACA CCG CTC ACA</td>
<td>AB458256.1</td>
</tr>
<tr>
<td>EF-1α R</td>
<td>TCG ATC TTG GTC AGC AGT TCA</td>
<td>AB458256.1</td>
</tr>
<tr>
<td>Crustin F</td>
<td>AAC TAC TGC TGC GAA AGG TCT CA</td>
<td>AB121740-4.1</td>
</tr>
<tr>
<td>Crustin R</td>
<td>GGC AGT CCA GTG GCT TGG TA</td>
<td>AB121740-4.1</td>
</tr>
<tr>
<td>Penaeidin-II F</td>
<td>TTA GCC TTA CTC TGT CAA GTG TAC GCC</td>
<td>KU057370.1</td>
</tr>
<tr>
<td>Penaeidin-II R</td>
<td>AAC CTG AAG TTC CGT AGG AGC CA</td>
<td>KU057370.1</td>
</tr>
<tr>
<td>C-type lysozyme F</td>
<td>ATT ACG GCC GCT AGG AGC CA</td>
<td>AB080238.1</td>
</tr>
<tr>
<td>C-type lysozyme R</td>
<td>CCA GCA ATC GGC CAT GTA GC</td>
<td>AB080238.1</td>
</tr>
<tr>
<td>Anti-lipopolysaccharide factor F</td>
<td>AGC CTC CTT TTC CTT CTT CAC TCC</td>
<td>KX424931.1</td>
</tr>
<tr>
<td>Anti-lipopolysaccharide factor R</td>
<td>CAC AAT CCT GTC AGT TTT TCC GC</td>
<td>KX424931.1</td>
</tr>
<tr>
<td>C-type lectin F</td>
<td>ACG CTG GTG TGA AGC CAC TCC</td>
<td>KJ175168.1</td>
</tr>
<tr>
<td>C-type lectin R</td>
<td>ACC GAG TCT GAG CCG CCT AA</td>
<td>KJ175168.1</td>
</tr>
<tr>
<td>Hemocyte transglutaminase F</td>
<td>GAG TCA GAA GTC GCC GAG TGG</td>
<td>DQ436474.1</td>
</tr>
<tr>
<td>Hemocyte transglutaminase R</td>
<td>TGG CTC AGC AGG TCG TTT AA</td>
<td>DQ436474.1</td>
</tr>
<tr>
<td>Transglutaminase F</td>
<td>TGA CTG CGA ACA AGA TGA GC</td>
<td>AB162767.1</td>
</tr>
<tr>
<td>Transglutaminase R</td>
<td>GTT CTT GGT TTC CAC CAC CAC CAC</td>
<td>AB162767.1</td>
</tr>
<tr>
<td>Prophenoloxidase activation enzyme F</td>
<td>ACC CGA CGA TGC CAG AAC</td>
<td>This study</td>
</tr>
<tr>
<td>Prophenoloxidase activation enzyme R</td>
<td>TGG GAA GAT TTG GGA TAA GAA GAC</td>
<td>This study</td>
</tr>
<tr>
<td>Prophenoloxidase activation factor F</td>
<td>TCA AGG AGG TGG CTC TCC CT</td>
<td>This study</td>
</tr>
<tr>
<td>Prophenoloxidase activation factor R</td>
<td>GAT ACC CGA ACC CGG TCT CC</td>
<td>This study</td>
</tr>
<tr>
<td>Prophenoloxidase F</td>
<td>CCG AGT TTT GTG GAG GTG TT</td>
<td>AB073223.1</td>
</tr>
<tr>
<td>Prophenoloxidase R</td>
<td>GAG AAC TCC AGT CCG TGC TC</td>
<td>AB073223.1</td>
</tr>
<tr>
<td>Toll F</td>
<td>ACT GGA ACG TGT TGG GAA GA</td>
<td>AB333779.1</td>
</tr>
<tr>
<td>Toll R</td>
<td>TGC AAG TCC AGA ACC TCC AA</td>
<td>AB333779.1</td>
</tr>
<tr>
<td>Integrin α F</td>
<td>GAC GAG CCA AGC CAT CGT A</td>
<td>LC114983.1</td>
</tr>
<tr>
<td>Integrin α R</td>
<td>TCC GTC GAG CAG TCT TCA TG</td>
<td>LC114983.1</td>
</tr>
</tbody>
</table>
Fig. 1. Flowcytometry analysis of WGA- or LEL-stained hemocytes from a shrimp. The intensity of FL-1 signal of WGA-stained hemocytes (a) and LEL-stained hemocytes (e). Dotted line indicates negative control of FL-1 value. Dot-plot analysis of total hemocytes (b and f), WGADim hemocytes (c), WGAStrong hemocytes (d) LELDim hemocytes (g) and LELStrong hemocytes (h). X- and Y-axes indicate FSC and SSC, respectively.

Fig. 2. Lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL (a-d) and WGA (e-h).

Bright-field (a, e). Nucleolus stained as blue by Hoechst 33258 (b, f). Each fluorescent lectin stained as green, LEL (c) and WGA (g). Merged figure (d, h). Bars indicate 10 \(\mu \text{m} \) scale.

Fig. 3. Double lectin staining of total hemocytes from a shrimp. Hemocytes stained LEL and WGA.

Bright-field (a). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red and WGA as green (b). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL as red (c).

Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by WGA as green (d). Bars indicate 10 \(\mu \text{m} \) scale.

Fig. 4. Bright field microscopic observation and May-Giemsa staining of hemocytes from a shrimp. Total hemocyte observed under bright-field (a). Total hemocytes stained by May-Giemsa staining (b). Bright field observation and May-Giemsa staining of LELDim hemocytes (c) and LELStrong hemocytes (d). Bars
indicate 10 μm scale.

Fig. 5. Dot plot analyses of total, LEL$^{\text{Dim}}$ and LEL$^{\text{Strong}}$ hemocytes from a shrimp. Total hemocytes (a), LEL$^{\text{Dim}}$ hemocytes (b) and LEL$^{\text{Strong}}$ hemocytes (c). Each region was established based on characteristic cell plots. X- and Y-axes indicate FSC and SSC, respectively.

Fig. 6. Hierarchical clustering analysis of immune-related trinity-transcripts extracted as differentially expressed in total, LEL$^{\text{Dim}}$ and LEL$^{\text{Strong}}$ hemocytes. Each column is the TMM-TPM value. Relatively highly expressed trinity-genes are shown in red, relatively weakly expressed trinity-genes are shown in green.

Fig. 7. qRT-PCR analyses of 12 transcripts. ΔCt values analyzed by qRT-PCR. Higher ΔCT value indicates higher accumulation of transcript of mRNA. Each bar indicates the average value. Double asterisk (***) and an asterisk (*) on the bars indicates the ΔCt values were significantly different between each sub-population. ** = P < 0.01; *=P < 0.05.

Fig. 8. LEL and WGA staining on hemocytes phagocyted microbeads. Microscopic observation under bright-field (a, c, e, g) and under fluorescent-field (b, d, f, h). Nucleolus stained by Hoechst 33258 as blue, hemocytes stained by LEL (b, d) or WGA (f, h) as green and phagocytized beads as red. Bars indicate 10 μm scale.
Trimmed mean of M values normalized transcripts per million transcripts

<table>
<thead>
<tr>
<th>Trinity gene</th>
<th>Top hit of homology genes, gene name [species]</th>
<th>Identity</th>
<th>E-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN7517_c0_g1</td>
<td>ABD929298.1 hemocyte transglutaminase [Penaeus japonicus]</td>
<td>96.1</td>
<td>4.56E-96</td>
</tr>
<tr>
<td>DN9914_c0_g1</td>
<td>ABD929298.1 hemocyte transglutaminase [Penaeus japonicus]</td>
<td>99.5</td>
<td>1.36E-151</td>
</tr>
<tr>
<td>DN7229_c0_g1</td>
<td>ACP401755.1 crustin Pn5 [Penaeus monodon]</td>
<td>54.5</td>
<td>0.026</td>
</tr>
<tr>
<td>DN7564_c0_g1</td>
<td>ANE31673.1 C-type lectin [Penaeus merguiensis]</td>
<td>78.8</td>
<td>7.53E-76</td>
</tr>
<tr>
<td>DN6926_c0_g1</td>
<td>ACU31800.1 alpha2 macroglobulin isoform 3, partial [Penaeus chinensis]</td>
<td>82.8</td>
<td>0</td>
</tr>
<tr>
<td>DN6941_c0_g1</td>
<td>AVG44186.1 crustin-like protein [Penaeus japonicus]</td>
<td>100.0</td>
<td>1.12E-44</td>
</tr>
<tr>
<td>DN7161_c0_g1</td>
<td>ACR15870.1 serine proteinase [Penaeus chinensis]</td>
<td>45.8</td>
<td>1.89E-62</td>
</tr>
<tr>
<td>DN7553_c0_g1</td>
<td>BBC20717.1 integrin alpha 1s [Penaeus japonicus]</td>
<td>99.7</td>
<td>0</td>
</tr>
<tr>
<td>DN6968_c0_g1</td>
<td>ADP74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]</td>
<td>70.7</td>
<td>0</td>
</tr>
<tr>
<td>DN7464_c0_g1</td>
<td>BAD34945.1 serine proteinase homologue, partial [Penaeus japonicus]</td>
<td>97.3</td>
<td>0</td>
</tr>
<tr>
<td>DN7456_c0_g1</td>
<td>ACP19558.1 prophenoloxidase-activating enzyme [Penaeus monodon]</td>
<td>32.2</td>
<td>6.32E-26</td>
</tr>
<tr>
<td>DN7083_c0_g1</td>
<td>ADK66821.1 prophenoloxidase activating factor serine proteinase [Penaeus indicus]</td>
<td>56.5</td>
<td>3.2E-11</td>
</tr>
<tr>
<td>DN7378_c8_g1</td>
<td>AHM32891.1 integrin beta 6, partial [Penaeus chinensis]</td>
<td>76.2</td>
<td>1.28E-102</td>
</tr>
<tr>
<td>DN7464_c0_g1</td>
<td>BAD34945.1 serine proteinase homologue, partial [Penaeus japonicus]</td>
<td>76.0</td>
<td>3.72E-180</td>
</tr>
<tr>
<td>DN7367_c0_g1</td>
<td>ABO33174.1 serine protease-like protein 3 [Penaeus monodon]</td>
<td>90.6</td>
<td>6.69E-166</td>
</tr>
<tr>
<td>DN7367_c0_g1</td>
<td>ADR74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]</td>
<td>43.8</td>
<td>1.44E-98</td>
</tr>
<tr>
<td>DN7339_c0_g1</td>
<td>AFV99691.1 prophenoloxidase activating enzyme [Penaeus vannamei]</td>
<td>39.6</td>
<td>1.29E-40</td>
</tr>
<tr>
<td>DN6751_c1_g1</td>
<td>AFV98986.1 prophenoloxidase activating factor [Penaeus chinensis]</td>
<td>50.7</td>
<td>2.16E-93</td>
</tr>
<tr>
<td>DN7367_c1_g1</td>
<td>ABO33174.1 serine protease-like protein 3 [Penaeus monodon]</td>
<td>89.5</td>
<td>1.52E-15</td>
</tr>
<tr>
<td>DN31_c0_g1</td>
<td>AFJ59949.1 M-type lectin [Penaeus japonicus]</td>
<td>52.5</td>
<td>3.72E-13</td>
</tr>
<tr>
<td>DN7393_c11_g1</td>
<td>AHM32888.1 integrin alpha 1 [Penaeus chinensis]</td>
<td>68.0</td>
<td>3.59E-73</td>
</tr>
<tr>
<td>DN1960_c0_g1</td>
<td>AEB96259.1 C-type lectin [Penaeus merguiensis]</td>
<td>39.3</td>
<td>0.022</td>
</tr>
<tr>
<td>DN1775_c0_g1</td>
<td>AFV89885.1 prophenoloxidase activating enzyme [Penaeus chinensis]</td>
<td>40.4</td>
<td>4.19E-24</td>
</tr>
<tr>
<td>DN6261_c1_g1</td>
<td>AJE29369.1 vascular endothelial growth factor receptor precursor [Penaeus vannamei]</td>
<td>67.7</td>
<td>1.24E-22</td>
</tr>
<tr>
<td>DN7101_c0_g1</td>
<td>ADR74382.1 prophenoloxidase-activating enzyme 2a [Penaeus monodon]</td>
<td>29.2</td>
<td>3.5E-24</td>
</tr>
<tr>
<td>DN7393_c11_g4</td>
<td>AHM32888.1 integrin alpha 1 [Penaeus chinensis]</td>
<td>84.1</td>
<td>5.2E-33</td>
</tr>
<tr>
<td>DN5426_c0_g1</td>
<td>AJE29369.1 vascular endothelial growth factor receptor precursor [Penaeus vannamei]</td>
<td>60.3</td>
<td>9.05E-25</td>
</tr>
<tr>
<td>DN8582_c0_g1</td>
<td>ABW89999.1 double WAP domain-containing protein [Penaeus japonicus]</td>
<td>55.2</td>
<td>0.0000513</td>
</tr>
<tr>
<td>DN6116_c0_g1</td>
<td>AOF79112.1 toll-3 [Penaeus japonicus]</td>
<td>46.4</td>
<td>0.006</td>
</tr>
<tr>
<td>DN7362_c0_g2</td>
<td>ABW89999.1 double WAP domain-containing protein [Penaeus japonicus]</td>
<td>38.6</td>
<td>0.018</td>
</tr>
<tr>
<td>DN10066_c0_g1</td>
<td>AKO62849.1 scavenger receptor B1 [Penaeus japonicus]</td>
<td>39.5</td>
<td>0.047</td>
</tr>
</tbody>
</table>